
1 Groups and their representations

1.1 Groups
A group is a set of elements G = {a, b, . . . } with a binary operation (e.g. multiplication)

· : G ×G → G
(a, b) 7→ a · b ≡ ab ∈ G (closure)

with the following properties

(G1) associativity: ∀a, b, c ∈ G, a(bc) = (ab)c;

(G2) unit element: ∃e ∈ G : ea = ae = a,∀a ∈ G;

(G3) inverse: ∀a ∈ G,∃a−1 ∈ G : aa−1 = a−1a = e.

In general, multiplication is not commutative, i.e. ab , ba.
If ab = ba, ∀a, b ∈ G, then G is called an Abelian group.
If ab , ba, ∀a, b ∈ G, then G is called a non-Abelian group.
The number of the elements of a group G is called the order of G.

Examples of groups.

• The set with one element {e} under multiplication.

• The set of integers Z under ordinary addition.

• Positive rational numbers under ordinary multiplication.

• S n, the permutations of n objects, under composition.

σ ∈ S n : {1, 2, . . . , n} → {1, 2, . . . , n}
{1, 2, . . . , n} 7→ {σ(1), σ(2), . . . , σ(n)}

∀i ∈ {1, 2, . . . , n}, (σ1σ2)(i) ≡ σ1(σ2(i))

The order of S n is n!.

• Translations in D-dimensional Euclidean space, under composition.

• Rotations in D-dimensional Euclidean space, under composition.

• Z2 = e, a (order 2), with a2 = e (example: mirror symmetry, rotation of π around an axis).
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Counter-examples

• Z is not a group under multiplication (n−1 < Z for n , 1).

• R is not a group under multiplication: 0 has no inverse (see Problem Sheet 1 to understand
why it has to be so)

Note that R/{0} is a group under multiplication.

1.2 Vector spaces and linear operators
In physics, we typically deal with linear transformations on vector spaces.

Fields. A set K with two operations (+, ·) is a field iff

(F1) (K,+) is an Abelian group (e+ ≡ 0);

(F2) (K/{0}, ·) is an Abelian group (e· ≡ 1);

(F3) · is distributive with respect to +: ∀a, b, c ∈ K, (a + b)c = ab + bc.

Examples: Q (rational numbers), R (real numbers), C (complex numbers).

Vector spaces. A set V with two operations (+, ·) is a vector space over a field K iff

(V1) “addition” + : V × V → V

(V,+) is an Abelian group;

(V2) “multiplication by a scalar” · : V ×K→ V satisfying

(i) a(u + v) = au + av, ∀a ∈ K and ∀u, v ∈ V;

(ii) (a + b)u = au + bu, ∀a, b ∈ K and ∀u ∈ V;

(iii) a(bu) = (ab)u, ∀a, b ∈ K and ∀u ∈ V;

(iv) 1 · u = u, ∀u ∈ V .

Examples: ordinary vectors in D-dimensional Euclidean space, wave functions in Quantum Me-
chanics (QM).
Note: in physics we always consider vector spaces on R or C, because they are complete sets
(see Analysis 1 for definition of completeness).
A basis {ei} of a vector space V is a set of linearly independent vectors that span the whole vector
space, i.e.

∀u ∈ V, u =

n∑
i=1

uiei (span V)

n∑
i=1

uiei = 0⇔ ci = 0 , i = 1, 2, . . . , n (linearly independent)
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The number of elements of a basis is called the dimension of the vector space. The numbers
{u1, u2, . . . , un} are called the “components” of the vector u in the basis {ei}.
Note that vector spaces can have both finite and infinite dimension. Ordinary Euclidean vectors
are a finite-dimensional vector space, wave functions in QM are not.

Linear transformations. A transformation (or map) T : V → V on a vector space V on a field
K is linear iff

∀u, v ∈ V, ∀a, b ∈ K, T (au + bv) = aT (u) + bT (v) .

Consider a finite-dimensional vector space V of dimension n. Given a basis {ei}i=1,2,...,n, any linear
transformation T is represented by a matrix Di j, as follows

T (e j) =

n∑
i=1

Di j ei ≡ Di j ei (Einstein’s notation)

In this representation, the j-th column of Di j contains the components of T (e j). For any vector
u ∈ V , we have

u = u je j =⇒ T (u) = u jT (e j) = u j(Di jei) = viei =⇒ vi = Di ju j .

Note: a linear transformation is the generalisation of the multiplication by a scalar, so it is cus-
tomary to use the short-hand notation Tu ≡ T (u).

1.3 Representations of a group
A representation of a group G is a map D : G → L(V), where L(V) is the set of linear operators
on a vector space V . The map D satisfies the properties:

(R1) D(e) = 1, where e is the identity of G, and 1 the identity of L(V);

(R2) ∀g1, g2 ∈ G, D(g1g2) = D(g1)D(g2).

Example.

D :(Z,+)→ L(C) = (C, ·)

n 7→ D(n) = einθ , θ ∈ R

(R1) D(0) = ei0θ = 1;

(R2) ∀n,m ∈ Z D(n + m) = ei(n+m)θ = einθeimθ = D(n)D(m).

If V is finite-dimensional, we can express D(g) in matrix form. In a basis {ei}i=1,2,...,n we have

D(g)e j = [D(g)]i jei
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Two representations D1 and D2 are called equivalent if they can be related by a similarity trans-
formation, i.e.

∃S ∈ L(V) : D1(g) = S D2(g)S −1 , ∀g ∈ G .

Note that the matrix S has to be invertible.
A complex or real representation of order n is a representation D of the group G onto the sets
GL(n,C) or GL(n,R) of non-singular n × n complex or real matrices. The matrix D(g) has to be
invertible because, if D is a representation of a group G, then D(g−1) = D(g)−1, ∀g ∈ G. In fact,
from (R1)

D(gg−1) = D(e) = 1 .

But, from (R2), we have

D(gg−1) = D(g)D(g−1) = 1 =⇒ D(g−1) = D(g)−1 .

Example. The group Z3 is a finite group with three elements, Z3 = {e, a, b} . For finite groups
we can construct the so-called multiplication table, e.g.

· e a b
e e a b
a a b e
b b e a

One representation of Z3 in (C, ·) is given by the roots of z1/3 = 1, i.e. {1, e
2
3πi, e

4
3πi}. A represen-

tation of Z3 in GL(3,C) can be found in Problem Sheet 1.

1.4 Scalar products on real vector spaces
Consider a vector space V on R. A scalar product is a map g : V × V → V that is

(S1) bilinear: ∀u, v,w ∈ V , and ∀a, b ∈ R:

g(u, av + bw) = ag(u, v) + bg(u,w) ,
g(au + bv,w) = ag(u,w) + bg(v,w) ;

(S2) symmetric: ∀u, v ∈ V , g(v, u) = g(u, v).

Examples.
• Scalar products of vectors in three-dimensional Euclidean space R3 ≡ R ×R ×R:

∀~u,~v ∈ R3, g(~u,~v) ≡ ~u · ~v ≡ |~u||~v| cos θ .

The above product is strictly positive, i.e.

(S3) ∀u ∈ V, g(u, u) ≥ 0, and g(u, u) = 0 =⇒ u = 0.

• Scalar product of vectors in Minkowsky space:

∀u ≡ (u0, ~u), v ≡ (v0,~v), g(u, v) ≡ u · v ≡ u0v0 − ~u · ~v .

The above scalar product is not strictly positive, in fact ∀u = (|~u|, u) we have u · u = 0.
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Orthogonal vectors. Given a scalar product g, two vectors u, v are said to be orthogonal iff
g(u, v) = 0.
If {ei}i=1,2,...,n is a basis of V , and u = uie j and v = viei, we have

g(u, v) = gi juiv j gi j ≡ g(ei, e j) .

A basis {ei}i=1,2,...,n is said to be orthonormal iff

gi j = ±δi j , δi j =

{
1 i = j
0 i , j

Orthogonal transformations. A linear transformation M onto a real vector space V with a
scalar product g is said to be orthogonal iff ∀u, v ∈ V, g(Mu,Mv) = g(u, v).
Let us define the matrix Mi j ≡ g(ei,Me j). If {ei}i=1,2,...,n is orthonormal basis, and M is orthogonal,
we have (see Problem Sheet 1)

MT gM = g .

Using the fact that g2 = 1, we have

MT gM = g =⇒ gMT gM = g2 = 1 =⇒ M−1 = gMT g .

For a positive scalar product, g = 1. This implies that M−1 = MT .

1.5 Scalar products on complex vector spaces
Let us consider a vector spaceH on C. A hermitian scalar product is a map g : H ×H → C that
is:

(H1) sesquilinear: ∀u, v,w ∈ H , and ∀a, b ∈ C, we have

g(u, av + bw) = ag(u, v) + bg(u,w) ,
g(au + bv,w) = a∗g(u,w) + b∗g(v,w) ;

(H2) hermitian: ∀u, v ∈ H , g(v, u) = g(u, v)∗.

In physics applications, we always require strict positivity, i.e.

(H3) ∀u ∈ H , g(u, u) ≥ 0, and g(u, u) = 0 =⇒ u = 0.

Example. Wave functions in quantum mechanics.

|ψ〉 ≡ ψ : R3 → C

g(|φ〉, |ψ〉) ≡ 〈φ|ψ〉 ≡
∫
R3

d3~x φ∗(~x)ψ(~x)

This is indeed a scalar product due to the properties of integrals.
A set of vectors {|ei〉} is called orthonormal if 〈ei|e j〉 = δi j.
A complex vector spaceH with a hermitian scalar product (and the additional property of com-
pleteness) is called a Hilbert space.
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Unitary transformations. Let us consider a a Hilbert spaceH . A linear transformation (a.k.a.
operator) U onH is unitary iff, ∀|u〉, |v〉 ∈ H , we have 〈Uu|Uv〉 = 〈u|v〉.
The adjoint of a linear operator A on H is the linear operator A† defined by 〈u|A†v〉 = 〈Au|v〉,
∀|u〉, |v〉 ∈ H (with some extra conditions . From the definition (A†)† = A. A linear operator A is
hermitian iff A† = A.
If U is a unitary operator, then U† = U−1. In fact, ∀|u〉, |v〉 ∈ H , we have

〈u|v〉 = 〈Uu|Uv〉 = 〈u|U†Uv〉 =⇒ U†U = 1 =⇒ U† = U−1 .

If H has finite dimension n, we can construct an orthonormal basis {|ei〉}i=1,2,...,n. Then we can
associate to each operator A a matrix Ai j = 〈ei|Ae j〉, such that ∀|u〉 = ui|ei〉 ∈ H , we have

|v〉 ≡ A|u〉 = vi|ei〉 =⇒ vi = Ai ju j .

Note that, by construction, (A†)i j = A∗i j (see Problem Sheet 1).

Unitary representations. A representation D of a group G is unitary if, ∀g ∈ G, D(g) is a
unitary operator on a Hilbert space.
All representation of Z3 considered so far are unitary. The one in Problem Sheet 1 maps each
element of Z3 onto an orthogonal matrix on R3. We have therefore an orthogonal representation
of Z3.

Unitary vs anti-unitary operators. Unitary representations are commonly used to model the
action of a symmetry on quantum states:

|ψ〉 → |ψ′〉 = U |ψ〉 .

Unitary transformation leave transition amplitudes unchanged, in fact

〈φ′|ψ′〉 = 〈Uφ|Uψ〉 = 〈φ|ψ〉 .

In quantum mechanics, probabilities are obtained by squaring transition amplitudes, so we can
also have

〈Uφ|Uψ〉 = 〈φ|ψ〉∗ .

If an operator U satisfies the above relation ∀|φ〉, |ψ〉 ∈ H , the operator U is said to be anti-
unitary. Anti-unitary operators are anti-linear, i.e.

U(α|φ〉 + β|ψ〉) = α∗U |φ〉 + β∗U |ψ〉 , ∀|φ〉, |ψ〉 ∈ H , and ∀α, β ∈ C .

The adjoint of an anti-linear operator is defined through the relation

〈φ|A†ψ〉 = 〈Aφ|ψ〉∗ = 〈ψ|Aφ〉 .

Note, if U is anti-unitary, U† = U−1 (see Problem Sheet 1).
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