1 Groups and their representations

1.1 Groups

A group is a set of elements $G = \{a, b, ...\}$ with a binary operation (e.g. multiplication)

$$: : G \times G \to G (a,b) \mapsto a \cdot b \equiv ab \in G \text{ (closure)}$$

with the following properties

(G1) associativity: $\forall a, b, c \in G, a(bc) = (ab)c;$

(G2) unit element: $\exists e \in G : ea = ae = a, \forall a \in G;$

(G3) inverse: $\forall a \in G, \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e$.

In general, multiplication is *not* commutative, i.e. $ab \neq ba$. If ab = ba, $\forall a, b \in G$, then G is called an *Abelian* group. If $ab \neq ba$, $\forall a, b \in G$, then G is called a *non-Abelian* group. The number of the elements of a group G is called the *order* of G.

Examples of groups.

- The set with one element {*e*} under multiplication.
- The set of integers \mathbb{Z} under ordinary addition.
- Positive rational numbers under ordinary multiplication.
- S_n , the permutations of *n* objects, under composition.

$$\sigma \in S_n : \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}$$
$$\{1, 2, \dots, n\} \mapsto \{\sigma(1), \sigma(2), \dots, \sigma(n)\}$$
$$\forall i \in \{1, 2, \dots, n\}, (\sigma_1 \sigma_2)(i) \equiv \sigma_1(\sigma_2(i))$$

The order of S_n is n!.

- Translations in *D*-dimensional Euclidean space, under composition.
- Rotations in *D*-dimensional Euclidean space, under composition.
- $\mathbb{Z}_2 = e, a \text{ (order 2)}$, with $a^2 = e \text{ (example: mirror symmetry, rotation of } \pi \text{ around an axis)}$.

Counter-examples

- \mathbb{Z} is not a group under multiplication $(n^{-1} \notin \mathbb{Z} \text{ for } n \neq 1)$.
- R is not a group under multiplication: 0 has no inverse (see Problem Sheet 1 to understand why it has to be so)

Note that $\mathbb{R}/\{0\}$ is a group under multiplication.

1.2 Vector spaces and linear operators

In physics, we typically deal with *linear transformations* on vector spaces.

Fields. A set \mathbb{K} with two operations $(+, \cdot)$ is a *field* iff

(F1) (K, +) is an Abelian group ($e_+ \equiv 0$);

(F2) $(\mathbb{K}/\{0\}, \cdot)$ is an Abelian group $(e \equiv 1)$;

(F3) \cdot is distributive with respect to +: $\forall a, b, c \in \mathbb{K}$, (a + b)c = ab + bc.

Examples: \mathbb{Q} (rational numbers), \mathbb{R} (real numbers), \mathbb{C} (complex numbers).

Vector spaces. A set V with two operations $(+, \cdot)$ is a vector space over a field K iff

(V1) "addition" + : $V \times V \rightarrow V$ (V, +) is an Abelian group;

(V2) "multiplication by a scalar" $\cdot : V \times \mathbb{K} \to V$ satisfying

- (i) a(u + v) = au + av, $\forall a \in \mathbb{K}$ and $\forall u, v \in V$;
- (ii) (a + b)u = au + bu, $\forall a, b \in \mathbb{K}$ and $\forall u \in V$;
- (iii) $a(bu) = (ab)u, \forall a, b \in \mathbb{K} \text{ and } \forall u \in V;$
- (iv) $1 \cdot u = u, \forall u \in V$.

Examples: ordinary vectors in *D*-dimensional Euclidean space, wave functions in Quantum Mechanics (QM).

Note: in physics we *always* consider vector spaces on \mathbb{R} or \mathbb{C} , because they are complete sets (see Analysis 1 for definition of completeness).

A *basis* $\{e_i\}$ of a vector space V is a set of linearly independent vectors that span the whole vector space, i.e.

$$\forall u \in V, \qquad u = \sum_{i=1}^{n} u_i e_i \qquad (\text{span } V)$$
$$\sum_{i=1}^{n} u_i e_i = 0 \Leftrightarrow c_i = 0, i = 1, 2, \dots, n \qquad (\text{linearly independent})$$

The number of elements of a basis is called the *dimension* of the vector space. The numbers $\{u_1, u_2, \ldots, u_n\}$ are called the "components" of the vector u in the basis $\{e_i\}$.

Note that vector spaces can have both finite and infinite dimension. Ordinary Euclidean vectors are a finite-dimensional vector space, wave functions in QM are not.

Linear transformations. A transformation (or map) $T : V \to V$ on a vector space V on a field \mathbb{K} is *linear* iff

$$\forall u, v \in V, \ \forall a, b \in \mathbb{K}, \quad T(au + bv) = aT(u) + bT(v)$$

Consider a finite-dimensional vector space V of dimension n. Given a basis $\{e_i\}_{i=1,2,\dots,n}$, any linear transformation T is represented by a matrix D_{ij} , as follows

$$T(e_j) = \sum_{i=1}^n D_{ij} e_i \equiv D_{ij} e_i$$
 (Einstein's notation)

In this representation, the *j*-th column of D_{ij} contains the components of $T(e_j)$. For any vector $u \in V$, we have

$$u = u_j e_j \implies T(u) = u_j T(e_j) = u_j (D_{ij} e_i) = v_i e_i \implies v_i = D_{ij} u_j.$$

Note: a linear transformation is the generalisation of the multiplication by a scalar, so it is customary to use the short-hand notation $Tu \equiv T(u)$.

1.3 Representations of a group

A representation of a group G is a map $D : G \to L(V)$, where L(V) is the set of linear operators on a vector space V. The map D satisfies the properties:

(R1) D(e) = 1, where *e* is the identity of *G*, and 1 the identity of L(V);

(R2) $\forall g_1, g_2 \in G, D(g_1g_2) = D(g_1)D(g_2).$

Example.

$$D: (\mathbb{Z}, +) \to L(\mathbb{C}) = (\mathbb{C}, \cdot)$$
$$n \mapsto D(n) = e^{in\theta}, \quad \theta \in \mathbb{R}$$

(R1) $D(0) = e^{i0\theta} = 1;$

(R2) $\forall n, m \in \mathbb{Z} \ D(n+m) = e^{i(n+m)\theta} = e^{in\theta}e^{im\theta} = D(n)D(m).$

If V is finite-dimensional, we can express D(g) in matrix form. In a basis $\{e_i\}_{i=1,2,\dots,n}$ we have

 $D(g)e_i = [D(g)]_{ij}e_i$

Two representations D_1 and D_2 are called *equivalent* if they can be related by a similarity transformation, i.e.

$$\exists S \in L(V) : D_1(g) = S D_2(g) S^{-1}, \quad \forall g \in G$$

Note that the matrix *S* has to be invertible.

A complex or real representation of order *n* is a representation *D* of the group *G* onto the sets $GL(n, \mathbb{C})$ or $GL(n, \mathbb{R})$ of non-singular $n \times n$ complex or real matrices. The matrix D(g) has to be invertible because, if *D* is a representation of a group *G*, then $D(g^{-1}) = D(g)^{-1}$, $\forall g \in G$. In fact, from (R1)

$$D(gg^{-1}) = D(e) = 1$$
.

But, from (R2), we have

$$D(gg^{-1}) = D(g)D(g^{-1}) = 1 \implies D(g^{-1}) = D(g)^{-1}.$$

Example. The group \mathbb{Z}_3 is a finite group with three elements, $\mathbb{Z}_3 = \{e, a, b\}$. For finite groups we can construct the so-called multiplication table, e.g.

$$\begin{array}{c|cccc} \cdot & e & a & b \\ \hline e & e & a & b \\ a & a & b & e \\ b & b & e & a \end{array}$$

One representation of \mathbb{Z}_3 in (\mathbb{C}, \cdot) is given by the roots of $z^{1/3} = 1$, i.e. $\{1, e^{\frac{2}{3}\pi i}, e^{\frac{4}{3}\pi i}\}$. A representation of \mathbb{Z}_3 in $GL(3, \mathbb{C})$ can be found in Problem Sheet 1.

1.4 Scalar products on real vector spaces

Consider a vector space V on \mathbb{R} . A scalar product is a map $g: V \times V \to V$ that is

(S1) bilinear: $\forall u, v, w \in V$, and $\forall a, b \in \mathbb{R}$:

$$g(u, av + bw) = ag(u, v) + bg(u, w),$$

$$g(au + bv, w) = ag(u, w) + bg(v, w);$$

(S2) symmetric: $\forall u, v \in V, g(v, u) = g(u, v)$.

Examples.

• Scalar products of vectors in three-dimensional Euclidean space $\mathbb{R}^3 \equiv \mathbb{R} \times \mathbb{R} \times \mathbb{R}$:

$$\forall \vec{u}, \vec{v} \in \mathbb{R}^3, \qquad g(\vec{u}, \vec{v}) \equiv \vec{u} \cdot \vec{v} \equiv |\vec{u}| |\vec{v}| \cos \theta.$$

The above product is strictly positive, i.e.

(S3) $\forall u \in V, g(u, u) \ge 0$, and $g(u, u) = 0 \implies u = 0$.

• Scalar product of vectors in Minkowsky space:

$$\forall u \equiv (u^0, \vec{u}), v \equiv (v^0, \vec{v}), \qquad g(u, v) \equiv u \cdot v \equiv u^0 v^0 - \vec{u} \cdot \vec{v}.$$

The above scalar product is not strictly positive, in fact $\forall u = (|\vec{u}|, u)$ we have $u \cdot u = 0$.

Orthogonal vectors. Given a scalar product g, two vectors u, v are said to be *orthogonal* iff g(u, v) = 0.

If $\{e_i\}_{i=1,2,\dots,n}$ is a basis of V, and $u = u_i e_i$ and $v = v_i e_i$, we have

$$g(u, v) = g_{ij}u_iv_j$$
 $g_{ij} \equiv g(e_i, e_j)$

A basis $\{e_i\}_{i=1,2,\dots,n}$ is said to be orthonormal iff

$$g_{ij} = \pm \delta_{ij}, \qquad \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Orthogonal transformations. A linear transformation M onto a real vector space V with a scalar product g is said to be *orthogonal* iff $\forall u, v \in V, g(Mu, Mv) = g(u, v)$.

Let us define the matrix $M_{ij} \equiv g(e_i, Me_j)$. If $\{e_i\}_{i=1,2,\dots,n}$ is orthonormal basis, and M is orthogonal, we have (see Problem Sheet 1)

$$M^T g M = g$$
.

Using the fact that $g^2 = 1$, we have

$$M^T g M = g \implies g M^T g M = g^2 = \mathbb{1} \implies M^{-1} = g M^T g.$$

For a positive scalar product, g = 1. This implies that $M^{-1} = M^T$.

1.5 Scalar products on complex vector spaces

Let us consider a vector space \mathcal{H} on \mathbb{C} . A hermitian scalar product is a map $g: \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ that is:

(H1) sesquilinear: $\forall u, v, w \in \mathcal{H}$, and $\forall a, b \in C$, we have

$$g(u, av + bw) = ag(u, v) + bg(u, w),$$

$$g(au + bv, w) = a^*g(u, w) + b^*g(v, w);$$

(H2) hermitian: $\forall u, v \in \mathcal{H}, g(v, u) = g(u, v)^*$.

In physics applications, we always require strict positivity, i.e.

(H3) $\forall u \in \mathcal{H}, g(u, u) \ge 0$, and $g(u, u) = 0 \implies u = 0$.

Example. Wave functions in quantum mechanics.

$$\begin{split} |\psi\rangle &\equiv \psi : \mathbb{R}^3 \to \mathbb{C} \\ g(|\phi\rangle, |\psi\rangle) &\equiv \langle \phi |\psi\rangle \equiv \int_{\mathbb{R}^3} d^3 \vec{x} \, \phi^*(\vec{x}) \, \psi(\vec{x}) \end{split}$$

_ 2

This is indeed a scalar product due to the properties of integrals.

A set of vectors $\{|e_i\rangle\}$ is called *orthonormal* if $\langle e_i|e_i\rangle = \delta_{ii}$.

A complex vector space \mathcal{H} with a hermitian scalar product (and the additional property of completeness) is called a *Hilbert space*.

Unitary transformations. Let us consider a a Hilbert space \mathcal{H} . A linear transformation (a.k.a. operator) U on \mathcal{H} is unitary iff, $\forall |u\rangle, |v\rangle \in \mathcal{H}$, we have $\langle Uu|Uv\rangle = \langle u|v\rangle$.

The *adjoint* of a linear operator A on \mathcal{H} is the linear operator A^{\dagger} defined by $\langle u|A^{\dagger}v\rangle = \langle Au|v\rangle$, $\forall |u\rangle, |v\rangle \in \mathcal{H}$ (with some extra conditions . From the definition $(A^{\dagger})^{\dagger} = A$. A linear operator A is *hermitian* iff $A^{\dagger} = A$.

If U is a unitary operator, then $U^{\dagger} = U^{-1}$. In fact, $\forall |u\rangle, |v\rangle \in \mathcal{H}$, we have

$$\langle u|v\rangle = \langle Uu|Uv\rangle = \langle u|U^{\dagger}Uv\rangle \implies U^{\dagger}U = \mathbb{1} \implies U^{\dagger} = U^{-1}.$$

If \mathcal{H} has finite dimension *n*, we can construct an orthonormal basis $\{|e_i\rangle\}_{i=1,2,\dots,n}$. Then we can associate to each operator *A* a matrix $A_{ij} = \langle e_i | A e_j \rangle$, such that $\forall |u\rangle = u_i | e_i \rangle \in \mathcal{H}$, we have

 $|v\rangle \equiv A|u\rangle = v_i|e_i\rangle \implies v_i = A_{ij}u_j.$

Note that, by construction, $(A^{\dagger})_{ij} = A_{ij}^*$ (see Problem Sheet 1).

Unitary representations. A representation *D* of a group *G* is unitary if, $\forall g \in G$, D(g) is a unitary operator on a Hilbert space.

All representation of \mathbb{Z}_3 considered so far are unitary. The one in Problem Sheet 1 maps each element of \mathbb{Z}_3 onto an orthogonal matrix on \mathbb{R}^3 . We have therefore an *orthogonal* representation of \mathbb{Z}_3 .

Unitary vs anti-unitary operators. Unitary representations are commonly used to model the action of a symmetry on quantum states:

$$|\psi\rangle \rightarrow |\psi'\rangle = U|\psi\rangle.$$

Unitary transformation leave transition amplitudes unchanged, in fact

$$\langle \phi' | \psi' \rangle = \langle U \phi | U \psi \rangle = \langle \phi | \psi \rangle \,.$$

In quantum mechanics, probabilities are obtained by squaring transition amplitudes, so we can also have

$$\langle U\phi|U\psi\rangle = \langle \phi|\psi\rangle^*$$
.

If an operator U satisfies the above relation $\forall |\phi\rangle, |\psi\rangle \in \mathcal{H}$, the operator U is said to be *anti-unitary*. Anti-unitary operators are anti-linear, i.e.

$$U(\alpha|\phi\rangle + \beta|\psi\rangle) = \alpha^* U|\phi\rangle + \beta^* U|\psi\rangle, \qquad \forall |\phi\rangle, |\psi\rangle \in \mathcal{H}, \text{ and } \forall \alpha, \beta \in \mathbb{C}.$$

The adjoint of an anti-linear operator is defined through the relation

$$\langle \phi | A^{\dagger} \psi \rangle = \langle A \phi | \psi \rangle^* = \langle \psi | A \phi \rangle$$

Note, if U is anti-unitary, $U^{\dagger} = U^{-1}$ (see Problem Sheet 1).