1 Groups and their representations

1.1 Groups

A group is a set of elements G = {a, b, ...} with a binary operation (e.g. multiplication)

-:GXG-G
(a,b) — a-b=ab e G (closure)

with the following properties

(G1) associativity: Ya, b, c € G, a(bc) = (ab)c;
(G2) unitelement: de € G : ea = ae = a,Va € G;
(G3) inverse: Vae G,da'€eG:aa ' =ala=e.

In general, multiplication is not commutative, i.e. ab # ba.

If ab = ba,Va,b € G, then G is called an Abelian group.

If ab # ba, Ya,b € G, then G is called a non-Abelian group.

The number of the elements of a group G is called the order of G.

Examples of groups.

e The set with one element {e} under multiplication.

The set of integers Z under ordinary addition.

Positive rational numbers under ordinary multiplication.

S .., the permutations of n objects, under composition.

ocesS, {1,2,....,n} > {1,2,...,n}
{1,2,...,n} > {o(1),0?2),...,0(n)}
VYie{l,2,...,n}, (010)>(0) = o1(03(i))

The order of S, is n!.

Translations in D-dimensional Euclidean space, under composition.

Rotations in D-dimensional Euclidean space, under composition.

Z, = e, a (order 2), with a* = e (example: mirror symmetry, rotation of 7 around an axis).



Counter-examples

e Z is not a group under multiplication (n~' ¢ Z for n # 1).

e IR is not a group under multiplication: 0 has no inverse (see Problem Sheet 1 to understand
why it has to be so)

Note that IR /{0} is a group under multiplication.

1.2 Vector spaces and linear operators

In physics, we typically deal with linear transformations on vector spaces.

Fields. A set K with two operations (+, -) is a field iff

(F1) (KK, +) is an Abelian group (e, = 0);

(F2) (IK/{0},-) is an Abelian group (e. = 1);

(F3) - is distributive with respect to +: Ya, b, c € KK, (a + b)c = ab + bc.

Examples: () (rational numbers), R (real numbers), C (complex numbers).

Vector spaces. A set V with two operations (+, -) is a vector space over a field K iff

(V1) “addition” +: VXV >V
(V, +) is an Abelian group;

(V2) “multiplication by a scalar” - : V X IK — V satisfying

(1) a(u+v)=au+av,Va € K and Vu,v € V;
(i) (a+bu =au+ bu,vVa,b € Kand Vu € V;
(i11) a(bu) = (ab)u,Ya,b € K and Yu € V;
Gv) 1-u=u,VYueV.

Examples: ordinary vectors in D-dimensional Euclidean space, wave functions in Quantum Me-
chanics (QM).

Note: in physics we always consider vector spaces on R or C, because they are complete sets
(see Analysis 1 for definition of completeness).

A basis {e;} of a vector space V is a set of linearly independent vectors that span the whole vector
space, 1.e.

Yuel, u= Z ue; (span V)
i=1

Z ue;=0c¢=0,i=1,2,...,n (linearly independent)

i=1



The number of elements of a basis is called the dimension of the vector space. The numbers
{uy,uy,...,u,} are called the “components” of the vector u in the basis {e;}.

Note that vector spaces can have both finite and infinite dimension. Ordinary Euclidean vectors
are a finite-dimensional vector space, wave functions in QM are not.

Linear transformations. A transformation (or map) 7 : V — V on a vector space V on a field
K is linear iff
Yu,v eV, Ya,b e K, T(au+ bv)=aT(u)+bT(v).

Consider a finite-dimensional vector space V of dimension n. Given a basis {e;};=1 2. », any linear
transformation T is represented by a matrix D;;, as follows

n
T(ej) = Z Dije; = Djje; (Einstein’s notation)
i=1

In this representation, the j-th column of D;; contains the components of T'(e;). For any vector
u € V, we have

u=ue; — T(I/l) = I/le(eJ) = uj(D,-jel-) =vie — V;= D,]I/lj
Note: a linear transformation is the generalisation of the multiplication by a scalar, so it is cus-

tomary to use the short-hand notation Tu = T (u).

1.3 Representations of a group

A representation of a group G is amap D : G — L(V), where L(V) is the set of linear operators
on a vector space V. The map D satisfies the properties:

(R1) D(e) = 1, where e is the identity of G, and 1 the identity of L(V);

(R2) Vg1,82 € G, D(g182) = D(g1)D(g2).

Example.

D :(Z,+) - L(C) = (C,")
n— Dn)=e", ek

(R1) D(0) = €Y = 1;
(R2) VYn,m € 7 D(n + m) = &9 = ¢in%eim? = D(n)D(m).
If V is finite-dimensional, we can express D(g) in matrix form. In a basis {e;};,-1 .., we have

D(g)e; = [D(g)]ije



Two representations D, and D, are called equivalent if they can be related by a similarity trans-
formation, i.e.

3AS e (V) : Di(g) = SDy(g)S™', VgeG.
Note that the matrix S has to be invertible.
A complex or real representation of order n is a representation D of the group G onto the sets
GL(n,C) or GL(n, R) of non-singular n X n complex or real matrices. The matrix D(g) has to be
invertible because, if D is a representation of a group G, then D(g™!) = D(g)™!, Vg € G. In fact,
from (R1)

D(gg™") = D(e) = 1.

But, from (R2), we have

D(gg)=D(D(g =1 = D(g")=D(g".

Example. The group Z; is a finite group with three elements, Z; = {e, a, b} . For finite groups
we can construct the so-called multiplication table, e.g.

One representation of Z; in (C, -) is given by the roots of z/3 = 1, i.e. {1, e3™, ¢37}. A represen-
tation of Z5 in GL(3, C) can be found in Problem Sheet 1.

1.4 Scalar products on real vector spaces
Consider a vector space V on R. A scalar productisamap g: VXV — V thatis
(S1) bilinear: Yu,v,w € V,and Ya, b € R:

g(u,av + bw) = ag(u,v) + bg(u,w),

glau + bv,w) = ag(u,w) + bg(v,w)

(S2) symmetric: Yu,v € V, g(v,u) = g(u,v).

Examples.
e Scalar products of vectors in three-dimensional Euclidean space R* = R X R x R:
Vi,V € R, g, V) = il - ¥ = |id][V] cos 6.
The above product is strictly positive, i.e.
(S3) Vue V,g(u,u) >0,and g(u,u) =0 = u=0.
e Scalar product of vectors in Minkowsky space:
Yu = @, @),v =009, guvy=u-v=uH —i-v.

The above scalar product is not strictly positive, in fact Yu = (|u], u) we have u - u = 0.
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Orthogonal vectors. Given a scalar product g, two vectors u, v are said to be orthogonal iff

g(u,v) =0.
If {e;}iz12,.n 1s a basis of V, and u = u;e; and v = v;e;, we have

g(u,v) = 8ijUivj 8ij = g(ei, €j)-
A basis {e;};=12..., 1s said to be orthonormal iff

1 i=J
8ij = *0;j, 0;j = 0 oy

Orthogonal transformations. A linear transformation M onto a real vector space V with a
scalar product g is said to be orthogonal ift Yu,v € V, g(Mu, Mv) = g(u,v).
Let us define the matrix M;; = g(e;, Me;). If {e;}i=1 2, » 1s orthonormal basis, and M is orthogonal,
we have (see Problem Sheet 1)

M'gM=g.

Using the fact that g* = 1, we have
MgM=g = gM'gM=¢"=1 = M '=gM"g.

For a positive scalar product, g = 1. This implies that M~! = M7,

1.5 Scalar products on complex vector spaces

Let us consider a vector space H on C. A hermitian scalar product is amap g : H X H — C that
is:

(H1) sesquilinear: Yu,v,w € H, and Ya, b € C, we have
g(u,av + bw) = ag(u,v) + bg(u,w),
glau + bv,w) = a’g(u, w) + b’g(v,w);
(H2) hermitian: Yu,v € H, g(v,u) = g(u, v)*.
In physics applications, we always require strict positivity, i.e.

(H3) Yue ‘H, g(u,u) >0, and g(u,u) =0 = u=0.

Example. Wave functions in quantum mechanics.

W)=y :R>—>C

g(1#), ) = (Ply) = fR 3d3f¢*(za Y(X)

This is indeed a scalar product due to the properties of integrals.

A set of vectors {|e;)} is called orthonormal if {e;le;) = ¢;;.

A complex vector space H with a hermitian scalar product (and the additional property of com-
pleteness) is called a Hilbert space.



Unitary transformations. Let us consider a a Hilbert space H. A linear transformation (a.k.a.
operator) U on H is unitary iff, Y|u), [v) € H, we have (Uu|Uv) = (u|v).

The adjoint of a linear operator A on H is the linear operator A* defined by (u|A™v) = (Aulv),
Ylu), [vy € H (with some extra conditions . From the definition (A")" = A. A linear operator A is
hermitian iff AT = A.

If U is a unitary operator, then U' = U~!. In fact, V|u), |v) € H, we have

W) =(Uu|lUvy = WUTUYYy = U'U=1 = U =U".

If H has finite dimension n, we can construct an orthonormal basis {|e;)};=12.. .. Then we can
associate to each operator A a matrix A;; = (e;|Ae;), such that ¥|u) = u;le;) € H, we have

V) = Alu) = vile;)) = vi =A;ju;.

Note that, by construction, (A"), = A;‘j (see Problem Sheet 1).

Unitary representations. A representation D of a group G is unitary if, Vg € G, D(g) is a
unitary operator on a Hilbert space.

All representation of Z3 considered so far are unitary. The one in Problem Sheet 1 maps each
element of Z3 onto an orthogonal matrix on R?. We have therefore an orthogonal representation
of Z3 .

Unitary vs anti-unitary operators. Unitary representations are commonly used to model the
action of a symmetry on quantum states:

) — ') = Uly).

Unitary transformation leave transition amplitudes unchanged, in fact

(W) = UBlUY) = (oY) .

In quantum mechanics, probabilities are obtained by squaring transition amplitudes, so we can
also have

(UglUy) = (ply)" .

If an operator U satisfies the above relation Y|¢), [) € H, the operator U is said to be anti-
unitary. Anti-unitary operators are anti-linear, i.e.

Ualg) +Bl)) = " Ulg) + B UW) Vig), ) € H,and Yo, B € C.

The adjoint of an anti-linear operator is defined through the relation

(DIATY) = (Adly)" = (YlAg).

Note, if U is anti-unitary, U" = U~! (see Problem Sheet 1).



