Symmetry in Particle Physics, Problem Sheet 9

1. Consider a vector q transforming to the fundamental representation of $SU(N_c)$:

$$q_i \to (q_i)' = U_{ij} q_j$$
, $U = e^{-i\theta^a t^a}$, $a = 1, \dots N_c^2 - 1$.

The vector q^{\dagger} transforms according to the *conjugate* representation.

- (a) Show that the generators of the conjugate representation are $\bar{t}^a = -(t^a)^T$.
- (b) Consider the tensor $T_{ij} = q_i q_j^*$, and decompose it as follows

$$T_{ij} = A_{ij} + S_{ij}, \qquad A_{ij} \equiv \frac{1}{3}\delta_{ij}(q_k q_k^*) \qquad S_{ij} \equiv \left[q_i q_j^* - \frac{1}{3}\delta_{ij}(q_k q_k^*)\right].$$

Show that A_{ij} is invariant under $SU(N_c)$, while S_{ij} transforms according to the adjoint representation.

(c) Let $N_c > 2$ and construct the tensor

$$T_i = \epsilon_{ijk} q_j q_k \,.$$

Using det(U) = 1, show that T_i transforms according to the conjugate representation.

- 2. For each representation R of a compact Lie group G, consider the quadratic Casimir operator $T^2(R) = T^a(R)T^a(R)$.
 - (a) Show that T^2 commutes with every generator T^a , and hence $T^2(R) = C_R \mathbb{1}_R$, where $\mathbb{1}_R$ is the identity matrix in the vector space spanning representation R.
 - (b) Given that the generators of each representation are normalised as follows

$$\operatorname{Tr}[T^a(R) \, T^b(R)] = T_R \, \delta^{ab} \, .$$

where T_R depends on the representation, show that T_R and C_R are related by

$$C_R \dim(R) = T_R \dim(G)$$
.

where $\dim(G)$ is the dimension of the group.

(c) Given the normalisation $T_F = 1/2$, derive

$$C_F = \frac{N_c^2 - 1}{2N_c} \qquad C_A = T_A \,.$$

3. Consider the Lagrangian

$$\mathcal{L} = i ar{\psi}_1 \gamma^\mu \partial_\mu \psi_1 + i ar{\psi}_2 \gamma^\mu \partial_\mu \psi_2 - m \left(ar{\psi}_1 \psi_1 + ar{\psi}_2 \psi_2
ight) \,,$$

where $\psi_1(x)$ and $\psi_2(x)$ are two Dirac spinor fields, with $\bar{\psi}_i = \psi_i^{\dagger} \gamma^0$ (i = 1, 2), and m is a real parameter. We have seen in the lectures that the Lagrangian is invariant under a global $U(1) \times SU(2)$ transformation of the form

$$\psi_i(x) \to e^{-i\alpha} U_{ij} \psi_j(x), \qquad U = \exp\left[-i \alpha_a \frac{\sigma_a}{2}\right]$$

where $\alpha, \alpha_1, \alpha_2, \alpha_3$ are real constant parameters, and $\sigma_a, a = 1, 2, 3$ are the three Pauli matrices.

(a) Consider now the following local $U(1) \times SU(2)$ transformation

$$\psi_i(x) \to e^{-i\frac{g_1}{2}\alpha(x)}U_{ij}(x)\psi_j(x) \qquad U = \exp\left[-ig_2\,\alpha_a(x)\,\frac{\sigma_a}{2}\right]\,,$$

where g_1 and g_2 are constants, whereas $\alpha(x)$ and $\alpha_a(x)$, a = 1, 2, 3 are arbitrary functions of the space-time point x. Show that the Lagrangian is not invariant any more under such transformation, and compute the corresponding variation $\delta \mathcal{L}$

(b) We can modify the Lagrangian so that it is invariant under a local $U(1) \times SU(2)$ transformation by promoting the ordinary derivative ∂_{μ} to a covariant derivative D_{μ} as follows

$$D_{\mu} = \partial_{\mu} + i \frac{g_1}{2} B_{\mu} + i \frac{g_2}{2} (W_a)_{\mu} \sigma_a \,,$$

where B^{μ} , and W_i^{μ} are vector gauge fields. How should B^{μ} , and W_a^{μ} transform so that \mathcal{L} is still invariant under local $U(1) \times SU(2)$ transformations?

(c) You want this very same Lagrangian to describe electromagnetism, and you know that the particles described by ψ_2 are electrically neutral. How can you accommodate this in the theory?

<u>Hint</u>. Consider a suitable linear combination of gauge fields.

(d) What is the electric charge of the particles described by ψ_1 ?