Symmetry in Particle Physics, Problem Sheet 9

1. Consider a vector q transforming to the fundamental representation of $S U\left(N_{c}\right)$:

$$
q_{i} \rightarrow\left(q_{i}\right)^{\prime}=U_{i j} q_{j}, \quad U=e^{-i \theta^{a} t^{a}}, \quad a=1, \ldots N_{c}^{2}-1
$$

The vector q^{\dagger} transforms according to the conjugate representation.
(a) Show that the generators of the conjugate representation are $\overline{t^{a}}=-\left(t^{a}\right)^{T}$.
(b) Consider the tensor $T_{i j}=q_{i} q_{j}^{*}$, and decompose it as follows

$$
T_{i j}=A_{i j}+S_{i j}, \quad A_{i j} \equiv \frac{1}{3} \delta_{i j}\left(q_{k} q_{k}^{*}\right) \quad S_{i j} \equiv\left[q_{i} q_{j}^{*}-\frac{1}{3} \delta_{i j}\left(q_{k} q_{k}^{*}\right)\right]
$$

Show that $A_{i j}$ is invariant under $S U\left(N_{c}\right)$, while $S_{i j}$ transforms according to the adjoint representation.
(c) Let $N_{c}>2$ and construct the tensor

$$
T_{i}=\epsilon_{i j k} q_{j} q_{k} .
$$

Using $\operatorname{det}(U)=1$, show that T_{i} transforms according to the conjugate representation.
2. For each representation R of a compact Lie group G, consider the quadratic Casimir operator $T^{2}(R)=T^{a}(R) T^{a}(R)$.
(a) Show that T^{2} commutes with every generator T^{a}, and hence $T^{2}(R)=C_{R} \mathbb{1}_{R}$, where $\mathbb{1}_{R}$ is the identity matrix in the vector space spanning representation R.
(b) Given that the generators of each representation are normalised as follows

$$
\operatorname{Tr}\left[T^{a}(R) T^{b}(R)\right]=T_{R} \delta^{a b}
$$

where T_{R} depends on the representation, show that T_{R} and C_{R} are related by

$$
C_{R} \operatorname{dim}(R)=T_{R} \operatorname{dim}(G)
$$

where $\operatorname{dim}(G)$ is the dimension of the group.
(c) Given the normalisation $T_{F}=1 / 2$, derive

$$
C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}} \quad C_{A}=T_{A} .
$$

3. Consider the Lagrangian

$$
\mathcal{L}=i \bar{\psi}_{1} \gamma^{\mu} \partial_{\mu} \psi_{1}+i \bar{\psi}_{2} \gamma^{\mu} \partial_{\mu} \psi_{2}-m\left(\bar{\psi}_{1} \psi_{1}+\bar{\psi}_{2} \psi_{2}\right),
$$

where $\psi_{1}(x)$ and $\psi_{2}(x)$ are two Dirac spinor fields, with $\bar{\psi}_{i}=\psi_{i}^{\dagger} \gamma^{0}(i=1,2)$, and m is a real parameter. We have seen in the lectures that the Lagrangian is invariant under a global $U(1) \times S U(2)$ transformation of the form

$$
\psi_{i}(x) \rightarrow e^{-i \alpha} U_{i j} \psi_{j}(x), \quad U=\exp \left[-i \alpha_{a} \frac{\sigma_{a}}{2}\right]
$$

where $\alpha, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are real constant parameters, and $\sigma_{a}, a=1,2,3$ are the three Pauli matrices.
(a) Consider now the following local $U(1) \times S U(2)$ transformation

$$
\psi_{i}(x) \rightarrow e^{-i \frac{g_{1}}{2} \alpha(x)} U_{i j}(x) \psi_{j}(x) \quad U=\exp \left[-i g_{2} \alpha_{a}(x) \frac{\sigma_{a}}{2}\right],
$$

where g_{1} and g_{2} are constants, whereas $\alpha(x)$ and $\alpha_{a}(x), a=1,2,3$ are arbitrary functions of the space-time point x. Show that the Lagrangian is not invariant any more under such transformation, and compute the corresponding variation $\delta \mathcal{L}$
(b) We can modify the Lagrangian so that it is invariant under a local $U(1) \times S U(2)$ transformation by promoting the ordinary derivative ∂_{μ} to a covariant derivative D_{μ} as follows

$$
D_{\mu}=\partial_{\mu}+i \frac{g_{1}}{2} B_{\mu}+i \frac{g_{2}}{2}\left(W_{a}\right)_{\mu} \sigma_{a}
$$

where B^{μ}, and W_{i}^{μ} are vector gauge fields. How should B^{μ}, and W_{a}^{μ} transform so that \mathcal{L} is still invariant under local $U(1) \times S U(2)$ transformations?
(c) You want this very same Lagrangian to describe electromagnetism, and you know that the particles described by ψ_{2} are electrically neutral. How can you accommodate this in the theory?
Hint. Consider a suitable linear combination of gauge fields.
(d) What is the electric charge of the particles described by ψ_{1} ?

