Symmetry in Particle Physics, Problem Sheet 9 [SOLUTIONS]

1. Consider a vector q transforming to the fundamental representation of $\operatorname{SU}\left(N_{c}\right)$:

$$
q_{i} \rightarrow\left(q_{i}\right)^{\prime}=U_{i j} q_{j}, \quad U=e^{-i \theta^{a} t^{a}}, \quad a=1, \ldots N_{c}^{2}-1 .
$$

The vector q^{\dagger} transforms according to the conjugate representation.
(a) Show that the generators of the conjugate representation are $\overline{t^{a}}=-\left(t^{a}\right)^{T}$. By construction

$$
q^{\dagger} \rightarrow q^{\dagger} U^{\dagger} \Longrightarrow q_{i}^{*} \rightarrow q_{j}^{*}\left(U^{\dagger}\right)_{j i}=U_{i j}^{*} q_{j}^{*}
$$

Therefore, the column vector $\left(q^{\dagger}\right)^{T}=q^{*}$ transforms according to U^{*}. Hence

$$
U^{*}=\left(U^{\dagger}\right) T=\left(U^{-1}\right)^{T}=\left[e^{i \theta^{a} t^{a}}\right]_{j i}=\left[e^{-i \theta^{a}\left(-t^{a}\right)^{T}}\right]_{i j}
$$

By definition of conjugate representation

$$
q_{i}^{*} \rightarrow\left[e^{-i \theta^{a} \bar{t}^{a}}\right]_{i j} q_{j}^{*} \Longrightarrow \bar{t}^{a}=\left(-t^{a}\right)^{T}
$$

(b) Consider the tensor $T_{i j}=q_{i} q_{j}^{*}$, and decompose it as follows

$$
T_{i j}=A_{i j}+S_{i j}, \quad A_{i j} \equiv \frac{1}{3} \delta_{i j}\left(q_{k} q_{k}^{*}\right) \quad S_{i j} \equiv\left[q_{i} q_{j}^{*}-\frac{1}{3} \delta_{i j}\left(q_{k} q_{k}^{*}\right)\right]
$$

Show that $A_{i j}$ is invariant under $S U\left(N_{c}\right)$, while $S_{i j}$ transforms according to the adjoint representation.
The tensor $A_{i j}$ can be written in the alternative form

$$
A_{i j} \equiv \frac{1}{3} \delta_{i j}\left(q^{\dagger} q\right) \rightarrow \frac{1}{3} \delta_{i j}\left(q^{\dagger} U^{\dagger} U q\right)=\frac{1}{3} \delta_{i j}\left(q^{\dagger} q\right)
$$

We now show that $S_{i j}$ is an element of the Lie algebra of $S U\left(N_{c}\right)$. First we show that $\operatorname{Tr}(S)=0$. In fact

$$
S_{i i} \equiv\left[q_{i} q_{i}^{*}-\frac{1}{3} \delta_{i i}\left(q_{k} q_{k}^{*}\right)\right]=0
$$

Then we show that $S^{\dagger}=S$. In fact

$$
S_{j i}^{*}=\left[q_{j}^{*} q_{i}-\frac{1}{3} \delta_{i j}\left(q_{k} q_{k}^{*}\right)\right]=S_{i j}
$$

Therefore, $S_{i j}$ transforms according to the adjoint representation.
The relation we have shown can be interpreted in terms of a direct product as follows

$$
3 \times \overline{3}=1 \oplus 8
$$

where representations are labelled according to their dimensionality.
(c) Let $N_{c}>2$ and construct the tensor

$$
T_{i}=\epsilon_{i j k} q_{j} q_{k}
$$

Using $\operatorname{det}(U)=1$, show that T_{i} transforms according to the conjugate representation.
The tensor T_{i} has three components and transforms as follows

$$
T_{i} \rightarrow \epsilon_{i j k} U_{j j^{\prime}} U_{k k^{\prime}} q_{j^{\prime}} q_{k^{\prime}}
$$

Since $\operatorname{det}(U)=1$, we have

$$
\operatorname{det}(U) \epsilon_{123}=\epsilon_{l j k} U_{i 1} U_{j 2} U_{k 3} \Longrightarrow \epsilon_{l j k} U_{l i^{\prime}} U_{j j^{\prime}} U_{k k^{\prime}}=\epsilon_{i^{\prime} j^{\prime} k^{\prime}} \operatorname{det}(U)=\epsilon_{i^{\prime} j^{\prime} k^{\prime}}
$$

We now multiply the above equation by $U_{i i^{\prime}}^{*}$ and sum over i^{\prime}. Using

$$
\mathbb{1}=U U^{\dagger} \Longrightarrow U_{l i^{\prime}} U_{i^{\prime} i}^{\dagger}=U_{l i^{\prime}} U_{i i^{\prime}}^{*}=\delta_{i l} .
$$

This gives

$$
\epsilon_{i j k} U_{j j^{\prime}} U_{k k^{\prime}}=U_{i i^{\prime}}^{*} \epsilon_{i^{\prime} j^{\prime} k^{\prime}}
$$

Therefore, the transformation rule for T_{i} can be written in the form

$$
T_{i}^{\prime} \equiv \epsilon_{i j k} U_{j j^{\prime}} U_{k k^{\prime}} q_{j^{\prime}} q_{k^{\prime}}=U_{i i^{\prime}}^{*} \epsilon_{i^{\prime} j^{\prime} k^{\prime}} q_{j^{\prime}} q_{k^{\prime}}=U_{i i^{\prime}}^{*} T_{i^{\prime}}
$$

which implies that T_{i} transforms according according to the conjugate representation.
2. For each representation R of a compact Lie group G, consider the quadratic Casimir operator $T^{2}(R)=T^{a}(R) T^{a}(R)$.
(a) Show that T^{2} commutes with every generator T^{a}, and hence $T^{2}(R)=C_{R} \mathbb{1}_{R}$, where $\mathbb{1}_{R}$ is the identity matrix in the vector space spanning representation R. From an explicit calculation of $\left[T^{2}(R), T^{a}(R)\right]$, we obtain

$$
\begin{aligned}
{\left[T^{a}(R) T^{a}(R), T^{b}(R)\right] } & =T^{a}(R)\left[T^{a}(R), T^{b}(R)\right]+\left[T^{a}(R), T^{b}(R)\right] T^{a}(R) \\
& =i f^{a b c}\left(T^{a}(R) T^{c}(R)+T^{c}(R) T^{a}(R)\right)=i f^{a b c}\left\{T^{a}(R), T^{c}(R)\right\}
\end{aligned}
$$

For a compact Lie group, $f^{a b c}$ is antisymmetric in the indexes a,c. Since $\left\{T^{a}(R), T^{c}(R)\right\}$ is symmetric in a, c, the product of the two gives zero.
(b) Given that the generators of each representation are normalised as follows

$$
\operatorname{Tr}\left[T^{a}(R) T^{b}(R)\right]=T_{R} \delta^{a b}
$$

where T_{R} depends on the representation, show that T_{R} and C_{R} are related by

$$
C_{R} \operatorname{dim}(R)=T_{R} \operatorname{dim}(G)
$$

where $\operatorname{dim}(G)$ is the dimension of the group.
Let us set $a=b$ in $\operatorname{Tr}\left[T^{a}(R) T^{b}(R)\right]$. We obtain

$$
\operatorname{Tr}\left[T^{a}(R) T^{a}(R)\right]=C_{R} \operatorname{Tr}\left(\mathbb{1}_{R}\right)=C_{R} \operatorname{dim}(R)=T_{R} \delta^{a a}=T_{R} \operatorname{dim}(G)
$$

(c) Given the normalisation $T_{F}=1 / 2$, derive

$$
C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}} \quad C_{A}=T_{A}
$$

For the fundamental representation, we have

$$
C_{F} N_{c}=T_{F}\left(N_{c}^{2}-1\right) \Longrightarrow C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}
$$

For the adjoint representation, we have

$$
C_{F}\left(N_{c}^{2}-1\right)=T_{A}\left(N_{c}^{2}-1\right) \Longrightarrow C_{A}=T_{A}
$$

Note that, from the lectures, we know that $C_{A}=N_{c}$.
3. Consider the Lagrangian

$$
\mathcal{L}=i \bar{\psi}_{1} \gamma^{\mu} \partial_{\mu} \psi_{1}+i \bar{\psi}_{2} \gamma^{\mu} \partial_{\mu} \psi_{2}-m\left(\bar{\psi}_{1} \psi_{1}+\bar{\psi}_{2} \psi_{2}\right),
$$

where $\psi_{1}(x)$ and $\psi_{2}(x)$ are two Dirac spinor fields, with $\bar{\psi}_{i}=\psi_{i}^{\dagger} \gamma^{0}(i=1,2)$, and m is a real parameter. We have seen in the lectures that the Lagrangian is invariant under a global $U(1) \times S U(2)$ transformation of the form

$$
\psi_{i}(x) \rightarrow e^{-i \alpha} U_{i j} \psi_{j}(x), \quad U=\exp \left[-i \alpha_{a} \frac{\sigma_{a}}{2}\right]
$$

where $\alpha, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are real constant parameters, and $\sigma_{a}, a=1,2,3$ are the three Pauli matrices.
(a) Consider now the following local $U(1) \times S U(2)$ transformation

$$
\psi_{i}(x) \rightarrow e^{-i \frac{g_{1}}{2} \alpha(x)} U_{i j}(x) \psi_{j}(x) \quad U=\exp \left[-i g_{2} \alpha_{a}(x) \frac{\sigma_{a}}{2}\right]
$$

where g_{1} and g_{2} are constants, whereas $\alpha(x)$ and $\alpha_{a}(x), a=1,2,3$ are arbitrary functions of the space-time point x. Show that the Lagrangian is not invariant any more under such transformation, and compute the corresponding variation $\delta \mathcal{L}$
The Lagrangian changes as follows

$$
\mathcal{L} \rightarrow i \bar{\psi} e^{i \frac{g_{1}}{2} \alpha} U^{\dagger} \gamma^{\mu} e^{-i \frac{g_{1}}{2} \alpha}\left(U\left(1-i \frac{g_{1}}{2}\left(\partial_{\mu} \alpha\right)\right)+\left(\partial_{\mu} U\right)\right) \psi=\mathcal{L}+\delta \mathcal{L}
$$

where

$$
\delta \mathcal{L}=\bar{\psi} \gamma^{\mu}\left(\frac{g_{1}}{2}\left(\partial_{\mu} \alpha\right)+i U^{\dagger}\left(\partial_{\mu} U\right)\right) \psi
$$

(b) We can modify the Lagrangian so that it is invariant under a local $U(1) \times S U(2)$ transformation by promoting the ordinary derivative ∂_{μ} to a covariant derivative D_{μ} as follows

$$
D_{\mu}=\partial_{\mu}+i \frac{g_{1}}{2} B_{\mu}+i \frac{g_{2}}{2}\left(W_{a}\right)_{\mu} \sigma_{a}
$$

where B^{μ}, and W_{i}^{μ} are vector gauge fields. How should B^{μ}, and W_{a}^{μ} transform so that \mathcal{L} is still invariant under local $U(1) \times S U(2)$ transformations?
A suitable transformation has to be such that

$$
i \bar{\psi} \gamma^{\mu} U^{\dagger}\left(i \frac{g_{1}}{2} B_{\mu}^{\prime}+i \frac{g_{2}}{2}\left(W_{a}^{\prime}\right)_{\mu} \sigma_{a}\right) U \psi-i \bar{\psi} \gamma^{\mu}\left(i \frac{g_{1}}{2} B_{\mu}+i \frac{g_{2}}{2}\left(W_{a}\right)_{\mu} \sigma_{a}\right) \psi=-\delta \mathcal{L} .
$$

We then impose

$$
-\frac{g_{1}}{2} \bar{\psi} \gamma^{\mu}\left(B_{\mu}^{\prime}-B_{\mu}\right) \psi=-\frac{g_{1}}{2} \bar{\psi} \gamma^{\mu}\left(\partial_{\mu} \alpha\right) \psi \Longrightarrow B_{\mu}^{\prime}=B_{\mu}+\partial_{\mu} \alpha
$$

and

$$
-\frac{g_{2}}{2} \bar{\psi} \gamma^{\mu}\left(\left(W_{a}^{\prime}\right)_{\mu} U^{\dagger} \sigma_{a} U-\left(W_{a}\right)_{\mu} \sigma_{a}\right) \psi=-i \bar{\psi} \gamma^{\mu} U^{\dagger}\left(\partial_{\mu} U\right) \psi
$$

which implies

$$
\left(W_{a}^{\prime}\right)_{\mu} U^{\dagger} \frac{\sigma_{a}}{2}=\left(W_{a}\right)_{\mu} U \frac{\sigma_{a}}{2} U^{\dagger}-\frac{i}{g_{2}} U^{\dagger}\left(\partial_{\mu} U\right)
$$

Using the relation $\operatorname{Tr}\left[\sigma_{a} \sigma_{b}\right]=2 \delta_{a b}$, we obtain

$$
\left(W_{a}^{\prime}\right)_{\mu}=\frac{1}{2} \operatorname{Tr}\left[\sigma_{a} U \sigma_{b} U^{\dagger}\right]\left(W_{b}\right)_{\mu}-\frac{i}{g_{2}} \operatorname{Tr}\left[\sigma_{a} U^{\dagger}\left(\partial_{\mu} U\right)\right]
$$

(c) You want this very same Lagrangian to describe electromagnetism, and you know that the particles described by ψ_{2} are electrically neutral. How can you accommodate this in the theory?
Hint. Consider a suitable linear combination of gauge fields.
First, we write the interaction Lagrangian explicitly

$$
\mathcal{L} \supset-\bar{\psi}_{1} \gamma_{\mu}\left(\frac{g_{1}}{2} B^{\mu}+\frac{g_{2}}{2} W_{3}^{\mu}\right) \psi_{1}-\bar{\psi}_{2} \gamma_{\mu}\left(\frac{g_{1}}{2} B^{\mu}-\frac{g_{2}}{2} W_{3}^{\mu}\right) \psi_{2}-\frac{g_{2}}{2} \bar{\psi}_{1} \gamma_{\mu}\left(W_{1}^{\mu}-i W_{2}^{\mu}\right) \psi_{2}+\text { h.c. } .
$$

If we consider the interaction term involving ψ_{2} only, we can write it in the form

$$
\mathcal{L} \supset \frac{\sqrt{g_{1}^{2}+g_{2}^{2}}}{2} \bar{\psi}_{2} \gamma_{\mu} Z^{\mu} \psi
$$

with Z^{μ} the following linear combination of B^{μ} and W_{3}^{μ}

$$
Z^{\mu}=-\sin \theta B^{\mu}+\cos \theta W_{3}^{\mu} \quad \sin \theta=\frac{g_{1}}{\sqrt{g_{1}^{2}+g_{2}^{2}}}, \quad \cos \theta=\frac{g_{2}}{\sqrt{g_{1}^{2}+g_{2}^{2}}}
$$

and interpret the orthogonal combination

$$
A^{\mu}=\cos \theta B^{\mu}+\sin \theta W_{3}^{\mu}
$$

as the electromagnetic field, so that the particle described by ψ_{2} does not interact with the electromagnetic field.
(d) What is the electric charge of the particles described by ψ_{1} ?

We consider the interaction term involving ψ_{1} only

$$
\mathcal{L} \supset-\frac{\sqrt{g_{1}^{2}+g_{2}^{2}}}{2} \bar{\psi}_{2} \gamma_{\mu}\left(\sin \theta B^{\mu}+\cos \theta W_{3}^{\mu}\right)
$$

Expressing B^{μ} and W_{3}^{μ} in terms of A^{μ} and W_{3}^{μ}

$$
\begin{aligned}
B^{\mu} & =\cos \theta A^{\mu}-\sin \theta Z^{\mu} \\
W_{3}^{\mu} & =\sin \theta A^{\mu}+\cos \theta Z^{\mu},
\end{aligned}
$$

we obtain

$$
\mathcal{L} \supset-\sqrt{g_{1}^{2}+g_{2}^{2}} \sin \theta \cos \theta \bar{\psi}_{1} \gamma_{\mu} A^{\mu} \psi_{1}
$$

which implies that the electric charge of the particle described by ψ_{1} is

$$
\sqrt{g_{1}^{2}+g_{2}^{2}} \sin \theta \cos \theta=\frac{g_{1} g_{2}}{\sqrt{g_{1}^{2}+g_{2}^{2}}}
$$

