Symmetry in Particle Physics, Problem Sheet 8

1. Consider two quantum free scalar fields $\phi_{i}(x), i=1,2$, given by

$$
\phi_{i}(x)=\int \frac{d^{3} \vec{p}}{(2 \pi)^{3} 2 E_{\vec{p}}}\left(a_{i}(\vec{p}) e^{-i p \cdot x}+a_{i}^{\dagger}(\vec{p}) e^{i p \cdot x}\right), \quad E_{\vec{p}}=\sqrt{p^{2}+m^{2}},
$$

as well as the conserved current

$$
J^{\mu}=\left(\partial^{\mu} \phi_{1}\right) \phi_{2}-\left(\partial^{\mu} \phi_{2}\right) \phi_{1}
$$

(a) Compute the conserved charge Q corresponding to the current J^{μ} in terms of creation and annihilation operators.
Hint. Creation and annihilation operators for different fields commute.
(b) Consider the field

$$
\phi(x)=\frac{1}{\sqrt{2}}\left(\phi_{1}(x)+i \phi_{2}(x)\right)=\int \frac{d^{3} \vec{p}}{(2 \pi)^{3} 2 E_{\vec{p}}}\left(a(\vec{p}) e^{-i p \cdot x}+b^{\dagger}(\vec{p}) e^{i p \cdot x}\right) .
$$

Show that the one-particle states created by $a^{\dagger}(\vec{p})$ and $b^{\dagger}(\vec{p})$ are eigenstates of the charge operator Q. What are the corresponding eigenvalues?
2. Consider the following Lagrangian for a classical real classical vector field A^{μ} :

$$
\mathcal{L}=\frac{c_{1}}{2} F^{\mu \nu} F_{\mu \nu}+\frac{c_{2}}{2}\left(\partial_{\mu} A^{\mu}\right)^{2},
$$

where c_{1}, c_{2} are real parameters and $F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
(a) Compute the equations of motions for the field A^{μ}.
(b) Show that $\square\left(\partial_{\mu} A^{\mu}\right)=0$.
(c) Consider the gauge transformation

$$
A^{\mu} \rightarrow A^{\mu}+\partial^{\mu} \alpha .
$$

What is the condition on α such that \mathcal{L} is gauge invariant?
(d) Let us fix now $c_{2}=0$. Compute the Hamiltonian density \mathcal{H} and show that the kinetic energy is positive if and only if $c_{1}<0$.

