Symmetry in Particle Physics, Problem Sheet 8 [SOLUTIONS]

1. Consider two quantum free scalar fields $\phi_{i}(x), i=1,2$, given by

$$
\phi_{i}(x)=\int \frac{d^{3} \vec{p}}{(2 \pi)^{3} 2 E_{\vec{p}}}\left(a_{i}(\vec{p}) e^{-i p \cdot x}+a_{i}^{\dagger}(\vec{p}) e^{i p \cdot x}\right), \quad E_{\vec{p}}=\sqrt{p^{2}+m^{2}},
$$

as well as the conserved current

$$
J^{\mu}=\left(\partial^{\mu} \phi_{1}\right) \phi_{2}-\left(\partial^{\mu} \phi_{2}\right) \phi_{1}
$$

(a) Compute the conserved charge Q corresponding to the current J^{μ} in terms of creation and annihilation operators.
Hint. Creation and annihilation operators for different fields commute.
The conserved charge Q is given by

$$
Q=\int d^{3} x J^{0}(x)=\int d^{3} x\left(\pi_{1} \phi_{2}-\pi_{2} \phi_{1}\right)
$$

where $\pi_{i}(x)=\dot{\phi}_{i}(x)$ is given by

$$
\pi_{i}(x)=-i \int \frac{d^{3} \vec{p}}{(2 \pi)^{3} 2 E_{\vec{p}}} E_{\vec{p}}\left(a_{i}(\vec{p}) e^{-i p \cdot x}-a_{i}^{\dagger}(\vec{p}) e^{i p \cdot x}\right)
$$

Since Q is time-independent, we compute it at $t=0$. We then have

$$
\left.\begin{array}{rl}
\int d^{3} x \pi_{1}(0, \vec{x}) \phi_{2}(0, \vec{x})=-i \int \frac{d^{3} \vec{p}}{(2 \pi)^{3}} \int \frac{d^{3} \vec{p}^{\prime}}{(2 \pi)^{3} 2 E_{\vec{p}}}
\end{array}\right)
$$

Using the relation

$$
\int d^{3} x e^{i(\vec{p}-\vec{q}) \cdot \vec{x}}=\left(2 \pi^{3}\right) \delta^{(3)}(\vec{p}-\vec{q})
$$

we obtain

$$
\begin{aligned}
& \int d^{3} x \pi_{1}(0, \vec{x}) \phi_{2}(0, \vec{x})=\frac{i}{2} \int \frac{d^{3} \vec{p}}{(2 \pi)^{3} 2 E_{\vec{p}}} \times \\
& \times\left(a_{1}^{\dagger}(\vec{p}) a_{2}(\vec{p})-a_{1}(\vec{p}) a_{2}^{\dagger}(\vec{p})+a_{1}^{\dagger}(\vec{p}) a_{2}^{\dagger}\left(-\vec{p}^{\prime}\right)-a_{1}(\vec{p}) a_{2}(-\vec{p})\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \int d^{3} x \pi_{2}(0, \vec{x}) \phi_{1}(0, \vec{x})=\frac{i}{2} \int \frac{d^{3} \vec{p}}{(2 \pi)^{3} 2 E_{\vec{p}}} \times \\
& \times\left(a_{2}^{\dagger}(\vec{p}) a_{1}(\vec{p})-a_{2}(\vec{p}) a_{1}^{\dagger}(\vec{p})+a_{2}^{\dagger}(\vec{p}) a_{1}^{\dagger}\left(-\vec{p}^{\prime}\right)-a_{2}(\vec{p}) a_{1}(-\vec{p})\right)
\end{aligned}
$$

Adding the two together we obtain

$$
Q=i \int \frac{d^{3} \vec{p}}{(2 \pi)^{3} 2 E_{\vec{p}}}\left(a_{1}^{\dagger}(\vec{p}) a_{2}(\vec{p})-a_{2}^{\dagger}(\vec{p}) a_{1}(\vec{p})\right) .
$$

(b) Consider the field

$$
\phi(x)=\frac{1}{\sqrt{2}}\left(\phi_{1}(x)+i \phi_{2}(x)\right)=\int \frac{d^{3} \vec{p}}{(2 \pi)^{3} 2 E_{\vec{p}}}\left(a(\vec{p}) e^{-i p \cdot x}+b^{\dagger}(\vec{p}) e^{i p \cdot x}\right) .
$$

Show that the one-particle states created by $a^{\dagger}(\vec{p})$ and $b^{\dagger}(\vec{p})$ are eigenstates of the charge operator Q. What are the corresponding eigenvalues?
Using the explicit expressions for ϕ_{1} and ϕ_{2} we obtain

$$
\begin{aligned}
& a(\vec{p})=\frac{1}{\sqrt{2}}\left(a_{1}(\vec{p})+i a_{2}(\vec{p})\right) \\
& b(\vec{p})=\frac{1}{\sqrt{2}}\left(a_{1}(\vec{p})-i a_{2}(\vec{p})\right)
\end{aligned}
$$

We first consider the states created by $a^{\dagger}(\vec{p})$. Then

$$
\begin{aligned}
Q a^{\dagger}(\vec{p})|0\rangle & =i \int \frac{d^{3} \vec{p}^{\prime}}{(2 \pi)^{3} 2 E_{\vec{p}^{\prime}}}\left(a_{1}^{\dagger}\left(\vec{p}^{\prime}\right) a_{2}\left(\vec{p}^{\prime}\right)-a_{2}^{\dagger}\left(\vec{p}^{\prime}\right) a_{1}\left(\vec{p}^{\prime}\right)\right) \frac{1}{\sqrt{2}}\left(a_{1}^{\dagger}(\vec{p})-i a_{2}^{\dagger}(\vec{p})\right)|0\rangle \\
& =\frac{i}{\sqrt{2}} \int \frac{d^{3} \vec{p}^{\prime}}{(2 \pi)^{3} 2 E_{\vec{p}^{\prime}}}\left(-i a_{1}^{\dagger}\left(\vec{p}^{\prime}\right)\left[a_{2}\left(\vec{p}^{\prime}\right), a_{2}^{\dagger}(\vec{p})\right]-a_{2}^{\dagger}\left(\vec{p}^{\prime}\right)\left[a_{1}\left(\vec{p}^{\prime}\right), a_{1}^{\dagger}(\vec{p})\right]\right)|0\rangle \\
& =\frac{1}{\sqrt{2}}\left(a_{1}^{\dagger}(\vec{p})-i a_{2}^{\dagger}(\vec{p})\right)|0\rangle=a^{\dagger}(\vec{p})|0\rangle .
\end{aligned}
$$

Therefore, defining

$$
a^{\dagger}(\vec{p})|0\rangle \equiv|\vec{p} ;+\rangle
$$

we have $Q|\vec{p} ;+\rangle=|\vec{p} ;+\rangle$. Similarly, defining

$$
b^{\dagger}(\vec{p})|0\rangle \equiv|\vec{p} ;-\rangle,
$$

we have $Q|\vec{p} ;+\rangle=-|\vec{p} ;-\rangle$. We call the single-particle states with positive Q "particles" and those with negative Q "antiparticles".
2. Consider the following Lagrangian for a classical real classical vector field A^{μ} :

$$
\mathcal{L}=\frac{c_{1}}{2} F^{\mu \nu} F_{\mu \nu}+\frac{c_{2}}{2}\left(\partial_{\mu} A^{\mu}\right)^{2},
$$

where c_{1}, c_{2} are real parameters and $F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
(a) Compute the equations of motions for the field A^{μ}.

The Euler-Lagrange equations are

$$
0=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)}=2 c_{1} \partial_{\mu} F^{\mu \nu}+c_{2} \partial^{\nu}\left(\partial_{\mu} A^{\mu}\right)
$$

In terms of the field A^{μ} explicitly

$$
\square A^{\nu}-\left(1-\frac{c_{2}}{2 c_{1}}\right) \partial^{\nu}\left(\partial_{\mu} A^{\mu}\right)=0 .
$$

(b) Show that $\square\left(\partial_{\mu} A^{\mu}\right)=0$.

Taking the derivative of the equations of motion with respect to x^{ν} gives

$$
\square\left(\partial_{\nu} A^{\nu}\right)-\left(1-\frac{c_{2}}{2 c_{1}}\right) \square\left(\partial_{\mu} A^{\mu}\right)=\frac{c_{2}}{2 c_{1}} \square\left(\partial_{\mu} A^{\mu}\right)=0 \Longrightarrow \square\left(\partial_{\mu} A^{\mu}\right)=0
$$

(c) Consider the gauge transformation

$$
A^{\mu} \rightarrow A^{\mu}+\partial^{\mu} \alpha
$$

What is the condition on α such that \mathcal{L} is gauge invariant?
As seen in the lectures, $F^{\mu \nu}$ is invariant under such gauge transformations. Then

$$
\partial_{\mu} A^{\mu} \rightarrow \partial_{\mu}\left(A^{\mu}+\partial^{\mu} \alpha\right)=\partial_{\mu} A^{\mu}+\square \alpha=\partial_{\mu} A^{\mu} \Leftrightarrow \square \alpha=0 .
$$

(d) Let us fix now $c_{2}=0$. Compute the Hamiltonian density \mathcal{H} and show that the kinetic energy is positive if and only if $c_{1}<0$.
First we need to compute π^{μ}, the momentum conjugate to A^{μ}. This gives

$$
\pi^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} A_{\nu}\right)}=c_{1} F^{0 \mu}
$$

Therefore

$$
\mathcal{H}=\pi^{\mu}\left(\partial_{0} A_{\mu}\right)-\mathcal{L}=c_{1}\left(F^{0 \mu} F_{0 \mu}-\frac{1}{2} F^{\mu \nu} F_{\mu \nu}\right)=\frac{c_{1}}{2}(\underbrace{F^{0 i} F_{0 i}}_{<0}-F^{i j} F_{i j}) .
$$

The kinetic energy is the term containing time derivatives, which is positive if and only if $c_{1}<0$.

