Symmetry in Particle Physics, Problem Sheet 8 [SOLUTIONS]

1. Consider two quantum free scalar fields ¢;(z), i = 1,2, given by
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as well as the conserved current
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(a) Compute the conserved charge ) corresponding to the current J* in terms of
creation and annihilation operators.

Hint. Creation and annihilation operators for different fields commute.

The conserved charge ) is given by
Q= /d?’xJO(x) = /dgx (m1¢9 — m201)

where m;(x) = ¢;i(x) is given by
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Since Q) 1s time-independent, we compute it at t = 0. We then have
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Using the relation
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we obtain
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Similarly
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Adding the two together we obtain
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(b) Consider the field
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Show that the one-particle states created by af(p) and bf(p) are eigenstates of

the charge operator (). What are the corresponding eigenvalues?

Using the explicit expressions for ¢1 and ¢, we obtain
a(p) =
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We first consider the states created by a'(p). Then
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Therefore, defining
a'(p))0) = |75 +) .
we have Q|p; +) = |p;+). Similarly, defining

b'(p)I0) = 175 ) ,

we have Q|p;+) = —|p;—). We call the single-particle states with positive Q)
“particles” and those with negative () “antiparticles”.

2. Consider the following Lagrangian for a classical real classical vector field A*:

L= EF“”FW +2 (a AR

where c;, cp are real parameters and F), = 0,4, — 0, A,.



(a)

Compute the equations of motions for the field A*.
The Fuler-Lagrange equations are
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In terms of the field A* explicitly

04" — (1 - 0—2) 0" (9,A") = 0.
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Show that [J(9,A*) = 0.

Taking the derivative of the equations of motion with respect to x¥ gives

00, 4%) - (1 - 0—2) (0, A") = S20(0,A) =0 = D3, 4") = 0.
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Consider the gauge transformation
At — AP+ M.

What is the condition on « such that £ is gauge invariant?

As seen in the lectures, F™ 1is invariant under such gauge transformations.
Then
0, A" = 0,(A* + 0'a) = 0,A" + Oa = 0,A" & Oa =0.

Let us fix now ¢y = 0. Compute the Hamiltonian density H and show that the
kinetic energy is positive if and only if ¢; < 0.

First we need to compute ", the momentum conjugate to A*. This gives
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Therefore
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The kinetic energy is the term containing time derivatives, which is positive if
and only if c; < 0.



