
Symmetry in Particle Physics, Problem Sheet 8 [SOLUTIONS]

1. Consider two quantum free scalar fields φi(x), i = 1, 2, given by

φi(x) =

∫
d3~p

(2π)32E~p

(
ai(~p)e

−ip·x + a†i (~p)e
ip·x
)
, E~p =

√
p2 +m2 ,

as well as the conserved current

Jµ = (∂µφ1)φ2 − (∂µφ2)φ1 .

(a) Compute the conserved charge Q corresponding to the current Jµ in terms of
creation and annihilation operators.

Hint. Creation and annihilation operators for different fields commute.

The conserved charge Q is given by

Q =

∫
d3xJ0(x) =

∫
d3x (π1φ2 − π2φ1) ,

where πi(x) = φ̇i(x) is given by

πi(x) = −i
∫

d3~p

(2π)32E~p
E~p

(
ai(~p)e

−ip·x − a†i (~p)eip·x
)

Since Q is time-independent, we compute it at t = 0. We then have∫
d3x π1(0, ~x)φ2(0, ~x) = −i

∫
d3~p

(2π)3

∫
d3~p′

(2π)32E~p′
×

×
∫
d3x

1

2

(
a1(~p)e

i~p·~x − a†1(~p)e−i~p·~x
)(

a2(~p
′)ei~p

′·~x + a†2(~p
′)e−i~p

′·~x
)

Using the relation ∫
d3xei(~p−~q)·~x = (2π3)δ(3)(~p− ~q) ,

we obtain∫
d3x π1(0, ~x)φ2(0, ~x) =

i

2

∫
d3~p

(2π)32E~p
×

×
(
a†1(~p)a2(~p)− a1(~p)a

†
2(~p) + a†1(~p)a

†
2(−~p′)− a1(~p)a2(−~p)

)
Similarly∫

d3x π2(0, ~x)φ1(0, ~x) =
i

2

∫
d3~p

(2π)32E~p
×

×
(
a†2(~p)a1(~p)− a2(~p)a

†
1(~p) + a†2(~p)a

†
1(−~p′)− a2(~p)a1(−~p)

)
1



Adding the two together we obtain

Q = i

∫
d3~p

(2π)32E~p

(
a†1(~p)a2(~p)− a

†
2(~p)a1(~p)

)
.

(b) Consider the field

φ(x) =
1√
2

(φ1(x) + iφ2(x)) =

∫
d3~p

(2π)32E~p

(
a(~p)e−ip·x + b†(~p)eip·x

)
.

Show that the one-particle states created by a†(~p) and b†(~p) are eigenstates of
the charge operator Q. What are the corresponding eigenvalues?

Using the explicit expressions for φ1 and φ2 we obtain

a(~p) =
1√
2

(a1(~p) + ia2(~p)) ,

b(~p) =
1√
2

(a1(~p)− ia2(~p)) .

We first consider the states created by a†(~p). Then

Qa†(~p)|0〉 = i

∫
d3~p′

(2π)32E~p′

(
a†1(~p

′)a2(~p
′)− a†2(~p′)a1(~p′)

) 1√
2

(
a†1(~p)− ia

†
2(~p)

)
|0〉

=
i√
2

∫
d3~p′

(2π)32E~p′

(
−ia†1(~p′)[a2(~p′), a

†
2(~p)]− a

†
2(~p
′)[a1(~p

′), a†1(~p)]
)
|0〉

=
1√
2

(
a†1(~p)− ia

†
2(~p)

)
|0〉 = a†(~p)|0〉 .

Therefore, defining
a†(~p)|0〉 ≡ |~p; +〉 ,

we have Q|~p; +〉 = |~p; +〉. Similarly, defining

b†(~p)|0〉 ≡ |~p;−〉 ,

we have Q|~p; +〉 = −|~p;−〉. We call the single-particle states with positive Q
“particles” and those with negative Q “antiparticles”.

2. Consider the following Lagrangian for a classical real classical vector field Aµ:

L =
c1
2
F µνFµν +

c2
2

(∂µA
µ)2 ,

where c1, c2 are real parameters and Fµν ≡ ∂µAν − ∂νAµ.
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(a) Compute the equations of motions for the field Aµ.

The Euler-Lagrange equations are

0 = ∂µ
∂L

∂(∂µAν)
= 2c1∂µF

µν + c2∂
ν(∂µA

µ) .

In terms of the field Aµ explicitly

�Aν −
(

1− c2
2c1

)
∂ν(∂µA

µ) = 0 .

(b) Show that �(∂µA
µ) = 0.

Taking the derivative of the equations of motion with respect to xν gives

�(∂νA
ν)−

(
1− c2

2c1

)
�(∂µA

µ) =
c2
2c1

�(∂µA
µ) = 0 =⇒ �(∂µA

µ) = 0 .

(c) Consider the gauge transformation

Aµ → Aµ + ∂µα .

What is the condition on α such that L is gauge invariant?

As seen in the lectures, F µν is invariant under such gauge transformations.
Then

∂µA
µ → ∂µ(Aµ + ∂µα) = ∂µA

µ + �α = ∂µA
µ ⇔ �α = 0 .

(d) Let us fix now c2 = 0. Compute the Hamiltonian density H and show that the
kinetic energy is positive if and only if c1 < 0.

First we need to compute πµ, the momentum conjugate to Aµ. This gives

πµ =
∂L

∂(∂0Aν)
= c1F

0µ .

Therefore

H = πµ(∂0Aµ)− L = c1

(
F 0µF0µ −

1

2
F µνFµν

)
=
c1
2

F 0iF0i︸ ︷︷ ︸
<0

−F ijFij

 .

The kinetic energy is the term containing time derivatives, which is positive if
and only if c1 < 0.
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