Symmetry in Particle Physics, Problem Sheet 6

1. Consider a Dirac field ψ with a Lagrangian

$$
\mathcal{L}=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi,
$$

where m is a real, not necessarily positive.
(a) Compute the equation of motion for the field ψ.
(b) Show that the field ψ satisfies Klein-Gordon equation, and from that determine the mass of the spin- $1 / 2$ fermions described by the quantised field ψ.
2. Consider the four-by-four matrices $\gamma^{\mu}(\mu=0,1,2,3)$ in the Weyl representation,

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right)
$$

where $\sigma^{\mu}=(1, \vec{\sigma})$ and $\bar{\sigma}^{\mu}=(1,-\vec{\sigma})$. The three-dimensional vector $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ contains the three Pauli matrices satisfying $\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k}$. Note that $\left\{\sigma^{\mu}, \bar{\sigma}^{\nu}\right\}=$ $2 \eta^{\mu \nu} \mathbb{1}$, with $\eta^{\mu \nu}$ the metric of Minkowsy space.
(a) The generators of Lorentz transformations for a left-handed Weyl spinor are

$$
S_{L}^{\mu \nu}=\frac{i}{4}\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right),
$$

while for a right-handed spinor the generators are

$$
S_{R}^{\mu \nu}=\frac{i}{4}\left(\bar{\sigma}^{\mu} \sigma^{\nu}-\bar{\sigma}^{\nu} \sigma^{\mu}\right)
$$

Deduce that for a Dirac spinor the generators of the Lorentz group are $S^{\mu \nu}=$ $\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.
(b) Show that $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$, and that the same holds for the matrices $U^{\dagger} \gamma^{\mu} U$ provided U is unitary.
(c) Show that the matrix

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbb{1} & -\mathbb{1} \\
\mathbb{1} & \mathbb{1}
\end{array}\right)
$$

transforms the Weyl representation into the Dirac representation

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

3. Consider the matrix $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.
(a) Show that γ^{5} is diagonal in the Weyl representation,

$$
\gamma^{5}=\left(\begin{array}{cc}
-\sigma_{0} & 0 \\
0 & \sigma_{0}
\end{array}\right)
$$

and that, in any representation, $\left(\gamma^{5}\right)^{\dagger}=\gamma^{5}$.
(b) Show by direct inspection, or otherwise, that the matrices γ^{μ} anti-commute with γ^{5}, i.e. $\left\{\gamma^{\mu}, \gamma^{5}\right\}=0$.

