Symmetry in Particle Physics, Problem Sheet 6 [SOLUTIONS]

1. Consider a Dirac field ψ with a Lagrangian

$$
\mathcal{L}=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi
$$

where m is a real, not necessarily positive.
(a) Compute the equation of motion for the field ψ.

The Euler-Lagrange equation for ψ are given by

$$
0=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \bar{\psi}\right)}-\frac{\partial \mathcal{L}}{\partial \bar{\psi}}=-i \gamma^{\mu} \partial_{\mu} \psi+m \psi \Longrightarrow\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

(b) Show that the field ψ satisfies Klein-Gordon equation, and from that determine the mass of the spin- $1 / 2$ fermions described by the quantised field ψ. Acting on the equation of motion with the operator $\left(i \gamma_{\mu} \partial_{\mu}+m\right)$ we obtain

$$
\left(i \gamma^{\mu} \partial_{\mu}+m\right)\left(i \gamma^{\nu} \partial_{\nu}-m\right) \psi=\left(-\gamma^{\mu} \gamma^{\nu} \partial_{\mu} \partial_{\nu}-m^{2}\right) \psi=0
$$

The term with two gamma matrices can be written in the form

$$
\gamma^{\mu} \gamma^{\nu} \partial_{\mu} \partial_{\nu}=\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \partial_{\mu} \partial_{\nu}=\eta^{\mu \nu} \partial_{\mu} \partial_{\nu}=\square
$$

This gives

$$
\left(\square+m^{2}\right) \psi=0
$$

This means that the mass of the fermions is in fact $\sqrt{m^{2}}=|m|$.
2. Consider the four-by-four matrices $\gamma^{\mu}(\mu=0,1,2,3)$ in the Weyl representation,

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right)
$$

where $\sigma^{\mu}=(1, \vec{\sigma})$ and $\bar{\sigma}^{\mu}=(1,-\vec{\sigma})$. The three-dimensional vector $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ contains the three Pauli matrices satisfying $\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k}$. Note that $\left\{\sigma^{\mu}, \bar{\sigma}^{\nu}\right\}=$ $2 \eta^{\mu \nu} 1$, with $\eta^{\mu \nu}$ the metric of Minkowsy space.
(a) The generators of Lorentz transformations for a left-handed Weyl spinor are

$$
S_{L}^{\mu \nu}=\frac{i}{4}\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right)
$$

while for a right-handed spinor the generators are

$$
S_{R}^{\mu \nu}=\frac{i}{4}\left(\bar{\sigma}^{\mu} \sigma^{\nu}-\bar{\sigma}^{\nu} \sigma^{\mu}\right)
$$

Deduce that for a Dirac spinor the generators of the Lorentz group are $S^{\mu \nu}=$ $\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.
A Dirac spinor is the direct sum of a left-handed and a right-handed spinor. Therefore

$$
S^{\mu \nu}=\left(\begin{array}{cc}
S_{L}^{\mu \nu} & 0 \\
0 & S_{R}^{\mu \nu}
\end{array}\right)
$$

With an explicit calculation

$$
\gamma^{\mu} \gamma^{\nu}=\left(\begin{array}{cc}
\sigma^{\mu} \bar{\sigma}^{\nu} & 0 \\
0 & \bar{\sigma}^{\mu} \sigma^{\nu}
\end{array}\right)
$$

Therefore

$$
\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]=\frac{i}{4}\left(\begin{array}{cc}
\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu} & 0 \\
0 & \bar{\sigma}^{\mu} \sigma^{\nu}-\bar{\sigma}^{\nu} \sigma^{\mu}
\end{array}\right)=\left(\begin{array}{cc}
S_{L}^{\mu \nu} & 0 \\
0 & S_{R}^{\mu \nu}
\end{array}\right) .
$$

(b) Show that $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$, and that the same holds for the matrices $U^{\dagger} \gamma^{\mu} U$ provided U is unitary.
With an explicit calculation

$$
\gamma^{\mu} \gamma^{\nu}=\left(\begin{array}{cc}
\left\{\sigma^{\mu}, \bar{\sigma}^{\nu}\right\} & 0 \\
0 & \left\{\bar{\sigma}^{\mu}, \sigma^{\nu}\right\}
\end{array}\right)=\left(\begin{array}{cc}
2 \eta^{\mu \nu} \mathbb{1} & 0 \\
0 & 2 \eta^{\mu \nu} \mathbb{1}
\end{array}\right)=2 \eta^{\mu \nu} \mathbb{1} .
$$

With another explicit calculation

$$
\left\{U^{\dagger} \gamma^{\mu} U, U^{\dagger} \gamma^{\nu} U\right\}=U^{\dagger} \gamma^{\mu} \underbrace{U U^{\dagger}}_{=\mathbb{1}} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \underbrace{U U^{\dagger}}_{=\mathbb{1}} \gamma^{\mu} U=U^{\dagger}\left(2 \eta^{\mu \nu} \mathbb{1}\right) U=2 \eta^{\mu \nu} .
$$

(c) Show that the matrix

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbb{1} & -\mathbb{1} \\
\mathbb{1} & \mathbb{1}
\end{array}\right)
$$

transforms the Weyl representation into the Dirac representation

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

3. Consider the matrix $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.
(a) Show that γ^{5} is diagonal in the Weyl representation,

$$
\gamma^{5}=\left(\begin{array}{cc}
-\sigma_{0} & 0 \\
0 & \sigma_{0}
\end{array}\right)
$$

and that, in any representation, $\left(\gamma^{5}\right)^{\dagger}=\gamma^{5}$.
A possible way to proceed:

$$
\gamma^{0} \gamma^{1}=\left(\begin{array}{cc}
-\sigma_{1} & 0 \\
0 & \sigma_{1}
\end{array}\right), \quad \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
-\sigma_{2} \sigma_{3} & 0 \\
0 & -\sigma_{2} \sigma_{3}
\end{array}\right) .
$$

Use now

$$
\sigma_{2} \sigma_{3}=\frac{1}{2} \underbrace{\left\{\sigma_{2}, \sigma_{3}\right\}}_{=0}+\frac{1}{2} \underbrace{\left[\sigma_{2}, \sigma_{3}\right]}_{=2 i \sigma_{1}}=i \sigma_{1} \Longrightarrow \gamma^{2} \gamma^{3}=-i\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{1}
\end{array}\right) .
$$

This gives

$$
i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
-\sigma_{1}^{2} & 0 \\
0 & \sigma_{1}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\sigma_{0} & 0 \\
0 & \sigma_{0}
\end{array}\right) .
$$

By direct inspection, the matrix γ^{5} in the Weyl representation satisfies $\left(\gamma^{5}\right)^{\dagger}=$ γ^{5}. In any other representation, the matrix γ^{5} is related to the one in the Weyl representation by $U^{\dagger} \gamma^{5} U$, with U a unitary matrix. This gives

$$
\left(U^{\dagger} \gamma^{5} U\right)^{\dagger}=U^{\dagger}\left(\gamma^{5}\right)^{\dagger} U=U^{\dagger} \gamma^{5} U
$$

(b) Show by direct inspection, or otherwise, that the matrices γ^{μ} anti-commute with γ^{5}, i.e. $\left\{\gamma^{\mu}, \gamma^{5}\right\}=0$.
This solution uses the anti-commutation rules of γ^{μ}. If we compute $\gamma^{\mu} \gamma^{5}$, we observe that, in order to move γ^{μ} to the right, we need to perform three swaps with γ^{ν}, with $\nu \neq \mu$. This gives:

$$
\gamma^{\mu} \gamma^{5}=(-1)^{3} \gamma^{5} \gamma^{\mu}=-\gamma^{5} \gamma^{\mu}
$$

