
Symmetry in Particle Physics, Problem Sheet 6 [SOLUTIONS]

1. Consider a Dirac field ψ with a Lagrangian

L = iψ̄γµ∂µψ −mψ̄ψ ,

where m is a real, not necessarily positive.

(a) Compute the equation of motion for the field ψ.

The Euler-Lagrange equation for ψ are given by

0 = ∂µ
∂L

∂(∂µψ̄)
− ∂L
∂ψ̄

= −iγµ∂µψ +mψ =⇒ (iγµ∂µ −m)ψ = 0 .

(b) Show that the field ψ satisfies Klein-Gordon equation, and from that determine
the mass of the spin-1/2 fermions described by the quantised field ψ.

Acting on the equation of motion with the operator (iγµ∂µ +m) we obtain

(iγµ∂µ +m)(iγν∂ν −m)ψ = (−γµγν∂µ∂ν −m2)ψ = 0

The term with two gamma matrices can be written in the form

γµγν∂µ∂ν =
1

2
{γµ, γν}∂µ∂ν = ηµν∂µ∂ν = � .

This gives
(� +m2)ψ = 0

This means that the mass of the fermions is in fact
√
m2 = |m|.

2. Consider the four-by-four matrices γµ (µ = 0, 1, 2, 3) in the Weyl representation,

γµ =

(
0 σµ

σ̄µ 0

)
,

where σµ = (1, ~σ) and σ̄µ = (1,−~σ). The three-dimensional vector ~σ = (σ1, σ2, σ3)
contains the three Pauli matrices satisfying [σi, σj] = 2iεijkσk. Note that {σµ, σ̄ν} =
2ηµν1, with ηµν the metric of Minkowsy space.

(a) The generators of Lorentz transformations for a left-handed Weyl spinor are

SµνL =
i

4
(σµσ̄ν − σν σ̄µ) ,

while for a right-handed spinor the generators are

SµνR =
i

4
(σ̄µσν − σ̄νσµ) .
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Deduce that for a Dirac spinor the generators of the Lorentz group are Sµν =
i
4
[γµ, γν ].

A Dirac spinor is the direct sum of a left-handed and a right-handed spinor.
Therefore

Sµν =

(
SµνL 0
0 SµνR

)
.

With an explicit calculation

γµγν =

(
σµσ̄ν 0

0 σ̄µσν

)
.

Therefore

i

4
[γµ, γν ] =

i

4

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ
)

=

(
SµνL 0
0 SµνR

)
.

(b) Show that {γµ, γν} = 2ηµν , and that the same holds for the matrices U †γµU
provided U is unitary.

With an explicit calculation

γµγν =

(
{σµ, σ̄ν} 0

0 {σ̄µ, σν}

)
=

(
2ηµν1 0

0 2ηµν1

)
= 2ηµν1 .

With another explicit calculation

{U †γµU,U †γνU} = U †γµ UU †︸︷︷︸
=1

γνU + U †γν UU †︸︷︷︸
=1

γµU = U †(2ηµν1)U = 2ηµν .

(c) Show that the matrix

U =
1√
2

(
1 −1
1 1

)
transforms the Weyl representation into the Dirac representation

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
3. Consider the matrix γ5 = iγ0γ1γ2γ3.

(a) Show that γ5 is diagonal in the Weyl representation,

γ5 =

(
−σ0 0

0 σ0

)
,
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and that, in any representation, (γ5)† = γ5.

A possible way to proceed:

γ0γ1 =

(
−σ1 0

0 σ1

)
, γ2γ3 =

(
−σ2σ3 0

0 −σ2σ3

)
.

Use now

σ2σ3 =
1

2
{σ2, σ3}︸ ︷︷ ︸

=0

+
1

2
[σ2, σ3]︸ ︷︷ ︸
=2iσ1

= iσ1 =⇒ γ2γ3 = −i
(
σ1 0
0 σ1

)
.

This gives

i γ0 γ1 γ2 γ3 =

(
−σ2

1 0
0 σ2

1

)
=

(
−σ0 0

0 σ0

)
.

By direct inspection, the matrix γ5 in the Weyl representation satisfies (γ5)† =
γ5. In any other representation, the matrix γ5 is related to the one in the Weyl
representation by U †γ5U , with U a unitary matrix. This gives

(U †γ5U)† = U †(γ5)†U = U †γ5U .

(b) Show by direct inspection, or otherwise, that the matrices γµ anti-commute with
γ5, i.e. {γµ, γ5} = 0.

This solution uses the anti-commutation rules of γµ. If we compute γµγ5, we
observe that, in order to move γµ to the right, we need to perform three swaps
with γν, with ν 6= µ. This gives:

γµγ5 = (−1)3γ5γµ = −γ5γµ .
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