Symmetry in Particle Physics, Problem Sheet 5 [SOLUTIONS]
1. Consider a scalar quantum field ¢(z). Show that

(Ol(x)p) = e~77(0]¢(0) p) -

Then show that, if we perform a Lorentz transformation A,

(0[¢(0)[p) = (0l¢(0)|Ap) -
From the transformation properties of ¢(x), we have

¢a) = e g(0)e "
Using the above, and the fact that P,|0) = 0, we obtain

(0l¢()[p) = (0l B(0)e™" " [p) = (0|4 (0)e™"|p) = e~"*(0]¢(0)|7)

Also,

(06(0)[Ap) = (0l6(0)U (A, 0)[p) = (O[U(A, 0)$(0)U (A, 0)[p) = (0|(A0)p) = (0]¢(0)[p) -

2. Consider the function
Alw—y,p*) = —i / MuS (e — @) 0(¢%)d(q* — ).
’ (2m)3

Show that

(a) (O+ p*)A(z, p*) = 0;

From a direct calculation

(O+ p?)e @ 95(q* — 1) = (—¢* + p)e T 95(¢* — 1i?) = 0.

(b) A(Az, p?) = Az, p?) if A € LT;
We perform the change of variable ¢ = A~'q with A € LL. Then d*¢' = d'q.
This gives

. d4q/ —q NY(Ax i No(Ax
A(AZ',/jP) — —’L/ (27T>3 (6 (A¢")-(Ax) e (Ad)-(A )) @(QIO)é(qQ i ,U/Q)

: d'q —iq'-x iq-x / /
= —2/ (2:)3 (6 e >@(q0)5(q2 —*) = A(Az, 1i?).



(c) A(=mz,p?) = =A(z, );
From a direct calculation

—i [ ey o ) = D)

(d) A(x, p?) is a function of 22 and €(z°) only;
Since A(Ax, u?) = A(Az, p?) for A € L1, it has to be a function of two functions
of x that are left invariant by such transformations, and these are % and e(x°).

(e) %A(.T — y’:uz)larozyo — _53(f_ g»)’

9 ; d4q 1q-(Z—y —iq-(Z—7§
@A(Jc — y>M2)’w°=y0 = _@/ W(_ )do (e T(@-9) | o4 ( y)) 0(¢°)5(¢% — 112)
d3i iq- (T —iq-(Z— - i
- _/qu(27r)3qo (70 4 7T = —6%(7 - )

(f) A(z,p?) =0if 2% <0.
If x 1s space-like, we can perform an orthochronous Lorentz transformation, and
set it into the form x = (0,Z) . This gives

dS(j’ RN id- T
A, ) = —i/ — | e =" | =0.
(, %) 200(27)° \ et

3. Consider the annihilation operator a(p), acting as follows

a(P)l0) =0,  a(@)|p) = (2m)*2E:0°(p - ')
Show that af(p)]0) = |p).
Hint. The vector a'(p)|0) can be written as the following superposition
*p p d>p:
t 0) = 0 R =\ |~ 1 2 = A\ | = o
a'(p)]0) = col0) + / (27)32E; a ()| +/ (2m)32E (2m)32E, c2(P, D) 1) +

The coefficients ¢; can be obtained by taking the scalar product with the appropriate
basis vectors. Using the normalisation condition

(p1p) = (2m)*2E56° (5 — ') .
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this gives

co = {0la’()|0) = (0]a(p)|0)" =0,
c1(p) = (F'la’(2)]0) = (0la(P)[p)" = (27)*2E° (7~ F),

and all the other scalar products are zero because they involve the vacuum on one
side and one- or more-particle states on the other side. Therefore

@10 = [ G R 2B - DI = 1)

. Let ¢(x) be a hermitian scalar quantum field, given by

o0 = [ Gy (70 + 7l ).

Show that imposing the commutation rules
[a(p), a(@)] = [a' (). a' ()] =0, [a(p),a"(7)] = (27)°2E0° (0 — 7) ,

gives [¢(2), ¢(y)] = 0 for (z —y)* <0.
We first consider [¢(x), ¢(0)] with o = (0,Z). From a direct calculation, we obtain:

9(z). o(0)] = / (2;53];]3,3(27:55@7 @), a@)]+ [a@), @) |
N L

+ [aT(ﬁ')7 aT(ﬁ)] + [aT(ﬁ’% a(ﬁ)] e_iﬁ.f

" /

=0 :_(27'()3(2\E,ﬁ)(53(p—)_17)

_ BT e i
:/(2@32]55 (77 —e77) =0.
We now observe that
B(x)0(y) = o) P VH(0)e Y = PV UG (2) P IH(0)e Y = P Vg(r—y)o(0)e .

Simalarly, | |
o(x)p(y) = e YP(0)p(x — y)e Y.

It is always possible to find a proper orthochronous Lorentz transformation such that

r—y=Azx, z=(0,7—19).



Therefore
d(z—y)$(0) = ¢(AZ)¢(0) = U(A, 0)(2)U (A, 0)¢(0) = U(A, 0)p(2)p(A0)U (A, 0) = U(A, 0)p(Z)g
The same holds for ¢(0)p(x — y), therefore

[6(x), ()] = MU (A, 0) [$(Z), 9(0)] U™ (A, 0)e ™ = 0.



