Symmetry in Particle Physics, Problem Sheet 5 [SOLUTIONS]

1. Consider a scalar quantum field $\phi(x)$. Show that

$$\langle 0|\phi(x)|\vec{p}\rangle = e^{-ip\cdot x}\langle 0|\phi(0)|\vec{p}\rangle.$$

Then show that, if we perform a Lorentz transformation Λ ,

$$\langle 0|\phi(0)|\vec{p}\rangle = \langle 0|\phi(0)|\Lambda\vec{p}\rangle$$
.

From the transformation properties of $\phi(x)$, we have

$$\phi(x) = e^{iP_{\mu}x^{\mu}}\phi(0)e^{-iP_{\mu}x^{\mu}}.$$

Using the above, and the fact that $P_{\mu}|0\rangle = 0$, we obtain

$$\langle 0|\phi(x)|\vec{p}\rangle = \langle 0|e^{iP_{\mu}x^{\mu}}\phi(0)e^{-iP_{\mu}x^{\mu}}|\vec{p}\rangle = \langle 0|\phi(0)e^{-ip\cdot x}|\vec{p}\rangle = e^{-ip\cdot x}\langle 0|\phi(0)|\vec{p}\rangle.$$

Also,

$$\langle 0|\phi(0)|\Lambda\vec{p}\rangle = \langle 0|\phi(0)U(\Lambda,0)|\vec{p}\rangle = \langle 0|U^{-1}(\Lambda,0)\phi(0)U(\Lambda,0)|\vec{p}\rangle = \langle 0|\phi(\Lambda 0)|\vec{p}\rangle = \langle 0|\phi(0)|\vec{p}\rangle \,.$$

2. Consider the function

$$\Delta(x-y,\mu^2) = -i \int \frac{d^4q}{(2\pi)^3} \left(e^{-iq\cdot(x-y)} - e^{iq\cdot(x-y)} \right) \Theta(q^0) \delta(q^2 - \mu^2).$$

Show that

(a) $(\Box + \mu^2)\Delta(x, \mu^2) = 0;$

From a direct calculation

$$(\Box + \mu^2)e^{-iq\cdot(x-y)}\delta(q^2 - \mu^2) = (-q^2 + \mu^2)e^{-iq\cdot(x-y)}\delta(q^2 - \mu^2) = 0.$$

(b) $\Delta(\Lambda x, \mu^2) = \Delta(x, \mu^2)$ if $\Lambda \in L_+^{\uparrow}$; We perform the change of variable $q' = \Lambda^{-1}q$ with $\Lambda \in L_+^{\uparrow}$. Then $d^4q' = d^4q$. This gives

$$\begin{split} \Delta(\Lambda x, \mu^2) &= -i \int \frac{d^4 q'}{(2\pi)^3} \left(e^{-i(\Lambda q') \cdot (\Lambda x)} - e^{i(\Lambda q') \cdot (\Lambda x)} \right) \Theta(q'^0) \delta(q'^2 - \mu^2) \\ &= -i \int \frac{d^4 q'}{(2\pi)^3} \left(e^{-iq' \cdot x} - e^{iq' \cdot x} \right) \Theta(q'^0) \delta(q'^2 - \mu^2) = \Delta(\Lambda x, \mu^2) \,. \end{split}$$

(c) $\Delta(-x, \mu^2) = -\Delta(x, \mu^2);$ From a direct calculation

$$\Delta(-x,\mu^2) = -i \int \frac{d^4q}{(2\pi)^3} \left(e^{-iq\cdot(-x)} - e^{iq\cdot(-x)} \right) \Theta(q^0) \delta(q^2 - \mu^2)$$
$$= i \int \frac{d^4q}{(2\pi)^3} \left(e^{-iq\cdot x} - e^{iq\cdot x} \right) \Theta(q^0) \delta(q^2 - \mu^2) = -\Delta(x,\mu^2)$$

- (d) $\Delta(x, \mu^2)$ is a function of x^2 and $\epsilon(x^0)$ only; Since $\Delta(\Lambda x, \mu^2) = \Delta(\Lambda x, \mu^2)$ for $\Lambda \in L_+^{\uparrow}$, it has to be a function of two functions of x that are left invariant by such transformations, and these are x^2 and $\epsilon(x^0)$.
- (e) $\frac{\partial}{\partial x^0} \Delta(x y, \mu^2)|_{x^0 = y^0} = -\delta^3(\vec{x} \vec{y});$

$$\begin{split} \frac{\partial}{\partial x^0} \Delta(x-y,\mu^2)|_{x^0=y^0} &= -i \int \frac{d^4q}{(2\pi)^3} (-i) q_0 \left(e^{i\vec{q}\cdot(\vec{x}-\vec{y})} + e^{-i\vec{q}\cdot(\vec{x}-\vec{y})} \right) \Theta(q^0) \delta(q^2-\mu^2) \\ &= - \int \frac{d^3\vec{q}}{2q_0(2\pi)^3} q_0 \left(e^{i\vec{q}\cdot(\vec{x}-\vec{y})} + e^{-i\vec{q}\cdot(\vec{x}-\vec{y})} \right) = -\delta^3(\vec{x}-\vec{y}) \,. \end{split}$$

(f) $\Delta(x, \mu^2) = 0$ if $x^2 < 0$.

If x is space-like, we can perform an orthochronous Lorentz transformation, and set it into the form $x = (0, \vec{x})$. This gives

$$\Delta(x,\mu^2) = -i \int \frac{d^3\vec{q}}{2q_0(2\pi)^3} \left(\underbrace{e^{-i\vec{q}\cdot\vec{x}} - e^{i\vec{q}\cdot\vec{x}}}_{odd\ function\ of\ \vec{q}} \right) = 0 \,.$$

3. Consider the annihilation operator $a(\vec{p})$, acting as follows

$$a(\vec{p})|0\rangle = 0$$
, $a(\vec{p})|\vec{p}'\rangle = (2\pi)^3 2E_{\vec{p}}\delta^3(\vec{p} - \vec{p}')$.

Show that $a^{\dagger}(\vec{p})|0\rangle = |\vec{p}\rangle$.

<u>Hint.</u> The vector $a^{\dagger}(\vec{p})|0\rangle$ can be written as the following superposition

$$a^{\dagger}(\vec{p})|0\rangle = c_0|0\rangle + \int \frac{d^3\vec{p}'}{(2\pi)^3 2E_{\vec{p}'}} c_1(\vec{p}')|\vec{p}'\rangle + \int \frac{d^3\vec{p}'_1}{(2\pi)^3 2E_{\vec{p}'_1}} \frac{d^3\vec{p}'_2}{(2\pi)^3 2E_{\vec{p}'_2}} c_2(\vec{p}'_1, \vec{p}'_2)|\vec{p}'\rangle + \dots$$

The coefficients c_i can be obtained by taking the scalar product with the appropriate basis vectors. Using the normalisation condition

$$\langle \vec{p} | \vec{p}' \rangle = (2\pi)^2 2 E_{\vec{p}} \delta^3 (\vec{p} - \vec{p}') ,$$

this gives

$$c_0 = \langle 0|a^{\dagger}(\vec{p})|0\rangle = \langle 0|a(\vec{p})|0\rangle^* = 0,$$

$$c_1(\vec{p}') = \langle \vec{p}'|a^{\dagger}(\vec{p})|0\rangle = \langle 0|a(\vec{p})|\vec{p}'\rangle^* = (2\pi)^3 2E_{\vec{p}}\delta^3(\vec{p} - \vec{p}'),$$

and all the other scalar products are zero because they involve the vacuum on one side and one- or more-particle states on the other side. Therefore

$$a^{\dagger}(\vec{p})|0\rangle = \int \frac{d^{3}\vec{p}'}{(2\pi)^{3}2E_{\vec{p}'}}(2\pi)^{3}2E_{\vec{p}}\delta^{3}(\vec{p}-\vec{p}')|\vec{p}'\rangle = |\vec{p}\rangle.$$

4. Let $\phi(x)$ be a hermitian scalar quantum field, given by

$$\phi(x) = \int \frac{d^3\vec{p}}{(2\pi)^3 2E_{\vec{p}}} \left(e^{-ip\cdot x} a(\vec{p}) + e^{ip\cdot x} a^{\dagger}(\vec{p}) \right) .$$

Show that imposing the commutation rules

$$[a(\vec{p}), a(\vec{p}')] = [a^{\dagger}(\vec{p}), a^{\dagger}(\vec{p}')] = 0, \qquad [a(\vec{p}), a^{\dagger}(\vec{p}')] = (2\pi)^3 2E_{\vec{p}}\delta^3(\vec{p} - \vec{p}'),$$

gives $[\phi(x), \phi(y)] = 0$ for $(x - y)^2 < 0$.

We first consider $[\phi(x), \phi(0)]$ with $x^{\mu} = (0, \vec{x})$. From a direct calculation, we obtain:

$$\begin{split} [\phi(x),\phi(0)] &= \int \frac{d^3\vec{p}}{(2\pi)^3 2E_{\vec{p}}} \frac{d^3\vec{p}'}{(2\pi)^3 2E_{\vec{p}'}} \left[\underbrace{\left[\underbrace{a(\vec{p}),a(\vec{p}')]}_{=0} + \underbrace{\left[a(\vec{p}),a^{\dagger}(\vec{p}')\right]}_{=(2\pi)^3 (2E_{\vec{p}})\delta^3(\vec{p}-\vec{p}')}\right)} e^{i\vec{p}\cdot\vec{x}} \\ &+ \underbrace{\left[\underbrace{a^{\dagger}(\vec{p}),a^{\dagger}(\vec{p}')]}_{=0} + \underbrace{\left[a^{\dagger}(\vec{p}),a(\vec{p}')\right]}_{=-(2\pi)^3 (2E_{\vec{p}})\delta^3(\vec{p}-\vec{p}')}\right)} e^{-i\vec{p}\cdot\vec{x}} \\ \\ &= \int \frac{d^3\vec{p}}{(2\pi)^3 2E_{\vec{p}}} \left(e^{i\vec{p}\cdot\vec{x}} - e^{-i\vec{p}\cdot\vec{x}}\right) = 0 \,. \end{split}$$

We now observe that

$$\phi(x)\phi(y) = \phi(x)e^{iP\cdot y}\phi(0)e^{-iP\cdot y} = e^{iP\cdot y}e^{-iP\cdot y}\phi(x)e^{iP\cdot y}\phi(0)e^{-iP\cdot y} = e^{iP\cdot y}\phi(x-y)\phi(0)e^{-iP\cdot y} \,.$$

Similarly,

$$\phi(x)\phi(y) = e^{iP\cdot y}\phi(0)\phi(x-y)e^{-iP\cdot y}.$$

It is always possible to find a proper orthochronous Lorentz transformation such that

$$x - y = \Lambda \bar{x}$$
, $\bar{x} = (0, \vec{x} - \vec{y})$.

Therefore

$$\phi(x-y)\phi(0) = \phi(\Lambda \bar{x})\phi(0) = U(\Lambda, 0)\phi(\bar{x})U^{-1}(\Lambda, 0)\phi(0) = U(\Lambda, 0)\phi(\bar{x})\phi(\Lambda 0)U^{-1}(\Lambda, 0) = U(\Lambda, 0)\phi(\bar{x})\phi(0)$$

The same holds for $\phi(0)\phi(x-y)$, therefore

$$[\phi(x), \phi(y)] = e^{iP \cdot y} U(\Lambda, 0) \underbrace{[\phi(\bar{x}), \phi(0)]}_{=0} U^{-1}(\Lambda, 0) e^{-iP \cdot y} = 0.$$