Symmetry in Particle Physics, Problem Sheet 4

1. Consider operators or matrices A and B which obey $[A, B]=1$.
(a) Show that $e^{a A} B e^{-a A}=B+a$ for a some real or complex number. Hint. Recall that, if we define

$$
f(A) \equiv \sum_{n=0}^{\infty} f_{n} A^{n}, \quad f^{\prime}(A) \equiv \sum_{n=0}^{\infty} n f_{n} A^{n-1}
$$

we have

$$
[f(A), B]=f^{\prime}(A)[A, B]
$$

(b) Use the result above to show that $e^{a A} f(B) e^{-a A}=f(B+a)$ for functions $f(x)$ which are Taylor-expandable.
(c) Show that a representation of the above algebra in terms of operators acting on smooth functions $g(x)$ is given by

$$
(A g)(x)=\frac{d g}{d x}, \quad(B g)(x)=x g(x)
$$

i.e. $A=d / d x$ and $B=x$. Show then that $d / d x$ is the infinitesimal generator for translations for any multiplication operator $f(x)$, i.e.

$$
\exp \left(a \frac{d}{d x}\right) f(x) \exp \left(-a \frac{d}{d x}\right)=f(x+a)
$$

2. Consider the a generic representation of the Poincaré group, with generators $J_{\mu \nu}$ and P_{μ}. Define the two operators

$$
P^{2} \equiv P_{\mu} P^{\mu}, \quad W_{\mu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} P^{\nu} J^{\rho \sigma}
$$

Using the commutation rules of the Lie algebra of the Poincaré group, show that P^{2} and $W^{2} \equiv W_{\mu} W^{\mu}$ commute with all the generators of the Poincaré group.
3. Let $\Omega(\Lambda, a)$ be a Poincaré transformation, in an arbitrary representation with generators $J_{\mu \nu}$ and P_{μ}. Show that

$$
\begin{aligned}
& \Omega(\Lambda, a) J_{\mu \nu} \Omega^{-1}(\Lambda, a)=\Lambda_{\mu}^{\rho} \Lambda_{\nu}^{\sigma}\left(J_{\rho \sigma}-a_{\rho} P_{\sigma}+a_{\sigma} P_{\rho}\right), \\
& \Omega(\Lambda, a) P_{\mu} \Omega^{-1}(\Lambda, a)=\Lambda_{\mu}^{\rho} P_{\rho} .
\end{aligned}
$$

Hint. Consider the product $\Omega(\Lambda, a) \Omega(\bar{\Lambda}, \epsilon) \Omega^{-1}(\Lambda, a)$, where $\Omega(\bar{\Lambda}, \epsilon)$ is an infinitesimal Poincaré transformation.
4. Consider the operators

$$
M_{\mu \nu}=-i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right), \quad P_{\mu}=-i \partial_{\mu}
$$

acting on smooth functions $f(x)$. Note that $\left[x_{\mu}, P_{\nu}\right]=i \eta_{\mu \nu}$.
(a) Show that $\left[P_{\mu}, P_{\nu}\right]=0$. Hence show that the Pauli-Ljubanski vector $W_{\mu}=$ $\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} P^{\nu} M^{\rho \sigma}=0$ vanishes in this representation, i.e. $W_{\mu}=0$.
(b) Compute the remaining commutators $\left[M_{\mu \nu}, M_{\tau \sigma}\right],\left[M_{\mu \nu}, P_{\rho}\right]$ and $\left[P_{\mu}, P_{\nu}\right]$ and compare the result with the definition of the Poincaré algebra given in the lectures. Conclude that $M_{\mu \nu}$ and P_{ν} give a representation thereof.

