
Symmetry in Particle Physics, Problem Sheet 4 [SOLUTIONS]

1. Consider operators or matrices A and B which obey [A,B] = 1.

(a) Show that eaAB e−aA = B+ a for a some real or complex number. Hint. Recall
that, if we define

f(A) ≡
∞∑
n=0

fnA
n , f ′(A) ≡

∞∑
n=0

nfnA
n−1 ,

we have
[f(A), B] = f ′(A)[A,B] ,

From a direct computation, and using the hint, we find

eaAB e−aA = B eaA e−aA︸ ︷︷ ︸
=1

+ [eaA, B]︸ ︷︷ ︸
=a eaA [A,B]

e−aA = B + a .

(b) Use the result above to show that eaA f(B) e−aA = f(B + a) for functions f(x)
which are Taylor-expandable.

Given the Taylor expansion of f(B)

f(B) =
∞∑
n=0

fnB
n ,

what we need to show is that, for every n, we have

eaABn e−aA = (B + a)n .

We can just insert in each factor of the above product a unit matrix as e−aA eaA

to get
eaABn e−aA =

(
eaAB e−aA

)n
= (B + a)n .

(c) Show that a representation of the above algebra in terms of operators acting on
smooth functions g(x) is given by

(Ag)(x) =
dg

dx
, (Bg)(x) = x g(x) ,

i.e. A = d/dx and B = x. Show then that d/dx is the infinitesimal generator
for translations for any multiplication operator f(x), i.e.

exp

(
a
d

dx

)
f(x) exp

(
−a d

dx

)
= f(x+ a) .
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First of all, we show that [A,B] = 1. In fact, for each smooth function g(x) we
have [

d

dx
, x

]
g(x) =

d

dx
xg(x)− xdg

dx
= g(x) = 1 · g(x) .

The desired identity follows from the application of the result of part (b).

2. Consider the a generic representation of the Poincaré group, with generators Jµν and
Pµ. Define the two operators

P 2 ≡ PµP
µ , Wµ =

1

2
εµνρσ P

ν Jρσ .

Using the commutation rules of the Lie algebra of the Poincaré group, show that P 2

and W 2 ≡ WµW
µ commute with all the generators of the Poincaré group.

Let us consider P 2 first. Since [Pµ, Pν ] = 0, then also [P 2, Pµ] = 0. For the commu-
tator with Jµν we have

[P 2, Jµν ] = Pρ[P
ρ, Jµν ] + [Pρ, Jµν ]P

ρ

= −iPρ(ηρµPν − ηρνPµ)− i(ηµρPν − ηνρPµ)P ρ = −2i[Pµ, Pν ] = 0 .

We now consider W 2. First, we observe that

[Wµ, Pτ ] =
1

2
εµνρσ P

ν [Jρσ, Pτ ] .

But this is zero, because [Jρσ, Pτ ] is proportional either to Pρ or Pσ, and the multipli-
cation of either with P ν gives zero, once it is contracted with εµνρσ. Therefore, also
[W 2, Pτ ] = 0.

3. Let Ω(Λ, a) be a Poincaré transformation, in an arbitrary representation with gener-
ators Jµν and Pµ. Show that

Ω(Λ, a)Jµν Ω−1(Λ, a) = Λρ
µΛσ

ν (Jρσ − aρPσ + aσPρ) ,

Ω(Λ, a)Pµ Ω−1(Λ, a) = Λρ
µPρ .

Hint. Consider the product Ω(Λ, a) Ω(Λ̄, ε) Ω−1(Λ, a), where Ω(Λ̄, ε) is an infinitesimal
Poincaré transformation.

From the multiplication rules of the Poincaré group:

Ω(Λ, a) Ω(Λ̄, ε) Ω−1(Λ, a) = Ω(Λ, a) Ω(Λ̄, ε) Ω(Λ−1,−Λ−1a)

= Ω(Λ, a) Ω(Λ̄Λ−1, ε− Λ̄Λ−1a)

= Ω(ΛΛ̄Λ−1,Λε+ Λ(1− Λ̄)Λ−1a) .

Since Ω(Λ̄, ε) is infinitesimal we have

Λ̄µ
nu = ηµν + ωµν =⇒ Ω(Λ̄, ε) = 1 +

i

2
ωµνJµν + iεµPµ .
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This gives

Ω(Λ, a)

(
1 +

i

2
ωµνJµν + iεµPµ

)
Ω−1(Λ, a) ,

and

Ω(ΛΛ̄Λ−1,Λε+ Λ(1− Λ̄)Λ−1a) = Ω(Λ(1 + ω)Λ−1,Λε− ΛωΛ−1a)

= 1 +
i

2
(ΛωΛ−1)µνJµν + i(Λε− ΛωΛ−1a)µPµ .

Comparing the terms containing ω and ε in the two expansions, we get

ωµνΩ(Λ, a) Jµν Ω−1(Λ, a) = (ΛωΛ−1)µνJµν − 2(ΛωΛ−1a)µPµ ,

εµΩ(Λ, a)Pµ Ω−1(Λ, a) = (Λε)µPµ .

We deal first with the second of these equations:

εµΩ(Λ, a)Pµ Ω−1(Λ, a) = (Λε)µPµ = Λν
µε
µPν =⇒ Ω(Λ, a)Pµ Ω−1(Λ, a) = Λν

µPν .

4. Consider the operators

Mµν = −i(xµ∂ν − xν∂µ) , Pµ = −i∂µ ,

acting on smooth functions f(x). Note that [xµ, Pν ] = iηµν .

(a) Show that [Pµ, Pν ] = 0. Hence show that the Pauli-Ljubanski vector Wµ =
1
2
εµνρσ P

νMρσ = 0 vanishes in this representation, i.e. Wµ = 0.

Two derivatives always commute, hence [Pµ, Pν ] = 0. Then, we observe that

Mµν = xµPν − xνPµ .

This gives

Wµ =
1

2
εµνρσ P

νMρσ =
1

2
εµνρσ (−P νxρP σ + P νP ρxσ)

= εµρνσx
ρ[P ν , P σ] + εµνρσ[P ν , P ρ]xσ .

But this is zero because Pµ commute.

(b) Compute the remaining commutators [Mµν ,Mτσ], [Mµν , Pρ] and [Pµ, Pν ] and
compare the result with the definition of the Poincaré algebra given in the
lectures. Conclude that Mµν and Pν give a representation thereof.

From a direct computation

[Mµν , Pρ] = [xµ, Pρ]Pν − [xν , Pρ]Pµ = i(ηµρPν − ηνρPµ) .

3



Similarly
[Mµν , xρ] = i(ηµρxν − ηνρxµ) .

Therefore, using the fundamental properties of the commutator, we get

[Mµν , xτPσ] = [Mµν , xτ ]Pσ+xτ [Mµν , Pσ] = i(ηµτxν−ηντxµ)Pσ+ixτ (ηµσPν−ηνσPµ) .

This gives

[Mµν ,Mτσ] = [Mµν , xτPσ]− [Mµν , xσPτ ]

= i(ηµτxν − ηντxµ)Pσ + ixτ (ηµσPν − ηνσPµ)

− i(ηµσxν − ηνσxµ)Pτ − ixσ(ηµτPν − ηντPµ)

= i(ηµτMνσ − ηντMµσ + ηµσMντ − ηνσMµτ ) ,

which are the commutation rules for the generators of the Lorentz group.
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