Symmetry in Particle Physics, Problem Sheet 3

1. Consider a Lie group G. Then, for any vector X in the Lie algebra of G, and for any $g \in G$, consider the map

$$
D(g) X=g X g^{-1}
$$

(a) Show that $D(g) X$ is an element of the Lie algebra of G.

Hint: use the relation

$$
e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\ldots
$$

(b) Show that $D(g)$ is a representation of G into the linear operators over the Lie algebra of G.
(c) Compute the generators of D and show that D is the adjoint representation.
2. Consider an infinitesimal Lorentz transformation

$$
\Lambda_{\nu}^{\mu}=\eta_{\nu}^{\mu}+\omega_{\nu}^{\mu}, \quad \omega_{\mu \nu}=-\omega_{\nu \mu}
$$

(a) Show that ω_{ν}^{μ} can be written in the form

$$
\omega_{\nu}^{\mu}=\frac{i}{2} \omega^{\rho \sigma}\left(M_{\rho \sigma}\right)_{\nu}^{\mu}
$$

where $M_{\rho \sigma}$ are the generators of Lorentz transformations, given by

$$
\left(M_{\rho \sigma}\right)_{\nu}^{\mu}=i\left(\eta_{\sigma}^{\mu} \eta_{\nu \rho}-\eta_{\rho}^{\mu} \eta_{\nu \sigma}\right)
$$

(b) Using the explicit form of $M_{\mu \nu}$, compute the commutation rules

$$
\left[M_{\mu \nu}, M_{\rho \sigma}\right]=i\left(\eta_{\mu \rho} M_{\nu \sigma}-\eta \mu \sigma M_{\nu \rho}+\eta_{\nu \sigma} M_{\mu \rho}-\eta_{\nu \rho} M_{\mu \sigma}\right) .
$$

3. The three 4×4 matrices \vec{K} - the anti-hermitian boost generators - are defined as $K_{k}=M_{0 k}$ with non-vanishing matrix elements $\left(K_{j}\right)_{0 k}=\left(K_{j}\right)_{k 0}=i \delta_{j k}$.
(a) Show that $\left(i K_{i}\right)^{2}$ is a projector, and that $\left(i K_{i}\right)^{2 n+1}=i K_{i}$.
(b) Compute the Lorentz boost matrix $\exp \left(i u_{i} K_{i}\right)$ in terms of $\left(\hat{u}_{i} K_{i}\right),\left(\hat{u}_{i} K_{i}\right)^{2}$. Here $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ is an arbitrary three-vector, $\hat{u}=\vec{u} / u$, where $u=|\vec{u}|$.
Compare your result to the case of a boost along the 1-direction in its standard form

$$
\left(\begin{array}{cccc}
\gamma & -\gamma v & 0 & 0 \\
-\gamma v & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \gamma=\frac{1}{\sqrt{1-v^{2}}}
$$

From that comparison, determine the relation between v and u.
4. Consider the 2×2 matrices $\sigma_{\mu}=\left(\sigma_{0}, \sigma_{i}\right)$, with σ_{0} the 2×2 identity matrix and σ_{i} the Pauli matrices. For a space-time coordinate x^{μ} consider the matrix

$$
\hat{x}=x^{\mu} \sigma_{\mu}=\left(\begin{array}{cc}
x^{0}+x^{3} & x^{1}-i x^{2} \tag{1}\\
x^{1}+i x^{2} & x^{0}-x^{3}
\end{array}\right) .
$$

(a) Show that every complex hermitian 2×2 matrix M can be written in the form (1) for some real x^{μ}.
(b) Show that $\operatorname{det} \hat{x}=x^{\mu} x_{\mu}$, and that this implies

$$
x^{\mu} y_{\mu}=\frac{1}{4}[\operatorname{det}(\hat{x}+\hat{y})-\operatorname{det}(\hat{x}-\hat{y})] .
$$

(c) Consider the matrices $\bar{\sigma}_{\mu}=\left(\sigma_{0},-\sigma_{i}\right)$, and establish the identities

$$
\sigma_{\mu} \bar{\sigma}_{\nu}+\sigma_{\nu} \bar{\sigma}_{\mu}=2 \eta_{\mu \nu} \mathbb{I} \quad \text { and } \operatorname{Tr}\left(\sigma_{\mu} \bar{\sigma}_{\nu}\right)=2 \eta_{\mu \nu}
$$

Hint. Recall the properties of the Pauli matrices

$$
\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k}, \quad\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j} \sigma_{0}
$$

(d) Show that, for a complex 2×2 matrix M with unit determinant, $M \in S L(2, \mathbb{C})$,

$$
\hat{x}^{\prime}=M \hat{x} M^{\dagger}
$$

can be written in the form (1) with $x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}$, with

$$
\begin{equation*}
\Lambda_{\nu}^{\mu}=\frac{1}{2} \operatorname{Tr}\left(\bar{\sigma}^{\mu} M \sigma_{\nu} M^{\dagger}\right), \tag{2}
\end{equation*}
$$

and $\bar{\sigma}^{\mu}=\eta^{\mu \nu} \bar{\sigma}_{\nu}$.
(e) By considering the above relations for the matrices $\hat{x}^{\prime}=M \hat{x} M^{\dagger}$ and $\hat{y}^{\prime}=$ $M \hat{y} M^{\dagger}$, show that

$$
\eta_{\mu \nu} x^{\mu} y^{\prime \nu}=\eta_{\mu \nu} x^{\mu} y^{\nu}
$$

i.e. the matrix Λ_{μ}^{ν} of part (d) corresponds to a Lorentz transformation. Then, show that it also corresponds to a proper orthochronous Lorentz transformation. Remark. From Eq. (2) you can conclude that there is a unique Lorentz transformation matrix $\Lambda \in S O(3,1)$ for every matrix $M \in S L(2, \mathbb{C})$. On the other side, M and $-M$ lead to the same matrix Λ. In fact, there is an isomorphism from $S L(2, \mathbb{C}) / \mathbb{Z}_{2}$ (the set of complex 2×2 matrices with unit determinant, with M and $-M$ identified) to the orthochronous Lorentz group L_{+}^{\uparrow} consisting of matrices that conserve the metric tensor with $\Lambda_{0}^{0}>0$ and $\operatorname{det} \Lambda=1$.
5. Consider the matrices

$$
\Omega_{L}=\exp \left[\frac{i}{2}\left(\alpha_{i}-i \beta_{i}\right) \sigma_{i}\right], \quad \Omega_{R}=\exp \left[\frac{i}{2}\left(\alpha_{i}+i \beta_{i}\right) \sigma_{i}\right]
$$

where α_{i} and β_{i} are real parameters, and σ_{i} the three Pauli matrices.
(a) Show that

$$
\Omega_{L}^{-1}=\Omega_{R}^{\dagger}, \quad \Omega_{R}^{-1}=\Omega_{L}^{\dagger}
$$

(b) Using the fact that

$$
\sigma_{2} \Omega_{L} \sigma_{2}=\Omega_{R}^{*}
$$

show that

$$
\sigma_{2} \Omega^{T} \sigma_{2} \Omega=\mathbb{1}
$$

and if ψ transforms according to some representation of $S L(2, \mathbb{C})$, then $\sigma_{2} \psi^{*}$ transforms according to the conjugate representation.
(c) Show that the generators of the $(1 / 2,0)$ and $(1 / 2,0)$ representations are

$$
\begin{aligned}
& \Sigma_{\mu \nu}^{L} \equiv M_{\mu \nu}^{(1 / 2,0)}=\frac{i}{4}\left(\bar{\sigma}_{\mu} \sigma_{\nu}-\bar{\sigma}_{\nu} \sigma_{\mu}\right), \\
& \Sigma_{\mu \nu}^{R} \equiv M_{\mu \nu}^{(0,1 / 2)}=\frac{i}{4}\left(\sigma_{\mu} \bar{\sigma}_{\nu}-\sigma_{\nu} \bar{\sigma}_{\mu}\right) .
\end{aligned}
$$

