
Symmetry in Particle Physics, Problem Sheet 3

1. Consider a Lie group G. Then, for any vector X in the Lie algebra of G, and for any
g ∈ G, consider the map

D(g)X = gXg−1 ,

(a) Show that D(g)X is an element of the Lie algebra of G.

Hint: use the relation

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + . . .

(b) Show that D(g) is a representation of G into the linear operators over the Lie
algebra of G.

(c) Compute the generators of D and show that D is the adjoint representation.

2. Consider an infinitesimal Lorentz transformation

Λµ
ν = ηµν + ωµν , ωµν = −ωνµ .

(a) Show that ωµν can be written in the form

ωµν =
i

2
ωρσ(Mρσ)µν ,

where Mρσ are the generators of Lorentz transformations, given by

(Mρσ)µν = i
(
ηµσηνρ − ηµρηνσ

)
.

(b) Using the explicit form of Mµν , compute the commutation rules

[Mµν ,Mρσ] = i (ηµρMνσ − ηµσMνρ + ηνσMµρ − ηνρMµσ) .

3. The three 4 × 4 matrices ~K – the anti-hermitian boost generators – are defined as
Kk = M0k with non-vanishing matrix elements (Kj)0k = (Kj)k0 = iδjk.

(a) Show that (iKi)
2 is a projector, and that (iKi)

2n+1 = iKi.

(b) Compute the Lorentz boost matrix exp(iuiKi) in terms of (ûiKi), (ûiKi)
2.

Here ~u = (u1, u2, u3) is an arbitrary three-vector, û = ~u/u, where u = |~u|. [10]

Compare your result to the case of a boost along the 1-direction in its standard
form 

γ −γv 0 0
−γv γ 0 0

0 0 1 0
0 0 0 1

 , γ =
1√

1− v2

From that comparison, determine the relation between v and u.
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4. Consider the 2 × 2 matrices σµ = (σ0, σi), with σ0 the 2 × 2 identity matrix and σi
the Pauli matrices. For a space-time coordinate xµ consider the matrix

x̂ = xµ σµ =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
. (1)

(a) Show that every complex hermitian 2×2 matrixM can be written in the form (1)
for some real xµ.

(b) Show that det x̂ = xµ xµ, and that this implies

xµ yµ =
1

4
[det(x̂+ ŷ)− det(x̂− ŷ)] .

(c) Consider the matrices σ̄µ = (σ0,−σi), and establish the identities

σµσ̄ν + σν σ̄µ = 2ηµν1 and Tr(σµσ̄ν) = 2ηµν .

Hint. Recall the properties of the Pauli matrices

[σi, σj] = 2iεijkσk , {σi, σj} = 2δijσ0 .

(d) Show that, for a complex 2×2 matrix M with unit determinant, M ∈ SL(2,C),

x̂′ = M x̂M †

can be written in the form (1) with x′µ = Λµ
ν x

ν , with

Λµ
ν =

1

2
Tr
(
σ̄µM σνM

†) , (2)

and σ̄µ = ηµν σ̄ν .

(e) By considering the above relations for the matrices x̂′ = M x̂M † and ŷ′ =
M ŷM †, show that

ηµν x
′µ y′ν = ηµν x

µ yν ,

i.e. the matrix Λ ν
µ of part (d) corresponds to a Lorentz transformation. Then,

show that it also corresponds to a proper orthochronous Lorentz transformation.

Remark. From Eq. (2) you can conclude that there is a unique Lorentz trans-
formation matrix Λ ∈ SO(3, 1) for every matrix M ∈ SL(2,C). On the other
side, M and −M lead to the same matrix Λ. In fact, there is an isomorphism
from SL(2,C)/Z2 (the set of complex 2 × 2 matrices with unit determinant,
with M and −M identified) to the orthochronous Lorentz group L↑+ consisting
of matrices that conserve the metric tensor with Λ0

0 > 0 and det Λ = 1.

5. Consider the matrices

ΩL = exp

[
i

2
(αi − iβi)σi

]
, ΩR = exp

[
i

2
(αi + iβi)σi

]
,

where αi and βi are real parameters, and σi the three Pauli matrices.
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(a) Show that
Ω−1L = Ω†R , Ω−1R = Ω†L

(b) Using the fact that
σ2ΩLσ2 = Ω∗R .

show that
σ2Ω

Tσ2Ω = 1 ,

and if ψ transforms according to some representation of SL(2,C), then σ2ψ
∗

transforms according to the conjugate representation.

(c) Show that the generators of the (1/2, 0) and (1/2, 0) representations are

ΣL
µν ≡M (1/2,0)

µν =
i

4
(σ̄µσν − σ̄νσµ) ,

ΣR
µν ≡M (0,1/2)

µν =
i

4
(σµσ̄ν − σν σ̄µ) .
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