Symmetry in Particle Physics, Problem Sheet 3 [SOLUTIONS]

1. Consider a Lie group G. Then, for any vector X in the Lie algebra of GG, and for any
g € G, consider the map
D(g)X = gXg~',

(a) Show that D(g)X is an element of the Lie algebra of G.
Hint: use the relation

1
e?Be™ = B+ [A, B] + 5[A, [A,B]] + ...

FEach element g € G can be written as exp[Y], with Y an element of the Lie
algebra of G. Therefore

1
e Xe M = X +[Y, X]+ 5[Y, v, X)) +...

Since the Lie algebra is closed under commutation, all commutators in the above
equation are elements of the Lie algebra.

(b) Show that D(g) is a representation of GG into the linear operators over the Lie
algebra of G.

First, D(g) is linear due to the linearity properties of the commutator. Consider
now two elements g1, g2 € G. Then

D(g19; )X = (19, ) X (9192) " = g1(95 ' X g2) g1 = D(1)[D(g5 ") X] = [D(g1)D(g5 ")) X .

(c) Compute the generators of D and show that D is the adjoint representation.
Let us consider a matriz D(g) that is close to the identity. Then

e Xe ¥ ~ X 4+ [V, X].

We now need to work out the commutator [Y, X|, using that Y = i, X,, and
X = B, X,, where X, are the generators of the Lie group:

D/’ X] = iaaﬁb[Xaa Xb} - Z‘Ofa/Bb(ifzzbc)(c) - iaaﬁb(_ifacb Xc) - iaa[(Ta)chb]XC7

:(Ta)cb
where (T, )p. are precisely the generators of the adjoint representation.

2. Consider an infinitesimal Lorentz transformation

[——d M = —
Au_ny+wya W,ul/— UJVM.



(a) Show that w* can be written in the form

1
pwo oo
Wi = gw (M,

)
where M, are the generators of Lorentz transformations, given by
(Mo ), =t (W p = 157000 ) -

From a direct computation

g 1 g /L loa -
Wy = Mo = S0 (e = 15100p) = 57 [0 — 1100 )]

(b) Using the explicit form of M,

L, compute the commutation rules

(M, Mpo| = i 0y My — nppo My + 1o Myup — 1up M) -
From the definition of the commutator
[M/w’ pa]g = (Muu):<Mpﬂ>g - (MM)?/(MW)Z?
We work out the first term of the commutator, keeping track of imaginary units

(Mul/ﬁ(MpU)g =1 [Z (77377w - 773777'/) (77;776p - 7737750)]

i Mo Cimmpp 1o (—i153M8p) + Mup (=05 M60) + Mp( M550 )
—— —— —— N——

—>(—Mup) A)M#p _>Mu<r _>(_Mu(r)

where the remaining part of the generators are completed by the other half of the
commutator.

3. The three 4 x 4 matrices K — the anti-hermitian boost generators — are defined as
K}, = My, with non-vanishing matrix elements (K;)or = (K;)ro = 0,y

(a) Show that (iK;)? is a projector, and that (iK;)*"* =iK;.
We perform an explicit calculation for iKy, and the result holds for any i =

1,2,3.
0 -1 0 0 1000
-1 0 00 s o100
Ka=1 g g oo | = EEI=1 400 0
0 0 00 0000

This implies that [(1K,)?)> = (1K1)?, hence (iK1)?* is a projector.
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(b) Compute the Lorentz boost matrix exp(iu; K;) in terms of (4; K;), (i; K;)2.
Here @ = (uy,us, us3) is an arbitrary three-vector, & = @/u, where u = |u]. [10]
Since the choice of the axes is arbitrary, we can set the 1-axis along . Therefore,
we have that (it; K;)? is a projector and (it; K;)*" ™ = it; K;.

This gives

> ,n

(%
exp(iu; K;) Z ol (1u; K

n=0

> u2ntl
=1+ —(iu; K;) + (it; K;)?
S e )+ 3 i )
_,_/ w_/
=sinh(u) =coshu—1

Compare your result to the case of a boost along the 1-direction in its standard

form
v —yv 0 0
—yv v 0 0 B 1
0o o0 10| YT A2
0 0 01

From that comparison, determine the relation between v and wu.
For a boost along the 1-direction i = (u,0,0). Therefore

0 -1 0 0
= . -1 0 00
ZuiKZ’ = ZKl = 0 0 00
0 0 00
This gives
coshu —sinhu 0 0
. —sinhu  coshu 0 0
exp(iu K1) = 0 0 Lo
0 0 01
Comparing with the given matrixz we get
inh
v = DA = tanhu .

v coshu

4. Consider the 2 x 2 matrices o, = (09, 0;), with oy the 2 x 2 identity matrix and o;
the Pauli matrices. For a space-time coordinate x* consider the matrix

. u R e B
T =T 0y = 1, .2 .0 3 . (1)
T+ T —x
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(a) Show that every complex hermitian 2x 2 matrix M can be written in the form (1)
for some real x*.

The matrices o, are a basis for complex hermitian 2 X 2 matrices. Hence, each
matriz M can be written as M = x*0,. Since both M and o, are hermitian, we
have

MV = (z")0, = M = 2o, = (2")* = 2".

Hence the numbers x* are real.

(b) Show that detZ = 2* z,,, and that this implies

1
M _ —
T y,u 4[

det(z + g) — det(z — g)] .
From a direct calculation
det & = (2°+2%) (2" —2%)— (2! —iz?) (2" +iz?) = (2°)*—(2*)*—(2')*— (2?)* = 2" z,, .

We then compute

2y = 7 [(@+9)* = (z —y)*] = 7 [det(@ +§) — det(z — )] .

1
4
(c) Consider the matrices 7, = (09, —0;), and establish the identities
0,0, + 0,0, =2n,1 and Tr(o,0,) =21, .
Hint. Recall the properties of the Pauli matrices
(0i, 05] = 2i€;j0% {0i,0;} = 20500 .
From a direct computation

000 + 0900 = 20'(2) =2x1= 27700]1 ,
000; + 0,00 = —0; +0; = 0= 2770111 y

Uiﬁj + Uj6i = —{Ui,O'j} = —2(51]]1 = 277”]1 .
Similarly, from a direct computation we get

Tr(05°) = Tr(o7) = 2 = 2100
TI'(U()&Z') = —TI'(O'Z') =0= 27702

. 1
Tr(o'c’) = —§Tr({al-,0j}) = —2=2n;.



()

Show that, for a complex 2 x 2 matrix M with unit determinant, M € SL(2,C),
=Mz M!

can be written in the form (1) with 2" = A* ¥, with
1
A = S Tr (6" Mo, M), (2)

and o = na,.

First, we check that &’ is hermitian. In fact
(@ = MY 2" M=MiM =27
As such it can be written as &' = x™ o, with ™" real. Then, we can write
¥ =a"0, = (Mcr,, MT) x”.
We now multiply each term to the left by 6, and take the trace, thus obtaining
o Tr(6*0,) = Tr (6" M o, MT) 2¥.

This gives
1
v, = 5T (0" Mo, MT)w, = A, .

By considering the above relations for the matrices & = M & M' and §/ =
M § M7, show that

7]“1/ I/'LL y/y — 77/1,1/ x,u, v ,
i.e. the matrix A} of part (d) corresponds to a Lorentz transformation. Then,
show that it also corresponds to a proper orthochronous Lorentz transformation.

From a direct computation

N "y = = [det(2' + ¢') — det(2' — ¢')]

[N p—

= = [det(M (i + §))M") — det(M (i — §))M")]

= — [det(z 4 §) — det(z — §)] = nu " y”.

=~ =

To show that A" is a proper Lorentz transformation we need to show that
det A = 1. Setting M = 1 leads to A¥ = nt. Any matriv M € SL(2,C)
can be obtained from the identity by varying parameters continuously. Hence,
also a generic A¥, can be obtained from n¥ by varying parameters continuously.
Since det A is a continuous function of parameters, it can only assume the value



+1, and hence A" is a proper Lorentz transformation. Similarly, AJ is also a
continuous function of the parameters, hence it has to stay in the same connected
components as the identity, i.e. A§ > 1, which implies A", € LL.

Remark. From Eq. (2) you can conclude that there is a unique Lorentz trans-
formation matrix A € SO(3,1) for every matrix M € SL(2,C). On the other
side, M and —M lead to the same matrix A. In fact, there is an isomorphism
from SL(2,C)/Zy (the set of complex 2 x 2 matrices with unit determinant,
with M and —M identified) to the orthochronous Lorentz group Ll consisting
of matrices that conserve the metric tensor with A% > 0 and det A = 1.

5. Consider the matrices
Qp =exp [%(Oﬁ — i@')%} ; Qg = exp [%(Oéi + Zﬂi)Uz‘] ;

where «; and [3; are real parameters, and o; the three Pauli matrices.

(a) Show that
ot =0l Qpl =af

From a direct computation

. . T
Q' =exp [—%(0@ — iﬁi)%] = <exp [%(0@ + Zﬂi)%]) = Q.

Using the above, we have

(b) Using the fact that
O'QQLO'Q = Q*R

show that
O'QQTO'QQ =1 s

and if ¢ transforms according to some representation of SL(2,C), then oyt)*
transforms according to the conjugate representation.

Suppose 2 = Q. Then
020 0,0, = ()T, = QL = Q70 =1,
Consider now 1 that transforms as

V= Qi = 02" = 020" = 09(02QRr02) V" = Qr(020").



(c¢) Show that the generators of the (1/2,0) and (1/2,0) representations are

v, _
Zﬁy = Mlsly/z’o) =1 (6,0, — Gu0,) ,

{ _ _
Zﬁy = Mé?;lﬂ) =1 (0,0, —0,0,) .

For left-handed spinors

o; o;
2 2
Similarly, for right-handed spinors
ag; g;
Ji=2 Ki=iZ
5 0
For boosts, we have
1 o;
EL‘ - - 7 i) — ._la
L= (-0 — o) = —i%
DI z(ai +o0;) =i—
4
For rotations
Ok
25 = 25 = Z(—O'Z'O'j —+ O'jO'Z') = 6ijk7 .



