Symmetry in Particle Physics, Problem Sheet 3 [SOLUTIONS]

1. Consider a Lie group G. Then, for any vector X in the Lie algebra of G, and for any $g \in G$, consider the map

$$
D(g) X=g X g^{-1},
$$

(a) Show that $D(g) X$ is an element of the Lie algebra of G.

Hint: use the relation

$$
e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\ldots
$$

Each element $g \in G$ can be written as $\exp [Y]$, with Y an element of the Lie algebra of G. Therefore

$$
e^{Y} X e^{-Y}=X+[Y, X]+\frac{1}{2!}[Y,[Y, X]]+\ldots
$$

Since the Lie algebra is closed under commutation, all commutators in the above equation are elements of the Lie algebra.
(b) Show that $D(g)$ is a representation of G into the linear operators over the Lie algebra of G.
First, $D(g)$ is linear due to the linearity properties of the commutator. Consider now two elements $g_{1}, g_{2} \in G$. Then
$D\left(g_{1} g_{2}^{-1}\right) X=\left(g_{1} g_{2}^{-1}\right) X\left(g_{1} g_{2}\right)^{-1}=g_{1}\left(g_{2}^{-1} X g_{2}\right) g_{1}^{-1}=D\left(g_{1}\right)\left[D\left(g_{2}^{-1}\right) X\right]=\left[D\left(g_{1}\right) D\left(g_{2}^{-1}\right)\right] X$.
(c) Compute the generators of D and show that D is the adjoint representation. Let us consider a matrix $D(g)$ that is close to the identity. Then

$$
e^{Y} X e^{-Y} \simeq X+[Y, X]
$$

We now need to work out the commutator $[Y, X]$, using that $Y=i \alpha_{a} X_{a}$, and $X=\beta_{a} X_{a}$, where X_{a} are the generators of the Lie group:

$$
[Y, X]=i \alpha_{a} \beta_{b}\left[X_{a}, X_{b}\right]=i \alpha_{a} \beta_{b}\left(i f_{a b c} X_{c}\right)=i \alpha_{a} \beta_{b}(\underbrace{-i f_{a c b}}_{=\left(T_{a}\right)_{c b}} X_{c})=i \alpha_{a}\left[\left(T_{a}\right)_{b c} X_{b}\right] X_{c}
$$

where $\left(T_{a}\right)_{b c}$ are precisely the generators of the adjoint representation.
2. Consider an infinitesimal Lorentz transformation

$$
\Lambda_{\nu}^{\mu}=\eta_{\nu}^{\mu}+\omega_{\nu}^{\mu}, \quad \omega_{\mu \nu}=-\omega_{\nu \mu}
$$

(a) Show that ω_{ν}^{μ} can be written in the form

$$
\omega_{\nu}^{\mu}=\frac{i}{2} \omega^{\rho \sigma}\left(M_{\rho \sigma}\right)_{\nu}^{\mu}
$$

where $M_{\rho \sigma}$ are the generators of Lorentz transformations, given by

$$
\left(M_{\rho \sigma}\right)_{\nu}^{\mu}=i\left(\eta_{\sigma}^{\mu} \eta_{\nu \rho}-\eta_{\rho}^{\mu} \eta_{\nu \sigma}\right)
$$

From a direct computation

$$
\omega_{\nu}^{\mu}=\eta_{\rho}^{\mu} \eta_{\nu \sigma} \omega^{\rho \sigma}=\frac{1}{2} \omega^{\rho \sigma}\left(\eta_{\rho}^{\mu} \eta_{\nu \sigma}-\eta_{\sigma}^{\mu} \eta_{\nu \rho}\right)=\frac{i}{2} \omega^{\rho \sigma}\left[i\left(\eta_{\sigma}^{\mu} \eta_{\nu \rho}-\eta_{\rho}^{\mu} \eta_{\nu \sigma}\right)\right]
$$

(b) Using the explicit form of $M_{\mu \nu}$, compute the commutation rules

$$
\left[M_{\mu \nu}, M_{\rho \sigma}\right]=i\left(\eta_{\mu \rho} M_{\nu \sigma}-\eta \mu \sigma M_{\nu \rho}+\eta_{\nu \sigma} M_{\mu \rho}-\eta_{\nu \rho} M_{\mu \sigma}\right)
$$

From the definition of the commutator

$$
\left[M_{\mu \nu}, M_{\rho \sigma}\right]_{\beta}^{\alpha}=\left(M_{\mu \nu}\right)_{\gamma}^{\alpha}\left(M_{\rho \sigma}\right)_{\beta}^{\gamma}-\left(M_{\rho \sigma}\right)_{\gamma}^{\alpha}\left(M_{\mu \nu}\right)_{\beta}^{\gamma}
$$

We work out the first term of the commutator, keeping track of imaginary units

$$
\begin{aligned}
\left(M_{\mu \nu}\right)_{\gamma}^{\alpha}\left(M_{\rho \sigma}\right)_{\beta}^{\gamma} & =i\left[i\left(\eta_{\nu}^{\alpha} \eta_{\gamma \mu}-\eta_{\mu}^{\alpha} \eta_{\gamma \nu}\right)\left(\eta_{\sigma}^{\gamma} \eta_{\beta \rho}-\eta_{\rho}^{\gamma} \eta_{\beta \sigma}\right)\right] \\
& i[\eta_{\mu \sigma}(\underbrace{i \eta_{\nu}^{\alpha} \eta_{\beta \rho}}_{\rightarrow\left(-M_{\nu \rho}\right)}+\eta_{\nu \sigma}(\underbrace{-i \eta_{\mu}^{\alpha} \eta_{\beta \rho}}_{\rightarrow M_{\mu \rho}})+\eta_{\mu \rho}(\underbrace{-i \eta_{\nu}^{\alpha} \eta_{\beta \sigma}}_{\rightarrow M_{\nu \sigma}})+\eta_{\nu \rho}(\underbrace{i \eta_{\mu}^{\alpha} \eta_{\beta \sigma}}_{\rightarrow\left(-M_{\mu \sigma}\right)})]
\end{aligned}
$$

where the remaining part of the generators are completed by the other half of the commutator.
3. The three 4×4 matrices \vec{K} - the anti-hermitian boost generators - are defined as $K_{k}=M_{0 k}$ with non-vanishing matrix elements $\left(K_{j}\right)_{0 k}=\left(K_{j}\right)_{k 0}=i \delta_{j k}$.
(a) Show that $\left(i K_{i}\right)^{2}$ is a projector, and that $\left(i K_{i}\right)^{2 n+1}=i K_{i}$.

We perform an explicit calculation for $i K_{1}$, and the result holds for any $i=$ $1,2,3$.

$$
i K_{1}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \Longrightarrow\left(i K_{1}\right)^{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This implies that $\left[\left(i K_{1}\right)^{2}\right]^{2}=\left(i K_{1}\right)^{2}$, hence $\left(i K_{1}\right)^{2}$ is a projector.
(b) Compute the Lorentz boost matrix $\exp \left(i u_{i} K_{i}\right)$ in terms of $\left(\hat{u}_{i} K_{i}\right),\left(\hat{u}_{i} K_{i}\right)^{2}$. Here $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ is an arbitrary three-vector, $\hat{u}=\vec{u} / u$, where $u=|\vec{u}|$.
Since the choice of the axes is arbitrary, we can set the 1-axis along \hat{u}. Therefore, we have that $\left(i \hat{u}_{i} K_{i}\right)^{2}$ is a projector and $\left(i \hat{u}_{i} K_{i}\right)^{2 n+1}=i \hat{u}_{i} K_{i}$.
This gives

$$
\begin{aligned}
\exp \left(i u_{i} K_{i}\right) & =\sum_{n=0}^{\infty} \frac{u^{n}}{n!}\left(i \hat{u}_{i} K_{i}\right)^{n} \\
& =\mathbf{1}+\underbrace{\sum_{n=0}^{\infty} \frac{u^{2 n+1}}{(2 n+1)!}}_{=\sinh (u)}\left(i \hat{u}_{i} K_{i}\right)+\underbrace{\sum_{n=1}^{\infty} \frac{u^{2 n}}{(2 n)!}}_{=\cosh u-1}\left(i \hat{u}_{i} K_{i}\right)^{2}
\end{aligned}
$$

Compare your result to the case of a boost along the 1-direction in its standard form

$$
\left(\begin{array}{cccc}
\gamma & -\gamma v & 0 & 0 \\
-\gamma v & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \gamma=\frac{1}{\sqrt{1-v^{2}}}
$$

From that comparison, determine the relation between v and u.
For a boost along the 1-direction $\vec{u}=(u, 0,0)$. Therefore

$$
i \hat{u}_{i} K_{i}=i K_{1}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This gives

$$
\exp \left(i u K_{1}\right)=\left(\begin{array}{cccc}
\cosh u & -\sinh u & 0 & 0 \\
-\sinh u & \cosh u & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Comparing with the given matrix we get

$$
v=\frac{\gamma v}{\gamma}=\frac{\sinh u}{\cosh u}=\tanh u
$$

4. Consider the 2×2 matrices $\sigma_{\mu}=\left(\sigma_{0}, \sigma_{i}\right)$, with σ_{0} the 2×2 identity matrix and σ_{i} the Pauli matrices. For a space-time coordinate x^{μ} consider the matrix

$$
\hat{x}=x^{\mu} \sigma_{\mu}=\left(\begin{array}{cc}
x^{0}+x^{3} & x^{1}-i x^{2} \tag{1}\\
x^{1}+i x^{2} & x^{0}-x^{3}
\end{array}\right) .
$$

(a) Show that every complex hermitian 2×2 matrix M can be written in the form (1) for some real x^{μ}.
The matrices σ_{μ} are a basis for complex hermitian 2×2 matrices. Hence, each matrix M can be written as $M=x^{\mu} \sigma_{\mu}$. Since both M and σ_{μ} are hermitian, we have

$$
M^{\dagger}=\left(x^{\mu}\right)^{*} \sigma_{\mu}=M=x^{\mu} \sigma_{\mu} \Longrightarrow\left(x^{\mu}\right)^{*}=x^{\mu}
$$

Hence the numbers x^{μ} are real.
(b) Show that $\operatorname{det} \hat{x}=x^{\mu} x_{\mu}$, and that this implies

$$
x^{\mu} y_{\mu}=\frac{1}{4}[\operatorname{det}(\hat{x}+\hat{y})-\operatorname{det}(\hat{x}-\hat{y})] .
$$

From a direct calculation
det $\hat{x}=\left(x^{0}+x^{3}\right)\left(x^{0}-x^{3}\right)-\left(x^{1}-i x^{2}\right)\left(x^{1}+i x^{2}\right)=\left(x^{0}\right)^{2}-\left(x^{3}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}=x^{\mu} x_{\mu}$.
We then compute

$$
x^{\mu} y_{\mu}=\frac{1}{4}\left[(x+y)^{2}-(x-y)^{2}\right]=\frac{1}{4}[\operatorname{det}(\hat{x}+\hat{y})-\operatorname{det}(\hat{x}-\hat{y})] .
$$

(c) Consider the matrices $\bar{\sigma}_{\mu}=\left(\sigma_{0},-\sigma_{i}\right)$, and establish the identities

$$
\sigma_{\mu} \bar{\sigma}_{\nu}+\sigma_{\nu} \bar{\sigma}_{\mu}=2 \eta_{\mu \nu} \mathbb{1} \text { and } \operatorname{Tr}\left(\sigma_{\mu} \bar{\sigma}_{\nu}\right)=2 \eta_{\mu \nu}
$$

Hint. Recall the properties of the Pauli matrices

$$
\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k}, \quad\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j} \sigma_{0}
$$

From a direct computation

$$
\begin{aligned}
& \sigma_{0} \bar{\sigma}_{0}+\sigma_{0} \bar{\sigma}_{0}=2 \sigma_{0}^{2}=2 \times \mathbb{1}=2 \eta_{00} \mathbb{1} \\
& \sigma_{0} \bar{\sigma}_{i}+\sigma_{i} \bar{\sigma}_{0}=-\sigma_{i}+\sigma_{i}=0=2 \eta_{0 i} \mathbb{1} \\
& \sigma_{i} \bar{\sigma}_{j}+\sigma_{j} \bar{\sigma}_{i}=-\left\{\sigma_{i}, \sigma_{j}\right\}=-2 \delta_{i j} \mathbb{1}=2 \eta_{i j} \mathbb{1} .
\end{aligned}
$$

Similarly, from a direct computation we get

$$
\begin{aligned}
& \operatorname{Tr}\left(\sigma^{0} \bar{\sigma}^{0}\right)=\operatorname{Tr}\left(\sigma_{0}^{2}\right)=2=2 \eta_{00} \\
& \operatorname{Tr}\left(\sigma_{0} \bar{\sigma}_{i}\right)=-\operatorname{Tr}\left(\sigma_{i}\right)=0=2 \eta_{0 i} \\
& \operatorname{Tr}\left(\sigma^{i} \bar{\sigma}^{i}\right)=-\frac{1}{2} \operatorname{Tr}\left(\left\{\sigma_{i}, \sigma_{j}\right\}\right)=-2=2 \eta_{i j} .
\end{aligned}
$$

(d) Show that, for a complex 2×2 matrix M with unit determinant, $M \in S L(2, \mathbb{C})$,

$$
\hat{x}^{\prime}=M \hat{x} M^{\dagger}
$$

can be written in the form (1) with $x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}$, with

$$
\begin{equation*}
\Lambda_{\nu}^{\mu}=\frac{1}{2} \operatorname{Tr}\left(\bar{\sigma}^{\mu} M \sigma_{\nu} M^{\dagger}\right), \tag{2}
\end{equation*}
$$

and $\bar{\sigma}^{\mu}=\eta^{\mu \nu} \bar{\sigma}_{\nu}$.
First, we check that \hat{x}^{\prime} is hermitian. In fact

$$
\left(\hat{x}^{\prime}\right)^{\dagger}=\left(M^{\dagger}\right)^{\dagger} \hat{x}^{\dagger} M=M \hat{x} M^{\dagger}=\hat{x}^{\prime}
$$

As such it can be written as $\hat{x}^{\prime}=x^{\prime \mu} \sigma_{\mu}$ with $x^{\prime \mu}$ real. Then, we can write

$$
\hat{x}^{\prime}=x^{\prime \rho} \sigma_{\rho}=\left(M \sigma_{\nu} M^{\dagger}\right) x^{\nu}
$$

We now multiply each term to the left by $\bar{\sigma}_{\mu}$ and take the trace, thus obtaining

$$
x^{\prime \rho} \underbrace{\operatorname{Tr}\left(\bar{\sigma}^{\mu} \sigma_{\rho}\right)}_{=2 \eta_{\rho}^{\mu}}=\operatorname{Tr}\left(\bar{\sigma}^{\mu} M \sigma_{\nu} M^{\dagger}\right) x^{\nu}
$$

This gives

$$
x_{\mu}^{\prime}=\frac{1}{2} \operatorname{Tr}\left(\bar{\sigma}^{\mu} M \sigma_{\nu} M^{\dagger}\right) x_{\nu}=\Lambda_{\mu}^{\nu} x_{\nu} .
$$

(e) By considering the above relations for the matrices $\hat{x}^{\prime}=M \hat{x} M^{\dagger}$ and $\hat{y}^{\prime}=$ $M \hat{y} M^{\dagger}$, show that

$$
\eta_{\mu \nu} x^{\mu} y^{\prime \nu}=\eta_{\mu \nu} x^{\mu} y^{\nu}
$$

i.e. the matrix Λ_{μ}^{ν} of part (d) corresponds to a Lorentz transformation. Then, show that it also corresponds to a proper orthochronous Lorentz transformation. From a direct computation

$$
\begin{aligned}
\eta_{\mu \nu} x^{\prime \mu} y^{\prime \nu} & =\frac{1}{4}\left[\operatorname{det}\left(\hat{x}^{\prime}+\hat{y}^{\prime}\right)-\operatorname{det}\left(\hat{x}^{\prime}-\hat{y}^{\prime}\right)\right] \\
& \left.\left.=\frac{1}{4}\left[\operatorname{det}(M(\hat{x}+\hat{y})) M^{\dagger}\right)-\operatorname{det}(M(\hat{x}-\hat{y})) M^{\dagger}\right)\right] \\
& =\frac{1}{4}[\operatorname{det}(\hat{x}+\hat{y})-\operatorname{det}(\hat{x}-\hat{y})]=\eta_{\mu \nu} x^{\mu} y^{\nu}
\end{aligned}
$$

To show that Λ_{ν}^{μ} is a proper Lorentz transformation we need to show that $\operatorname{det} \Lambda=1$. Setting $M=\mathbb{1}$ leads to $\Lambda_{\nu}^{\mu}=\eta_{\nu}^{\mu}$. Any matrix $M \in S L(2, \mathbb{C})$ can be obtained from the identity by varying parameters continuously. Hence, also a generic Λ_{ν}^{μ} can be obtained from η_{ν}^{μ} by varying parameters continuously. Since $\operatorname{det} \Lambda$ is a continuous function of parameters, it can only assume the value
+1 , and hence Λ_{ν}^{μ} is a proper Lorentz transformation. Similarly, Λ_{0}^{0} is also a continuous function of the parameters, hence it has to stay in the same connected components as the identity, i.e. $\Lambda_{0}^{0} \geq 1$, which implies $\Lambda_{\nu}^{\mu} \in L_{+}^{\uparrow}$.
Remark. From Eq. (2) you can conclude that there is a unique Lorentz transformation matrix $\Lambda \in S O(3,1)$ for every matrix $M \in S L(2, \mathbb{C})$. On the other side, M and $-M$ lead to the same matrix Λ. In fact, there is an isomorphism from $S L(2, \mathbb{C}) / \mathbb{Z}_{2}$ (the set of complex 2×2 matrices with unit determinant, with M and $-M$ identified) to the orthochronous Lorentz group L_{+}^{\uparrow} consisting of matrices that conserve the metric tensor with $\Lambda_{0}^{0}>0$ and $\operatorname{det} \Lambda=1$.
5. Consider the matrices

$$
\Omega_{L}=\exp \left[\frac{i}{2}\left(\alpha_{i}-i \beta_{i}\right) \sigma_{i}\right], \quad \Omega_{R}=\exp \left[\frac{i}{2}\left(\alpha_{i}+i \beta_{i}\right) \sigma_{i}\right],
$$

where α_{i} and β_{i} are real parameters, and σ_{i} the three Pauli matrices.
(a) Show that

$$
\Omega_{L}^{-1}=\Omega_{R}^{\dagger}, \quad \Omega_{R}^{-1}=\Omega_{L}^{\dagger}
$$

From a direct computation

$$
\Omega_{L}^{-1}=\exp \left[-\frac{i}{2}\left(\alpha_{i}-i \beta_{i}\right) \sigma_{i}\right]=\left(\exp \left[\frac{i}{2}\left(\alpha_{i}+i \beta_{i}\right) \sigma_{i}\right]\right)^{\dagger}=\Omega_{R}^{\dagger}
$$

Using the above, we have

$$
\Omega_{R}^{-1}=\left(\left(\Omega_{R}^{-1}\right)^{\dagger}\right)^{\dagger}=\Omega_{L}^{\dagger}
$$

(b) Using the fact that

$$
\sigma_{2} \Omega_{L} \sigma_{2}=\Omega_{R}^{*}
$$

show that

$$
\sigma_{2} \Omega^{T} \sigma_{2} \Omega=\mathbb{1}
$$

and if ψ transforms according to some representation of $S L(2, \mathbb{C})$, then $\sigma_{2} \psi^{*}$ transforms according to the conjugate representation.
Suppose $\Omega=\Omega_{L}$. Then

$$
\sigma_{2} \Omega_{L}^{T} \sigma_{2} \Omega_{L}=\left(\Omega_{R}^{*}\right)^{T} \Omega_{L}=\Omega_{R}^{\dagger} \Omega_{L}=\Omega_{L}^{-1} \Omega_{L}=\mathbb{1}
$$

Consider now ψ that transforms as

$$
\psi \rightarrow \Omega_{L} \psi \Longrightarrow \sigma_{2} \psi^{*} \rightarrow \sigma_{2} \Omega_{L}^{*} \psi^{*}=\sigma_{2}\left(\sigma_{2} \Omega_{R} \sigma_{2}\right) \psi^{*}=\Omega_{R}\left(\sigma_{2} \psi^{*}\right)
$$

(c) Show that the generators of the $(1 / 2,0)$ and $(1 / 2,0)$ representations are

$$
\begin{aligned}
& \Sigma_{\mu \nu}^{L} \equiv M_{\mu \nu}^{(1 / 2,0)}=\frac{i}{4}\left(\bar{\sigma}_{\mu} \sigma_{\nu}-\bar{\sigma}_{\nu} \sigma_{\mu}\right), \\
& \Sigma_{\mu \nu}^{R} \equiv M_{\mu \nu}^{(0,1 / 2)}=\frac{i}{4}\left(\sigma_{\mu} \bar{\sigma}_{\nu}-\sigma_{\nu} \bar{\sigma}_{\mu}\right) .
\end{aligned}
$$

For left-handed spinors

$$
J_{i}=\frac{\sigma_{i}}{2}, \quad K_{i}=-i \frac{\sigma_{i}}{2} .
$$

Similarly, for right-handed spinors

$$
J_{i}=\frac{\sigma_{i}}{2}, \quad K_{i}=i \frac{\sigma_{i}}{2}
$$

For boosts, we have

$$
\begin{aligned}
\Sigma_{0 i}^{L} & =\frac{i}{4}\left(-\sigma_{i}-\sigma_{i}\right)=-i \frac{\sigma_{i}}{2}, \\
\Sigma_{0 i}^{R} & =\frac{i}{4}\left(\sigma_{i}+\sigma_{i}\right)=i \frac{\sigma_{i}}{2} .
\end{aligned}
$$

For rotations

$$
\Sigma_{i j}^{L}=\Sigma_{i j}^{R}=\frac{i}{4}(\underbrace{-\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}}_{=-2 i \epsilon_{i j k}})=\epsilon_{i j k} \frac{\sigma_{k}}{2}
$$

