
Symmetry in Particle Physics, Problem Sheet 2

1. Show that a representation D of a Lie group is unitary if and only if the generators
Xa are hermitian.

2. Consider the elements of an algebra Xa, with commutator

[Xa, Xb] = i fabcXc .

Show that if this algebra generates a unitary representation, then the structure con-
stants fabc are real.

3. Analytic functions of operators (matrices) A are defined via their Taylor expansion
about A = 0. Consider the function

g(x) = exp(xA)B exp(−xA) ,

where x is real and A,B are operators.

(a) Compute the derivatives dng(x)/dxn for integer n, and simplify the result using
the convention [A,B] = AB −BA.

(b) Using the result of part (a), show that

eAB e−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . .

4. We want to prove the Baker-Campbell-Hausdorff formula in a situation where the
operators (matrices) A,B have the property [A, [A,B]] = 0 = [B, [A,B]].

(a) Show that [An, B] = nAn−1[A,B] for integer n ≥ 1.

(b) Use the above to show that, for analytic functions f(x),

[f(A), B] = f ′(A) [A,B] .

Show then that, if x is a c-number (i.e. a real or complex number), we have

[B, exp(−Ax)] = exp(−Ax)[A,B]x .

(c) Consider the function f(x) = exp(xA) exp(xB) and, using the result of part
(b), show that it obeys the differential equation

df(x)

dx
= (A+B + [A,B]x) f(x) .

Compute f(x) by solving the above equation with an appropriate initial con-
dition, and use the result to deduce the Baker-Campbell-Hausdorff formula for
this case, i.e.

eAeB = eA+Be
1
2
[A,B] .

Note: f(x) is not in general invertible, so the equation has to be solved using
an ansatz.
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5. Compute the dimension of the group SU(N).

6. Consider the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(a) Using the conventions [A,B] = AB − BA, {A,B} = AB + BA, show that the
matrices σi

2
are a two-dimensional representation of the SU(2) algebra,[σi

2
,
σj
2

]
= i εijk

σk
2
,

and ε123 = +1. Show also that{σi
2
,
σj
2

}
=
σ0
2
δij ,

with σ0 =

(
1 0
0 1

)
denoting the two-dimensional identity matrix.

(b) Consider the SU(2) group element G = exp( i
2
θ3σ3) with parameter θ3. Show

by explicit computation that

exp

(
iθ3
2
σ3

)
= σ0 · cos(θ3/2) + i σ3 · sin(θ3/2)

(c) A general SU(2) group element is written as G = exp( i
2
θkσk) with parameters

θk. Show, either by explicit computation or with the help of part (b) and
symmetry arguments, that

exp

(
iθk
2
σk

)
= σ0 · cos(θ/2) + i (θ̂kσk) · sin(θ/2) .

Here, θ̂k = θk/θ is the unit vector in the θk-direction, and θ ≡ |θ|.
Perform the above group transformation using θ = 2π and θ = 4π, respectively.
What does this tell us about the relation between SU(2) and SO(3)?

7. The spin-1 representation of SU(2) with generators T1, T2, T3 satisfying [Ti, Tj] =
i εijkTk reads

T1 =
1√
2

 0 1 0
1 0 1
0 1 0

 , T2 =
1√
2

 0 −i 0
i 0 −i
0 i 0

 , T3 =

 1 0 0
0 0 0
0 0 −1

 .

Consider the corresponding SU(2) group element Ω(θi) = exp(iθiTi) with parameters
θi i = 1, 2, 3. Here θ̂i = θi/|θ| is the unit vector in the θi-direction, and θ ≡ |θ|.
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(a) Show with a direct computation, or with symmetry arguments, that the matrix
θ̂i Ti must have eigenvalues ±1 and 0.

(b) Use the result of part (a) to show that the square (θ̂i Ti)
2 is a projection operator

(i.e. (θ̂i Ti)
4 = (θ̂i Ti)

2) and
(θ̂i Ti)

3 = θ̂i Ti .

Show then that Ω(θi) is the 3× 3 matrix

Ω(θi) = 1 + i (θ̂iTi) · sin θ + (θ̂iTi)
2 · (cos θ − 1) ,

where 1 is the 3-dimensional identity matrix.

8. Given a three-dimensional vector ~v = (v1, v2, v3), we construct the 2 × 2 matrix
v̄ = viσi, with σi, i = 1, 2, 3 the three Pauli matrices, as follows

v̄ =

(
v3 v1 − iv2

v1 + iv2 −v3

)
(a) Show that ~v 2 = − det(v̄). Then show that, for any two vectors ~v and ~w,

~v · ~w =
1

4
[det(v̄ − w̄)− det(v̄ + w̄)] .

(b) Using the properties of Pauli matrices, show that, for any matrix U ∈ SU(2),
the matrix

v̄′ = U v̄ U † ,

can be written in the form v̄′ = v′iσi, where

v′i = Ωij vj , Ωij =
1

2
Tr
[
σiUσjU

†] .
Hint. Any 2× 2 complex matrix M can be written as M = M01 +Miσi.

(c) Show that Ω is an orthogonal transformation, i.e. if ~v ′ = Ω~v and ~w ′ = Ω~w,
then ~v ′ · ~w ′ = ~v · ~w.
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