Symmetry in Particle Physics, Problem Sheet 2

1. Show that a representation D of a Lie group is unitary if and only if the generators
X, are hermitian.

2. Consider the elements of an algebra X,, with commutator
[Xm Xb] =1 fabc Xc .

Show that if this algebra generates a unitary representation, then the structure con-
stants fu. are real.

3. Analytic functions of operators (matrices) A are defined via their Taylor expansion
about A = 0. Consider the function

g(x) = exp(zA) B exp(—z4),
where x is real and A, B are operators.
(a) Compute the derivatives d"g(x)/dz™ for integer n, and simplify the result using
the convention [A, B] = AB — BA.
(b) Using the result of part (a), show that
1 1
GABG_A =B+ [A> B] + 5[147 [A> BH + 5[‘4’ [Aa [Aa B]H +..
4. We want to prove the Baker-Campbell-Hausdorff formula in a situation where the
operators (matrices) A, B have the property [A, [4, B]] =0 = [B, [4, B]].
(a) Show that [A", B] = nA""1[A, B] for integer n > 1.
(b) Use the above to show that, for analytic functions f(x),

[f(A), B] = f'(A)[A, B].
Show then that, if z is a c-number (i.e. a real or complex number), we have
[B, exp(—Az)| = exp(—Azx)[A, Blz .

(c¢) Consider the function f(z) = exp(zA)exp(zB) and, using the result of part
(b), show that it obeys the differential equation

df (x)
dx
Compute f(x) by solving the above equation with an appropriate initial con-

dition, and use the result to deduce the Baker-Campbell-Hausdorff formula for
this case, i.e.

=(A+ B+ [A B|z) f(x).

1
eAeB — A+B[AB]

Note: f(x) is not in general invertible, so the equation has to be solved using
an ansatz.



5. Compute the dimension of the group SU(N).

6. Consider the Pauli matrices

(01 (0 =i (1 0
=1 0) %27\ 0o )% o -1 )"

(a) Using the conventions [A, B] = AB — BA, {A, B} = AB + BA, show that the

matrices - are a two-dimensional representation of the SU(2) algebra,

and €123 = +1. Show also that
o; 0 00
{_7 _j} = 5 51]7
2 2 2

1 ) . : ) . .
) denoting the two-dimensional identity matrix.
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(b) Consider the SU(2) group element G = exp(46303) with parameter 3. Show
by explicit computation that

with og = (

0
exp (%J;;) = 0¢ - cos(03/2) +ios -sin(fs/2)
(¢) A general SU(2) group element is written as G = exp(%6x0) with parameters
0. Show, either by explicit computation or with the help of part (b) and
symmetry arguments, that
105, A :
exp { ok | =00 cos(0/2) + i (Ooy) - sin(0/2).

Here, 0), = 0;/0 is the unit vector in the 6j-direction, and 6 = ).

Perform the above group transformation using # = 27 and 6 = 4, respectively.
What does this tell us about the relation between SU(2) and SO(3)?

7. The spin-1 representation of SU(2) with generators 14,75, T5 satisfying [T;,T;] =
i €51y reads

0
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T =— 0
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Th=—i 0 —i |, .3=[0
' 0

Consider the corresponding SU(2) group element €(6;) = exp(if);T;) with parameters
0; i =1,2,3. Here 0; = 0,/|0] is the unit vector in the ;-direction, and 6 = |0|.

2



(a) Show with a direct computation, or with symmetry arguments, that the matrix
0; T; must have eigenvalues +1 and 0.

(b) Use the result of part (a) to show that the square (6; T})? is a projection operator
(1e (92 E)4 = (QZE)Q) and R )
(0.1 = 0.7,
Show then that ©(6;) is the 3 x 3 matrix
Q6;) =1+ (6,T;) - sin 6 + (;T;)* - (cosf — 1) |,
where 1 is the 3-dimensional identity matrix.

8. Given a three-dimensional vector ¥ = (vy,vq,v3), we construct the 2 x 2 matrix
v = v;0;, with 0;,7 = 1, 2, 3 the three Pauli matrices, as follows

_ Vs V1 — ivg
v = .
(3 A —Us3

(a) Show that v? = —det(v). Then show that, for any two vectors ¥ and 0,

—

L1 o .
vow= g [det(v — w) — det(v + w)] .

(b) Using the properties of Pauli matrices, show that, for any matrix U € SU(2),
the matrix

v=UsU",

can be written in the form v' = vio;, where
/ 1 t
v, = Qij vy, Qij = §T1" [UiUO'jU } .

Hint. Any 2 x 2 complex matrix M can be written as M = Myl + M;o;.

(c) Show that €2 is an orthogonal transformation, i.e. if ¥/ = Q¢ and @' = Q,

—

then ¢/ - W' = ¥ - 0.



