## Symmetry in Particle Physics, Problem Sheet 2

1. Show that a representation $D$ of a Lie group is unitary if and only if the generators $X_{a}$ are hermitian.
2. Consider the elements of an algebra $X_{a}$, with commutator

$$
\left[X_{a}, X_{b}\right]=i f_{a b c} X_{c}
$$

Show that if this algebra generates a unitary representation, then the structure constants $f_{a b c}$ are real.
3. Analytic functions of operators (matrices) $A$ are defined via their Taylor expansion about $A=0$. Consider the function

$$
g(x)=\exp (x A) B \exp (-x A)
$$

where $x$ is real and $A, B$ are operators.
(a) Compute the derivatives $d^{n} g(x) / d x^{n}$ for integer $n$, and simplify the result using the convention $[A, B]=A B-B A$.
(b) Using the result of part (a), show that

$$
e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\frac{1}{3!}[A,[A,[A, B]]]+\ldots
$$

4. We want to prove the Baker-Campbell-Hausdorff formula in a situation where the operators (matrices) $A, B$ have the property $[A,[A, B]]=0=[B,[A, B]]$.
(a) Show that $\left[A^{n}, B\right]=n A^{n-1}[A, B]$ for integer $n \geq 1$.
(b) Use the above to show that, for analytic functions $f(x)$,

$$
[f(A), B]=f^{\prime}(A)[A, B]
$$

Show then that, if $x$ is a $c$-number (i.e. a real or complex number), we have

$$
[B, \exp (-A x)]=\exp (-A x)[A, B] x
$$

(c) Consider the function $f(x)=\exp (x A) \exp (x B)$ and, using the result of part (b), show that it obeys the differential equation

$$
\frac{d f(x)}{d x}=(A+B+[A, B] x) f(x) .
$$

Compute $f(x)$ by solving the above equation with an appropriate initial condition, and use the result to deduce the Baker-Campbell-Hausdorff formula for this case, i.e.

$$
e^{A} e^{B}=e^{A+B} e^{\frac{1}{2}[A, B]}
$$

Note: $f(x)$ is not in general invertible, so the equation has to be solved using an ansatz.
5. Compute the dimension of the group $S U(N)$.
6. Consider the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Using the conventions $[A, B]=A B-B A,\{A, B\}=A B+B A$, show that the matrices $\frac{\sigma_{i}}{2}$ are a two-dimensional representation of the $S U(2)$ algebra,

$$
\left[\frac{\sigma_{i}}{2}, \frac{\sigma_{j}}{2}\right]=i \epsilon_{i j k} \frac{\sigma_{k}}{2},
$$

and $\epsilon_{123}=+1$. Show also that

$$
\left\{\frac{\sigma_{i}}{2}, \frac{\sigma_{j}}{2}\right\}=\frac{\sigma_{0}}{2} \delta_{i j}
$$

with $\sigma_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ denoting the two-dimensional identity matrix.
(b) Consider the $S U(2)$ group element $G=\exp \left(\frac{i}{2} \theta_{3} \sigma_{3}\right)$ with parameter $\theta_{3}$. Show by explicit computation that

$$
\exp \left(\frac{i \theta_{3}}{2} \sigma_{3}\right)=\sigma_{0} \cdot \cos \left(\theta_{3} / 2\right)+i \sigma_{3} \cdot \sin \left(\theta_{3} / 2\right)
$$

(c) A general $S U(2)$ group element is written as $G=\exp \left(\frac{i}{2} \theta_{k} \sigma_{k}\right)$ with parameters $\theta_{k}$. Show, either by explicit computation or with the help of part (b) and symmetry arguments, that

$$
\exp \left(\frac{i \theta_{k}}{2} \sigma_{k}\right)=\sigma_{0} \cdot \cos (\theta / 2)+i\left(\hat{\theta}_{k} \sigma_{k}\right) \cdot \sin (\theta / 2)
$$

Here, $\hat{\theta}_{k}=\theta_{k} / \theta$ is the unit vector in the $\theta_{k}$-direction, and $\theta \equiv|\theta|$.
Perform the above group transformation using $\theta=2 \pi$ and $\theta=4 \pi$, respectively. What does this tell us about the relation between $S U(2)$ and $S O(3)$ ?
7. The spin-1 representation of $S U(2)$ with generators $T_{1}, T_{2}, T_{3}$ satisfying $\left[T_{i}, T_{j}\right]=$ $i \epsilon_{i j k} T_{k}$ reads

$$
T_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad T_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \quad T_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Consider the corresponding $S U(2)$ group element $\Omega\left(\theta_{i}\right)=\exp \left(i \theta_{i} T_{i}\right)$ with parameters $\theta_{i} i=1,2,3$. Here $\hat{\theta}_{i}=\theta_{i} /|\theta|$ is the unit vector in the $\theta_{i}$-direction, and $\theta \equiv|\theta|$.
(a) Show with a direct computation, or with symmetry arguments, that the matrix $\hat{\theta}_{i} T_{i}$ must have eigenvalues $\pm 1$ and 0 .
(b) Use the result of part (a) to show that the square $\left(\hat{\theta}_{i} T_{i}\right)^{2}$ is a projection operator (i.e. $\left(\hat{\theta}_{i} T_{i}\right)^{4}=\left(\hat{\theta}_{i} T_{i}\right)^{2}$ ) and

$$
\left(\hat{\theta}_{i} T_{i}\right)^{3}=\hat{\theta}_{i} T_{i} .
$$

Show then that $\Omega\left(\theta_{i}\right)$ is the $3 \times 3$ matrix

$$
\Omega\left(\theta_{i}\right)=\mathbb{1}+i\left(\hat{\theta}_{i} T_{i}\right) \cdot \sin \theta+\left(\hat{\theta}_{i} T_{i}\right)^{2} \cdot(\cos \theta-1)
$$

where $\mathbb{1}$ is the 3 -dimensional identity matrix.
8. Given a three-dimensional vector $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$, we construct the $2 \times 2$ matrix $\bar{v}=v_{i} \sigma_{i}$, with $\sigma_{i}, i=1,2,3$ the three Pauli matrices, as follows

$$
\bar{v}=\left(\begin{array}{cc}
v_{3} & v_{1}-i v_{2} \\
v_{1}+i v_{2} & -v_{3}
\end{array}\right)
$$

(a) Show that $\vec{v}^{2}=-\operatorname{det}(\bar{v})$. Then show that, for any two vectors $\vec{v}$ and $\vec{w}$,

$$
\vec{v} \cdot \vec{w}=\frac{1}{4}[\operatorname{det}(\bar{v}-\bar{w})-\operatorname{det}(\bar{v}+\bar{w})] .
$$

(b) Using the properties of Pauli matrices, show that, for any matrix $U \in S U(2)$, the matrix

$$
\bar{v}^{\prime}=U \bar{v} U^{\dagger},
$$

can be written in the form $\bar{v}^{\prime}=v_{i}^{\prime} \sigma_{i}$, where

$$
v_{i}^{\prime}=\Omega_{i j} v_{j}, \quad \Omega_{i j}=\frac{1}{2} \operatorname{Tr}\left[\sigma_{i} U \sigma_{j} U^{\dagger}\right] .
$$

Hint. Any $2 \times 2$ complex matrix $M$ can be written as $M=M_{0} \mathbb{1}+M_{i} \sigma_{i}$.
(c) Show that $\Omega$ is an orthogonal transformation, i.e. if $\vec{v}^{\prime}=\Omega \vec{v}$ and $\vec{w}^{\prime}=\Omega \vec{w}$, then $\vec{v}^{\prime} \cdot \vec{w}^{\prime}=\vec{v} \cdot \vec{w}$.

