
Symmetry in Particle Physics, Problem Sheet 2 [SOLUTIONS]

1. Show that a representation D of a Lie group is unitary if and only if the generators
Xa are hermitian.

Let D(α) = exp(iαaXa). D is unitary if and only if

D−1(α) = exp(−iαaXa) = D†(α) = exp(−iαaX†a) .

Since this holds for any value of α, it is possible if and only if Xa = X†a.

2. Consider the elements of an algebra Xa, with commutator

[Xa, Xb] = i fabcXc .

Show that if this algebra generates a unitary representation, then the structure con-
stants fabc are real.

From a direct computation

([Xa, Xb])
† = [X†b , X

†
a] = −i f ∗abcX†c .

However, if the Xa’s generate a unitary representation, then X†a = Xa. Using com-
mutation rules, we have

[X†b , X
†
a] = [Xb, Xa] = −[Xa, Xb] = −i fabcXc .

Comparing with the result of the direct computation, we get

[X†b , X
†
a] = −i fabcXc = −i f ∗abcXc =⇒ f ∗abc = fabc .

3. Analytic functions of operators (matrices) A are defined via their Taylor expansion
about A = 0. Consider the function

g(x) = exp(xA)B exp(−xA) ,

where x is real and A,B are operators.

(a) Compute the derivatives dng(x)/dxn for integer n, and simplify the result using
the convention [A,B] = AB −BA.

From a direct computation we get

d

dx
exp(xA) = A exp(xA) = exp(xA)A .
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This suggests the following ansatz

dng(x)

dxn
= exp(xA) [A, [A, . . . , [A︸ ︷︷ ︸

n times

, B] . . . ]] exp(−xA) .

The latter equality can be shown by induction. For n = 1 we have

dg(x)

dx
= exp(xA)(AB −BA) exp(−xA) = exp(xA)[A,B] exp(−xA) .

Assuming the statement is true for n, we show that it holds for n+ 1. In fact

dn+1g(x)

dxn+1
=

d

dx

dng(x)

dxn
=

d

dx
exp(xA) [A, [A, . . . , [A︸ ︷︷ ︸

n times

, B] . . . ]] exp(−xA)

= exp(xA)A [A, [A, . . . , [A︸ ︷︷ ︸
n times

, B] . . . ]] exp(−xA)

− exp(xA) [A, [A, . . . , [A︸ ︷︷ ︸
n times

, B] . . . ]]A exp(−xA)

= exp(xA) [A, [A, . . . , [A︸ ︷︷ ︸
n+1 times

, B] . . . ]] exp(−xA)

(b) Using the result of part (a), show that

eAB e−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . .

eAB e−A = g(1) =
∞∑
n=0

1

n!

dng(x)

dxn

∣∣∣∣
x=0

=
∞∑
n=0

1

n!
[A, [A, . . . , [A︸ ︷︷ ︸

n times

, B] . . . ]] ,

which is exactly what we need to show.

4. We want to prove the Baker-Campbell-Hausdorff formula in a situation where the
operators (matrices) A,B have the property [A, [A,B]] = 0 = [B, [A,B]].

(a) Show that [An, B] = nAn−1[A,B] for integer n ≥ 1.

We prove the statement by induction. It is true for n = 1. Assuming it is valid
for n, we prove it for n+ 1. In fact

[An+1, B] = An+1B −BAn+1 = AAnB −BAnA = A [An, B] + [A,B]An .

Since [A, [A,B]] = 0, we have [A,B]An = An [A,B]. This gives, using the
induction hypothesis

[An+1, B] = An+1B −BAn+1 = A(AnB −BAn) + ABAn −BAAn

= A[An, B] + [A,B]An =
(
A (nAn−1) + An

)
[A,B] = (n+ 1)An[A,B] .
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(b) Use the above to show that, for analytic functions f(x),

[f(A), B] = f ′(A) [A,B] .

Using the Taylor expansion of f(A), we get

f(A) =
∞∑
n=0

fnA
n .

This, and the linearity of the commutator, implies

[f(A), B] =
∞∑
n=0

fn [An, B] =
∞∑
n=0

fn(nAn−1) [A,B] = f ′(A) [A,B] .

Show then that, if x is a c-number (i.e. a real or complex number), we have

[B, exp(−Ax)] = exp(−Ax)[A,B]x .

From a direct computation, defining f(A) ≡ exp(−Ax), we have

[B, exp(−Ax)] = −[exp(−Ax), B] = −(−x) exp(−Ax) [A,B] = exp(−Ax)[A,B]x .

(c) Consider the function f(x) = exp(xA) exp(xB) and, using the result of part
(b), show that it obeys the differential equation

df(x)

dx
= (A+B + [A,B]x) f(x) .

Differentiating f(x) we get

df(x)

dx
= Af(x) + f(x)B .

Let us concentrate on the latter term:

f(x)B = exp(xA) exp(xB)B = exp(xA)B exp(−xA) exp(xA) exp(xB)

= Bf(x) + exp(xA)[B, exp(−xA)] f(x) .

Using the result of part (b) we get

[B, exp(−xA)] = x exp(−xA)[A,B] ,

which leads immediately to the desired equation.
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Compute f(x) by solving the above equation with an appropriate initial con-
dition, and use the result to deduce the Baker-Campbell-Hausdorff formula for
this case, i.e.

eAeB = eA+Be
1
2
[A,B] .

Note: f(x) is not in general invertible, so the equation has to be solved using
an ansatz.

Let us take as initial condition f(0) = 1. Then

f(x) = exp((A+B)x+
x2

2
[A,B])

is the solution of the differential equation with the appropriate initial condition.
This gives

f(1) = eA+B+ 1
2
[A,B] = eA+Be

1
2
[A,B] ,

where the last equality holds because [A,B] commutes with both A and B.

5. Compute the dimension of the group SU(N).

The number of real parameter in any N ×N complex matrix is 2N2.

Each M ∈ SU(N) satisfies MM † = 1. This involves N real constraints on the
diagonal of the identity matrix (each corresponding to constraining the magnitude of
a complex number) and 2N(N − 1)/2 = N2−N real constraints from the off-diagonal
terms (the remaining off-diagonal terms can be obtained by complex conjugation, so
they do not give rise to addional constraints).

The condition detM = 1 gives another constraint. In total, the number of real
parameters minus the number of constraints is 2N2−N2 − 1 = N2−1.

6. Consider the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(a) Using the conventions [A,B] = AB − BA, {A,B} = AB + BA, show that the
matrices σi

2
are a two-dimensional representation of the SU(2) algebra,[σi

2
,
σj
2

]
= i εijk

σk
2
,

and ε123 = +1. Show also that{σi
2
,
σj
2

}
=
σ0
2
δij ,

with σ0 =

(
1 0
0 1

)
denoting the two-dimensional identity matrix.
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From a direct computation

σ1σ2 =

(
i 0
0 −i

)
, σ2σ1 =

(
−i 0
0 i

)
.

This gives
[σ1, σ2] = 2iσ3 , {σ1, σ2} = 0 .

Similar computations for the other matrices lead to

[σ2, σ3] = 2iσ1 , {σ2, σ3} = 0 .

[σ3, σ1] = 2iσ2 , {σ3, σ1} = 0 .

Since σ2
i = 1, we have obtained all the requested relations.

(b) Consider the SU(2) group element G = exp( i
2
θ3σ3) with parameter θ3. Show

by explicit computation that

exp

(
iθ3
2
σ3

)
= σ0 · cos(θ3/2) + i σ3 · sin(θ3/2)

From the anticommutation relations of part (a) we have

σ2n
3 = 1 , σ2n+1

3 = σ3 .

It makes sense to separate even and odd powers of σ3 in the expansion of G, as
follows

G =
∞∑
n=0

1

n!

(
i

2
θ3

)n
σn3

=
∞∑
n=0

(−1)n

(2n)!

(
θ3
2

)2n

σ2n
3︸︷︷︸
=1

+i
∞∑
n=0

(−1)n

(2n+ 1)!

(
θ3
2

)2n+1

σ2n+1
3︸ ︷︷ ︸
=σ3

=
∞∑
n=0

(−1)n

(2n)!

(
θ3
2

)2n

︸ ︷︷ ︸
=cos(θ3/2)

+iσ3

∞∑
n=0

(−1)n

(2n+ 1)!

(
θ3
2

)2n+1

︸ ︷︷ ︸
=sin(θ3/2)

= σ0 · cos(θ3/2) + i σ3 · sin(θ3/2) .

(c) A general SU(2) group element is written as G = exp( i
2
θkσk) with parameters

θk. Show, either by explicit computation or with the help of part (b) and
symmetry arguments, that

exp

(
iθk
2
σk

)
= σ0 · cos(θ/2) + i (θ̂kσk) · sin(θ/2) .
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Here, θ̂k = θk/θ is the unit vector in the θk-direction, and θ ≡ |θ|.
The proposed solution uses an explicit computation. Using the anticommutation
relations of the Pauli matrices

(θkσk)
2 = (θiσi)(θjσj) = θiθjσiσj =

1

2
θiθj{σi, σj} = θiθjδij = θ2 .

This gives

exp

(
iθk
2
σk

)
=
∞∑
n=0

(−1)n

(2n)!

(
θ

2

)2n

(θ̂kσk)
2n︸ ︷︷ ︸

=1

+i
∞∑
n=0

(−1)n

(2n+ 1)!

(
θ

2

)2n+1

(θ̂kσk)
2n+1︸ ︷︷ ︸

=θ̂kσk

= σ0 · cos(θ/2) + i (θ̂kσk) · sin(θ/2) .

Perform the above group transformation using θ = 2π and θ = 4π, respectively.
What does this tell us about the relation between SU(2) and SO(3)?

From a direct computation

exp

(
i(2π)θ̂k

2
σk

)
= cos(π) + i (θ̂kσk) · sin(π) = −σ0 ,

exp

(
i(4π)θ̂k

2
σk

)
= cos(2π) + i (θ̂kσk) · sin(2π) = σ0 .

This tells us that, in spite of the fact that the Lie algebras of SU(2) and SO(3)
are isomorphic, the two groups cannot have the same representations. In fact, a
rotation of 2π, which belongs to the fundamental representation of SO(3), is the
identity, and so has to be in any representation of SO(3). We have just found
a representation of SU(2) for which this is not the case.

7. The spin-1 representation of SU(2) with generators T1, T2, T3 satisfying [Ti, Tj] =
i εijkTk reads

T1 =
1√
2

 0 1 0
1 0 1
0 1 0

 , T2 =
1√
2

 0 −i 0
i 0 −i
0 i 0

 , T3 =

 1 0 0
0 0 0
0 0 −1

 .

Consider the corresponding SU(2) group element Ω(θi) = exp(iθiTi) with parameters
θi i = 1, 2, 3. Here θ̂i = θi/|θ| is the unit vector in the θi-direction, and θ ≡ |θ|.

(a) Show with a direct computation, or with symmetry arguments, that the matrix
θ̂i Ti must have eigenvalues ±1 and 0.

Since the choice of the 3-axis is arbitrary, we can choose to set it along the
direction θ̂, and therefore θ̂i Ti becomes the matrix T3, hence its eigenvalues are
±1 and 0.
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(b) Use the result of part (a) to show that the square (θ̂i Ti)
2 is a projection operator

(i.e. (θ̂i Ti)
4 = (θ̂i Ti)

2) and
(θ̂i Ti)

3 = θ̂i Ti .

From part (a) we know that there exists a basis in which θ̂i Ti has the same form
as T3. Hence the two properties follow from a direct calculation in that basis.

Show then that Ω(θi) is the 3× 3 matrix

Ω(θi) = 1 + i (θ̂iTi) · sin θ + (θ̂iTi)
2 · (cos θ − 1) ,

where 1 is the 3-dimensional identity matrix.

In the series expansion of Ω(θi), we divide odd and even powers of θ̂iTi as follows

Ω(θi) =
∞∑
n=0

θn

n!
(θ̂iTi)

n

= 1 +
∞∑
n=1

(iθ)2n

(2n)!
(θ̂iTi)

2n︸ ︷︷ ︸
=(θ̂iTi)2

+
∞∑
n=0

(iθ)2n+1

(2n+ 1)!
(θ̂iTi)

2n+1︸ ︷︷ ︸
=θ̂iTi

= 1 +
∞∑
n=1

(−1)n
θ2n

(2n)!︸ ︷︷ ︸
=cos θ−1

(θ̂iTi)
2 + i

∞∑
n=0

(−1)n
θ2n+1

(2n+ 1)!︸ ︷︷ ︸
=sin θ

(θ̂iTi) ,

which is what we needed to show.

8. Given a three-dimensional vector ~v = (v1, v2, v3), we construct the 2 × 2 matrix
v̄ = viσi, with σi, i = 1, 2, 3 the three Pauli matrices, as follows

v̄ =

(
v3 v1 − iv2

v1 + iv2 −v3

)
(a) Show that ~v 2 = − det(v̄). Then show that, for any two vectors ~v and ~w,

~v · ~w =
1

4
[det(v̄ − w̄)− det(v̄ + w̄)] .

From a direct computation

− det(v̄) = v23 + (v1 − iv2)(v1 + iv2) = v21 + v22 + v23 = ~v 2 .

Also,

~v · ~w =
1

4

[
(~v + ~w)2 − (~v − ~w)2

]
=

1

4
[det(v̄ − w̄)− det(v̄ + w̄)] .
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(b) Using the properties of Pauli matrices, show that, for any matrix U ∈ SU(2),
the matrix

v̄′ = U v̄ U † ,

can be written in the form v̄′ = v′iσi, where

v′i = Ωij vj , Ωij =
1

2
Tr
[
σiUσjU

†] .
Hint. Any 2× 2 complex matrix M can be written as M = M01 +Miσi.

The 2× 2 matrix v̄′ can be written in the form

v̄′ = v′01 + v′iσi ,

where

v′0 =
1

2
Tr(v̄′) =

1

2
Tr(U v̄ U †) =

1

2
Tr(U † U v̄) =

1

2
Tr(v̄) = 0 .

Then v̄′ = v′iσi. Also, since Tr(σiσj) = 2δij, we have

v′i =
1

2
Tr(σi U v̄ U

†) =
1

2
Tr(σi U σj U

†) vj = Ωij vj .

(c) Show that Ω is an orthogonal transformation, i.e. if ~v ′ = Ω~v and ~w ′ = Ω~w,
then ~v ′ · ~w ′ = ~v · ~w.

From a direct computation, for any matrix ū = uiσi, and ū ′ = U ūU †, we have

det(ū ′) = det
(
U ūU †

)
= (detU︸ ︷︷ ︸

=1

) det(ū)(detU †︸ ︷︷ ︸
=1

) = det(ū) .

This gives

~v ′ · ~w ′ = 1

4
[det(v̄ ′ − w̄ ′)− det(v̄ ′ + w̄ ′)] =

1

4
[det(v̄ − w̄)− det(v̄ + w̄)] = ~v · ~w .
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