Symmetry in Particle Physics, Problem Sheet 2 [SOLUTIONS]

1. Show that a representation D of a Lie group is unitary if and only if the generators
X, are hermitian.

Let D(«) = exp(ic,X,). D is unitary if and only if
D7 () = exp(—ia,X,) = D'(a) = exp(—ic, X)) .
Since this holds for any value of «, it is possible if and only if X, = X].
2. Consider the elements of an algebra X,, with commutator
(X, Xo) =7 fape Xe

Show that if this algebra generates a unitary representation, then the structure con-
stants fu. are real.

From a direct computation
([Xo, Xo)T = [X[, X]] = =i f,. X

However, if the X,’s generate a unitary representation, then X] = X,. Using com-
mutation rules, we have

[X11L7X;L] - [XbaXa} - _[XaaXb] =—1 fabc Xc .

Comparing with the result of the direct computation, we get

[XZLXJ] = —1 fape Xe = —1 ;chc — f;bc = fabe -

3. Analytic functions of operators (matrices) A are defined via their Taylor expansion
about A = 0. Consider the function

9(x) = exp(zA) B exp(—zA),
where x is real and A, B are operators.

(a) Compute the derivatives d"g(x)/dz™ for integer n, and simplify the result using
the convention [A, B] = AB — BA.

From a direct computation we get

d
e exp(zA) = A exp(zA) = exp(zA) A.



This suggests the following ansatz

PIE) _ p (@A) [AL[A, ... [AB]...]] exp(—zA).
dxm™ N——
n times
The latter equality can be shown by induction. For n =1 we have

dgl(;) = exp(vA)(AB — BA) exp(—zA) = exp(zA)[A, B] exp(—zA).

Assuming the statement is true for n, we show that it holds for n+ 1. In fact
d"g(z)  d d'g(x) d

e e Bl exp(zA) [A,[A,....[A, B]...]] exp(—zA)
=exp(zA)A[A,[A, ... [A B]...]] exp(—zA)
times
—exp(zA)[A,[A, ... [A, B]...]]A exp(—zA)
times
=exp(zA) [A,[A,...,[A, B]...]] exp(—zA)
1 times

(b) Using the result of part (a), show that

e*Be =B+ [A,B] + %[A, [A, B]] + %[A, [A,[A, B]]] + ...

o0

€AB€_A _ g(1> _ Z i dng(x)

n!  dxm
n=0

0:Z%[A,[A,...,[A,B]...]],

n times

r=

which s exactly what we need to show.

4. We want to prove the Baker-Campbell-Hausdorff formula in a situation where the
operators (matrices) A, B have the property [A, [A4, B]] =0 = [B, [4, B]].
(a) Show that [A", B] = nA" ![A, B] for integer n > 1.

We prove the statement by induction. It is true for n = 1. Assuming it is valid
for n, we prove it for n+ 1. In fact

[An+17B] :An+1B_BAn+1:AATLB_BA”A:A[ATL’B]+[A;B]A”

Since [A,[A,B]] = 0, we have [A, B| A" = A"[A, B]. This gives, using the
mduction hypothesis

[A™L B] = A"'B — BA"™! = A(A"B — BA") + AB A® — BAA"
— A[A", B] +[A, BJA" = (A(nA™") + A") [A, B] = (n+ 1)A"[A, B] .



(b) Use the above to show that, for analytic functions f(x),
[f(A), B] = f'(A)[A, B].

Using the Taylor expansion of f(A), we get

FA) =D fa A"
n=0
This, and the linearity of the commutator, implies

[f(A)7 B} = an [Anv B] = an(nAn_l) [Av B] = f,(A) [AvB] .

Show then that, if x is a c-number (i.e. a real or complex number), we have
[B,exp(—Az)| = exp(—Azx)[A, Blx.
From a direct computation, defining f(A) = exp(—Azx), we have

[B,exp(—Az)] = —[exp(—Az), B] = —(—x) exp(—Ax) [A, B] = exp(—Az)[A, B]z.

(c¢) Consider the function f(z) = exp(zA)exp(zB) and, using the result of part
(b), show that it obeys the differential equation

df (x)
dx

=(A+ B+ [A B]x) f(x).

Differentiating f(x) we get

df ()
dx

=Af(x)+ f(z)B.

Let us concentrate on the latter term:

f(z)B = exp(zA) exp(xB)B = exp(xA)Bexp(—zA) exp(rA) exp(zB)
= Bf(2) + exp(zA)[B, exp(=zA)] f ().

Using the result of part (b) we get
[B> GXp(—fL’A)] = mexp(—xA)[A, B] )

which leads immediately to the desired equation.



Compute f(x) by solving the above equation with an appropriate initial con-
dition, and use the result to deduce the Baker-Campbell-Hausdorff formula for

this case, i.e.

1
eAeB — A+B[AB]

Note: f(x) is not in general invertible, so the equation has to be solved using
an ansatz.
Let us take as initial condition f(0) = 1. Then

2

f(z) = exp((A + B)z + %[A, B))

18 the solution of the differential equation with the appropriate initial condition.

This gives
F(1) = 6A+B+%[A,B] _ eA—&-Be%[A,B} :

where the last equality holds because [A, B] commutes with both A and B.

5. Compute the dimension of the group SU(N).
The number of real parameter in any N x N complex matriz is 2N2.

Each M € SU(N) satisfies MM' = 1. This involves N real constraints on the
diagonal of the identity matriz (each corresponding to constraining the magnitude of
a complex number) and 2N (N —1)/2 = N?—N real constraints from the off-diagonal
terms (the remaining off-diagonal terms can be obtained by complex conjugation, so
they do not give rise to addional constraints).

The condition det M = 1 gives another constraint. In total, the number of real

parameters minus the number of constraints is 2N?>—N? —1 = N?—1.

6. Consider the Pauli matrices

01 0 —i 1 0
1=\ 1 0)%2" i 0o )3 Vo -1 )

(a) Using the conventions [A, B] = AB — BA, {A, B} = AB + BA, show that the
matrices - are a two-dimensional representation of the SU(2) algebra,

Ok

[O‘i 0;
2 7

23] -

and €123 = +1. Show also that
70) %,
{ 272 2

with o¢ = ( (1) (1) ) denoting the two-dimensional identity matrix.

4



From a direct computation
(i 0 (= 0
0109 = 0 —i 3 09201 — 0 i .

01, 09] = 203, {01,002} =0.

This gives

Similar computations for the other matrices lead to

[0-27 0-3] = 2i01 ) {0-27 03} =0.

o3, 01] = 2i09, {o3,01} =0.

Since 0? = 1, we have obtained all the requested relations.

(b) Consider the SU(2) group element G = exp(46303) with parameter 3. Show
by explicit computation that

From the anticommutation relations of part (a) we have

2n __ 2n+1 _
o3 =1, o3 =03.

It makes sense to separate even and odd powers of o3 in the expansion of G, as
follows

n=0
_ - _1)n 05 o 2n -OO (_1)n 03 2 2n+1
_; (2n)! <2> &?;1/+Zn2:;(2n+1)! 2 N
= =03
[e’e} n 2n [ee) n 2n-+1
=3 OO () iy 3o 0 ()
< (2n)! \ 2 T (2n 4 1)\ 2
:coszr93 /2) :sinzgg /2)

=09 - cos(63/2) +iog -sin(f3/2).

(c) A general SU(2) group element is written as G = exp(%@kak) with parameters
0. Show, either by explicit computation or with the help of part (b) and
symmetry arguments, that

exp (%Jk) — 0 - cos(0/2) + i (Oro) - sin(0/2) .

bt



Here, 0 = 0),/0 is the unit vector in the #;-direction, and 0 = |4].

The proposed solution uses an explicit computation. Using the anticommutation
relations of the Pauli matrices

1
(Hkak)2 = (Qiai)(ejaj) = Qinaiaj = éﬁzﬂj{oi, O'j} = GZQJ(SU = 92 .
This gives

o (0) - S5 (O e Sy () e

= 0¢ - cos(0/2) + i (0,0 - sin(0/2) .

Perform the above group transformation using # = 27 and 6 = 4, respectively.
What does this tell us about the relation between SU(2) and SO(3)?

From a direct computation

. 2 A A

exp (%ak) = cos(m) + i (Oroy) - sin(m) = —oo,
. 4 A A

exp (%ak) = cos(2m) + i (O0oy) - sin(27) = 0 .

This tells us that, in spite of the fact that the Lie algebras of SU(2) and SO(3)
are isomorphic, the two groups cannot have the same representations. In fact, a
rotation of 27, which belongs to the fundamental representation of SO(3), is the
identity, and so has to be in any representation of SO(3). We have just found
a representation of SU(2) for which this is not the case.

7. The spin-1 representation of SU(2) with generators 14,75, T5 satisfying [T;,Tj] =
i €1} reads

0

1

Ti=— 0
1 \/i o

o = O
_ o =

1
y T3: 0
0

o~ o
[N}
[
-~
o oo

Consider the corresponding SU(2) group element €2(6;) = exp(if);T;) with parameters
0; i =1,2,3. Here 0; = 0,/|0] is the unit vector in the #;-direction, and 6 = |0|.

(a) Show with a direct computation, or with symmetry arguments, that the matrix
0; T; must have eigenvalues £1 and 0.

Since the choice of the 3-axis is arbitrary, we can choose to set it along the

direction é, and therefore 0, T; becomes the matriz T3, hence its eigenvalues are
+1 and 0.



(b) Use the result of part (a) to show that the square (6; T})? is a projection operator
(i.e. (6; T))* = (6; T)?) and
(0:T,)° = 0,T;.
From part (a) we know that there exists a basis in which 0; T; has the same form
as Ts. Hence the two properties follow from a direct calculation in that basis.
Show then that €2(6;) is the 3 x 3 matrix

Q0;) =1 +i (6,T;) -sin @ + (,T3)* - (cos§ — 1),

where 1 is the 3-dimensional identity matrix.

In the series expansion of (6;), we divide odd and even powers ofé,»TZ- as follows

n=0
> 0) 2n+1
=11+Z 0T2”+Z 6T)2”+1
n=t —(6; T)2 —6,T;
> 9211 é T ) > 02n+1 é T
—1+) (-1 DS (-1 (0T,
# 3D G O+ G 0
:C(:SrE'—l :;'1?10

which is what we needed to show.

. Given a three- dimensional vector U = (v1,vq,v3), we construct the 2 X 2 matrix

v = v;0;, with 0;,7 = 1,2, 3 the three Pauli matrices, as follows
_ < Vs V1 — iUg )
U= .
VU1 + 109 —V3
(a) Show that v? = —det(v). Then show that, for any two vectors ¢ and 0,
1

- = 1 [det(v — w) — det(v + w)] .

From a direct computation
—det(v) = v3 4 (vy — 1va) (v + ivy) = V3 + V3 + V5 =2,

Also,

(T4 @)? — (7 — @)*] = = [det(v — w) — det(v + )] .



(b) Using the properties of Pauli matrices, show that, for any matrix U € SU(2),
the matrix

7=UsU",

can be written in the form ¢ = vjo;, where
i=Q 0, = » f
Ui = 34y Uj, ij = §T1" [O'iUUjU } .

Hint. Any 2 x 2 complex matrix M can be written as M = Myl + M;o;.
The 2 x 2 matriz v' can be written in the form

—/ / /
v = vyl + v;0;,

where 1 1 1 1
vy = 5 Tr(@) = S Tr(Uw Uty = 5Tr(UT Uv) = 5Tr(v) =0.

Then v' = vo;. Also, since Tr(o;0;) = 20;;, we have

1 1
v = §Tr(aiU@UT) = §T1”(Uz‘UUj UT)”J’ = Q05

(c) Show that € is an orthogonal transformation, i.e. if ¢/ = Q¢ and @’ = Qi

—

then ¢/ - W' = ¥ - 0.

From a direct computation, for any matriz i = w;0;, and @' = UaUT, we have

det(a) = det (UaU") = (det U) det (@) (det U') = det(a).

=1 =1

This gives

1 1
WwﬂzZ@ﬂﬁ—m@—@ﬂﬁ+wﬂ:ZMa@—wywm@+wﬂ:fw.



