Symmetry in Particle Physics, Problem Sheet 2 [SOLUTIONS]

1. Show that a representation D of a Lie group is unitary if and only if the generators X_{a} are hermitian.
Let $D(\alpha)=\exp \left(i \alpha_{a} X_{a}\right) . D$ is unitary if and only if

$$
D^{-1}(\alpha)=\exp \left(-i \alpha_{a} X_{a}\right)=D^{\dagger}(\alpha)=\exp \left(-i \alpha_{a} X_{a}^{\dagger}\right)
$$

Since this holds for any value of α, it is possible if and only if $X_{a}=X_{a}^{\dagger}$.
2. Consider the elements of an algebra X_{a}, with commutator

$$
\left[X_{a}, X_{b}\right]=i f_{a b c} X_{c}
$$

Show that if this algebra generates a unitary representation, then the structure constants $f_{a b c}$ are real.
From a direct computation

$$
\left(\left[X_{a}, X_{b}\right]\right)^{\dagger}=\left[X_{b}^{\dagger}, X_{a}^{\dagger}\right]=-i f_{a b c}^{*} X_{c}^{\dagger} .
$$

However, if the X_{a} 's generate a unitary representation, then $X_{a}^{\dagger}=X_{a}$. Using commutation rules, we have

$$
\left[X_{b}^{\dagger}, X_{a}^{\dagger}\right]=\left[X_{b}, X_{a}\right]=-\left[X_{a}, X_{b}\right]=-i f_{a b c} X_{c}
$$

Comparing with the result of the direct computation, we get

$$
\left[X_{b}^{\dagger}, X_{a}^{\dagger}\right]=-i f_{a b c} X_{c}=-i f_{a b c}^{*} X_{c} \Longrightarrow f_{a b c}^{*}=f_{a b c}
$$

3. Analytic functions of operators (matrices) A are defined via their Taylor expansion about $A=0$. Consider the function

$$
g(x)=\exp (x A) B \exp (-x A),
$$

where x is real and A, B are operators.
(a) Compute the derivatives $d^{n} g(x) / d x^{n}$ for integer n, and simplify the result using the convention $[A, B]=A B-B A$.
From a direct computation we get

$$
\frac{d}{d x} \exp (x A)=A \exp (x A)=\exp (x A) A
$$

This suggests the following ansatz

$$
\frac{d^{n} g(x)}{d x^{n}}=\exp (x A) \underbrace{[A,[A, \ldots,[A}_{n \text { times }}, B] \ldots]] \exp (-x A)
$$

The latter equality can be shown by induction. For $n=1$ we have

$$
\frac{d g(x)}{d x}=\exp (x A)(A B-B A) \exp (-x A)=\exp (x A)[A, B] \exp (-x A)
$$

Assuming the statement is true for n, we show that it holds for $n+1$. In fact

$$
\begin{aligned}
\frac{d^{n+1} g(x)}{d x^{n+1}} & =\frac{d}{d x} \frac{d^{n} g(x)}{d x^{n}}=\frac{d}{d x} \exp (x A) \underbrace{[A,[A, \ldots,[A}_{n \text { times }}, B] \ldots]] \exp (-x A) \\
& =\exp (x A) A \underbrace{[A,[A, \ldots,[A}_{n \text { times }}, B] \ldots]] \exp (-x A) \\
& -\exp (x A) \underbrace{[A,[A, \ldots,[A}_{n \text { times }}, B] \ldots]] A \exp (-x A) \\
& =\exp (x A) \underbrace{[A,[A, \ldots,[A}_{n+1 \text { times }}, B] \ldots]] \exp (-x A)
\end{aligned}
$$

(b) Using the result of part (a), show that

$$
\begin{gathered}
e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\frac{1}{3!}[A,[A,[A, B]]]+\ldots \\
e^{A} B e^{-A}=g(1)=\left.\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n} g(x)}{d x^{n}}\right|_{x=0}=\sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{[A,[A, \ldots,[A}_{n \text { times }}, B] \ldots]],
\end{gathered}
$$

which is exactly what we need to show.
4. We want to prove the Baker-Campbell-Hausdorff formula in a situation where the operators (matrices) A, B have the property $[A,[A, B]]=0=[B,[A, B]]$.
(a) Show that $\left[A^{n}, B\right]=n A^{n-1}[A, B]$ for integer $n \geq 1$.

We prove the statement by induction. It is true for $n=1$. Assuming it is valid for n, we prove it for $n+1$. In fact

$$
\left[A^{n+1}, B\right]=A^{n+1} B-B A^{n+1}=A A^{n} B-B A^{n} A=A\left[A^{n}, B\right]+[A, B] A^{n}
$$

Since $[A,[A, B]]=0$, we have $[A, B] A^{n}=A^{n}[A, B]$. This gives, using the induction hypothesis

$$
\begin{aligned}
{\left[A^{n+1}, B\right] } & =A^{n+1} B-B A^{n+1}=A\left(A^{n} B-B A^{n}\right)+A B A^{n}-B A A^{n} \\
& =A\left[A^{n}, B\right]+[A, B] A^{n}=\left(A\left(n A^{n-1}\right)+A^{n}\right)[A, B]=(n+1) A^{n}[A, B]
\end{aligned}
$$

(b) Use the above to show that, for analytic functions $f(x)$,

$$
[f(A), B]=f^{\prime}(A)[A, B]
$$

Using the Taylor expansion of $f(A)$, we get

$$
f(A)=\sum_{n=0}^{\infty} f_{n} A^{n}
$$

This, and the linearity of the commutator, implies

$$
[f(A), B]=\sum_{n=0}^{\infty} f_{n}\left[A^{n}, B\right]=\sum_{n=0}^{\infty} f_{n}\left(n A^{n-1}\right)[A, B]=f^{\prime}(A)[A, B]
$$

Show then that, if x is a c-number (i.e. a real or complex number), we have

$$
[B, \exp (-A x)]=\exp (-A x)[A, B] x
$$

From a direct computation, defining $f(A) \equiv \exp (-A x)$, we have

$$
[B, \exp (-A x)]=-[\exp (-A x), B]=-(-x) \exp (-A x)[A, B]=\exp (-A x)[A, B] x
$$

(c) Consider the function $f(x)=\exp (x A) \exp (x B)$ and, using the result of part (b), show that it obeys the differential equation

$$
\frac{d f(x)}{d x}=(A+B+[A, B] x) f(x)
$$

Differentiating $f(x)$ we get

$$
\frac{d f(x)}{d x}=A f(x)+f(x) B
$$

Let us concentrate on the latter term:

$$
\begin{aligned}
f(x) B & =\exp (x A) \exp (x B) B=\exp (x A) B \exp (-x A) \exp (x A) \exp (x B) \\
& =B f(x)+\exp (x A)[B, \exp (-x A)] f(x)
\end{aligned}
$$

Using the result of part (b) we get

$$
[B, \exp (-x A)]=x \exp (-x A)[A, B]
$$

which leads immediately to the desired equation.

Compute $f(x)$ by solving the above equation with an appropriate initial condition, and use the result to deduce the Baker-Campbell-Hausdorff formula for this case, i.e.

$$
e^{A} e^{B}=e^{A+B} e^{\frac{1}{2}[A, B]}
$$

Note: $f(x)$ is not in general invertible, so the equation has to be solved using an ansatz.
Let us take as initial condition $f(0)=1$. Then

$$
f(x)=\exp \left((A+B) x+\frac{x^{2}}{2}[A, B]\right)
$$

is the solution of the differential equation with the appropriate initial condition. This gives

$$
f(1)=e^{A+B+\frac{1}{2}[A, B]}=e^{A+B} e^{\frac{1}{2}[A, B]}
$$

where the last equality holds because $[A, B]$ commutes with both A and B.
5. Compute the dimension of the group $S U(N)$.

The number of real parameter in any $N \times N$ complex matrix is $2 N^{2}$.
Each $M \in S U(N)$ satisfies $M M^{\dagger}=\mathbb{1}$. This involves N real constraints on the diagonal of the identity matrix (each corresponding to constraining the magnitude of a complex number) and $2 N(N-1) / 2=N^{2}-N$ real constraints from the off-diagonal terms (the remaining off-diagonal terms can be obtained by complex conjugation, so they do not give rise to addional constraints).
The condition $\operatorname{det} M=1$ gives another constraint. In total, the number of real parameters minus the number of constraints is $2 N^{2}-N^{2}-1=N^{2}-1$.
6. Consider the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Using the conventions $[A, B]=A B-B A,\{A, B\}=A B+B A$, show that the matrices $\frac{\sigma_{i}}{2}$ are a two-dimensional representation of the $S U(2)$ algebra,

$$
\left[\frac{\sigma_{i}}{2}, \frac{\sigma_{j}}{2}\right]=i \epsilon_{i j k} \frac{\sigma_{k}}{2},
$$

and $\epsilon_{123}=+1$. Show also that

$$
\left\{\frac{\sigma_{i}}{2}, \frac{\sigma_{j}}{2}\right\}=\frac{\sigma_{0}}{2} \delta_{i j}
$$

with $\sigma_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ denoting the two-dimensional identity matrix.

From a direct computation

$$
\sigma_{1} \sigma_{2}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad \sigma_{2} \sigma_{1}=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)
$$

This gives

$$
\left[\sigma_{1}, \sigma_{2}\right]=2 i \sigma_{3}, \quad\left\{\sigma_{1}, \sigma_{2}\right\}=0
$$

Similar computations for the other matrices lead to

$$
\begin{array}{ll}
{\left[\sigma_{2}, \sigma_{3}\right]=2 i \sigma_{1},} & \left\{\sigma_{2}, \sigma_{3}\right\}=0 . \\
{\left[\sigma_{3}, \sigma_{1}\right]=2 i \sigma_{2},} & \left\{\sigma_{3}, \sigma_{1}\right\}=0 .
\end{array}
$$

Since $\sigma_{i}^{2}=1$, we have obtained all the requested relations.
(b) Consider the $S U(2)$ group element $G=\exp \left(\frac{i}{2} \theta_{3} \sigma_{3}\right)$ with parameter θ_{3}. Show by explicit computation that

$$
\exp \left(\frac{i \theta_{3}}{2} \sigma_{3}\right)=\sigma_{0} \cdot \cos \left(\theta_{3} / 2\right)+i \sigma_{3} \cdot \sin \left(\theta_{3} / 2\right)
$$

From the anticommutation relations of part (a) we have

$$
\sigma_{3}^{2 n}=1, \quad \sigma_{3}^{2 n+1}=\sigma_{3}
$$

It makes sense to separate even and odd powers of σ_{3} in the expansion of G, as follows

$$
\begin{aligned}
G & =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{i}{2} \theta_{3}\right)^{n} \sigma_{3}^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{\theta_{3}}{2}\right)^{2 n} \underbrace{\sigma_{3}^{2 n}}_{=1}+i \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\frac{\theta_{3}}{2}\right)^{2 n+1} \underbrace{\sigma_{3}^{2 n+1}}_{=\sigma_{3}} \\
& =\underbrace{\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{\theta_{3}}{2}\right)^{2 n}}_{=\cos \left(\theta_{3} / 2\right)}+i \sigma_{3} \underbrace{\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\frac{\theta_{3}}{2}\right)^{2 n+1}}_{=\sin \left(\theta_{3} / 2\right)} \\
& =\sigma_{0} \cdot \cos \left(\theta_{3} / 2\right)+i \sigma_{3} \cdot \sin \left(\theta_{3} / 2\right) .
\end{aligned}
$$

(c) A general $S U(2)$ group element is written as $G=\exp \left(\frac{i}{2} \theta_{k} \sigma_{k}\right)$ with parameters θ_{k}. Show, either by explicit computation or with the help of part (b) and symmetry arguments, that

$$
\exp \left(\frac{i \theta_{k}}{2} \sigma_{k}\right)=\sigma_{0} \cdot \cos (\theta / 2)+i\left(\hat{\theta}_{k} \sigma_{k}\right) \cdot \sin (\theta / 2)
$$

Here, $\hat{\theta}_{k}=\theta_{k} / \theta$ is the unit vector in the θ_{k}-direction, and $\theta \equiv|\theta|$.
The proposed solution uses an explicit computation. Using the anticommutation relations of the Pauli matrices

$$
\left(\theta_{k} \sigma_{k}\right)^{2}=\left(\theta_{i} \sigma_{i}\right)\left(\theta_{j} \sigma_{j}\right)=\theta_{i} \theta_{j} \sigma_{i} \sigma_{j}=\frac{1}{2} \theta_{i} \theta_{j}\left\{\sigma_{i}, \sigma_{j}\right\}=\theta_{i} \theta_{j} \delta_{i j}=\theta^{2}
$$

This gives

$$
\begin{aligned}
\exp \left(\frac{i \theta_{k}}{2} \sigma_{k}\right) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{\theta}{2}\right)^{2 n} \underbrace{\left(\hat{\theta}_{k} \sigma_{k}\right)^{2 n}}_{=1}+i \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\frac{\theta}{2}\right)^{2 n+1} \underbrace{\left(\hat{\theta}_{k} \sigma_{k}\right)^{2 n+1}}_{=\hat{\theta}_{k} \sigma_{k}} \\
& =\sigma_{0} \cdot \cos (\theta / 2)+i\left(\hat{\theta}_{k} \sigma_{k}\right) \cdot \sin (\theta / 2) .
\end{aligned}
$$

Perform the above group transformation using $\theta=2 \pi$ and $\theta=4 \pi$, respectively. What does this tell us about the relation between $S U(2)$ and $S O(3)$?
From a direct computation

$$
\begin{aligned}
& \exp \left(\frac{i(2 \pi) \hat{\theta}_{k}}{2} \sigma_{k}\right)=\cos (\pi)+i\left(\hat{\theta}_{k} \sigma_{k}\right) \cdot \sin (\pi)=-\sigma_{0} \\
& \exp \left(\frac{i(4 \pi) \hat{\theta}_{k}}{2} \sigma_{k}\right)=\cos (2 \pi)+i\left(\hat{\theta}_{k} \sigma_{k}\right) \cdot \sin (2 \pi)=\sigma_{0}
\end{aligned}
$$

This tells us that, in spite of the fact that the Lie algebras of $S U(2)$ and $S O(3)$ are isomorphic, the two groups cannot have the same representations. In fact, a rotation of 2π, which belongs to the fundamental representation of $S O(3)$, is the identity, and so has to be in any representation of $S O(3)$. We have just found a representation of $S U(2)$ for which this is not the case.
7. The spin-1 representation of $S U(2)$ with generators T_{1}, T_{2}, T_{3} satisfying $\left[T_{i}, T_{j}\right]=$ $i \epsilon_{i j k} T_{k}$ reads

$$
T_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad T_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \quad T_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Consider the corresponding $S U(2)$ group element $\Omega\left(\theta_{i}\right)=\exp \left(i \theta_{i} T_{i}\right)$ with parameters $\theta_{i} i=1,2,3$. Here $\hat{\theta}_{i}=\theta_{i} /|\theta|$ is the unit vector in the θ_{i}-direction, and $\theta \equiv|\theta|$.
(a) Show with a direct computation, or with symmetry arguments, that the matrix $\hat{\theta}_{i} T_{i}$ must have eigenvalues ± 1 and 0 .
Since the choice of the 3-axis is arbitrary, we can choose to set it along the direction $\hat{\theta}$, and therefore $\hat{\theta}_{i} T_{i}$ becomes the matrix T_{3}, hence its eigenvalues are ± 1 and 0 .
(b) Use the result of part (a) to show that the square $\left(\hat{\theta}_{i} T_{i}\right)^{2}$ is a projection operator (i.e. $\left.\left(\hat{\theta}_{i} T_{i}\right)^{4}=\left(\hat{\theta}_{i} T_{i}\right)^{2}\right)$ and

$$
\left(\hat{\theta}_{i} T_{i}\right)^{3}=\hat{\theta}_{i} T_{i} .
$$

From part (a) we know that there exists a basis in which $\hat{\theta}_{i} T_{i}$ has the same form as T_{3}. Hence the two properties follow from a direct calculation in that basis.
Show then that $\Omega\left(\theta_{i}\right)$ is the 3×3 matrix

$$
\Omega\left(\theta_{i}\right)=\mathbb{1}+i\left(\hat{\theta}_{i} T_{i}\right) \cdot \sin \theta+\left(\hat{\theta}_{i} T_{i}\right)^{2} \cdot(\cos \theta-1),
$$

where $\mathbb{1}$ is the 3 -dimensional identity matrix.
In the series expansion of $\Omega\left(\theta_{i}\right)$, we divide odd and even powers of $\hat{\theta}_{i} T_{i}$ as follows

$$
\begin{aligned}
\Omega\left(\theta_{i}\right) & =\sum_{n=0}^{\infty} \frac{\theta^{n}}{n!}\left(\hat{\theta}_{i} T_{i}\right)^{n} \\
& =\mathbb{1}+\sum_{n=1}^{\infty} \frac{(i \theta)^{2 n}}{(2 n)!} \underbrace{\left(\hat{\theta}_{i} T_{i}\right)^{2 n}}_{=\left(\hat{\theta}_{i} T_{i}\right)^{2}}+\sum_{n=0}^{\infty} \frac{(i \theta)^{2 n+1}}{(2 n+1)!} \underbrace{\left(\hat{\theta}_{i} T_{i}\right)^{2 n+1}}_{=\hat{\theta}_{i} T_{i}} \\
& =\mathbb{1}+\underbrace{\sum_{n=1}^{\infty}(-1)^{n} \frac{\theta^{2 n}}{(2 n)!}}_{=\cos \theta-1}\left(\hat{\theta}_{i} T_{i}\right)^{2}+i \underbrace{\sum_{n=0}^{\infty}(-1)^{n} \frac{\theta^{2 n+1}}{(2 n+1)!}}_{=\sin \theta}\left(\hat{\theta}_{i} T_{i}\right),
\end{aligned}
$$

which is what we needed to show.
8. Given a three-dimensional vector $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$, we construct the 2×2 matrix $\bar{v}=v_{i} \sigma_{i}$, with $\sigma_{i}, i=1,2,3$ the three Pauli matrices, as follows

$$
\bar{v}=\left(\begin{array}{cc}
v_{3} & v_{1}-i v_{2} \\
v_{1}+i v_{2} & -v_{3}
\end{array}\right)
$$

(a) Show that $\vec{v}^{2}=-\operatorname{det}(\bar{v})$. Then show that, for any two vectors \vec{v} and \vec{w},

$$
\vec{v} \cdot \vec{w}=\frac{1}{4}[\operatorname{det}(\bar{v}-\bar{w})-\operatorname{det}(\bar{v}+\bar{w})] .
$$

From a direct computation

$$
-\operatorname{det}(\bar{v})=v_{3}^{2}+\left(v_{1}-i v_{2}\right)\left(v_{1}+i v_{2}\right)=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=\vec{v}^{2} .
$$

Also,

$$
\vec{v} \cdot \vec{w}=\frac{1}{4}\left[(\vec{v}+\vec{w})^{2}-(\vec{v}-\vec{w})^{2}\right]=\frac{1}{4}[\operatorname{det}(\bar{v}-\bar{w})-\operatorname{det}(\bar{v}+\bar{w})] .
$$

(b) Using the properties of Pauli matrices, show that, for any matrix $U \in S U(2)$, the matrix

$$
\bar{v}^{\prime}=U \bar{v} U^{\dagger},
$$

can be written in the form $\bar{v}^{\prime}=v_{i}^{\prime} \sigma_{i}$, where

$$
v_{i}^{\prime}=\Omega_{i j} v_{j}, \quad \Omega_{i j}=\frac{1}{2} \operatorname{Tr}\left[\sigma_{i} U \sigma_{j} U^{\dagger}\right]
$$

Hint. Any 2×2 complex matrix M can be written as $M=M_{0} \mathbb{1}+M_{i} \sigma_{i}$.
The 2×2 matrix \bar{v}^{\prime} can be written in the form

$$
\bar{v}^{\prime}=v_{0}^{\prime} \mathbb{1}+v_{i}^{\prime} \sigma_{i},
$$

where

$$
v_{0}^{\prime}=\frac{1}{2} \operatorname{Tr}\left(\bar{v}^{\prime}\right)=\frac{1}{2} \operatorname{Tr}\left(U \bar{v} U^{\dagger}\right)=\frac{1}{2} \operatorname{Tr}\left(U^{\dagger} U \bar{v}\right)=\frac{1}{2} \operatorname{Tr}(\bar{v})=0 .
$$

Then $\bar{v}^{\prime}=v_{i}^{\prime} \sigma_{i}$. Also, since $\operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j}$, we have

$$
v_{i}^{\prime}=\frac{1}{2} \operatorname{Tr}\left(\sigma_{i} U \bar{v} U^{\dagger}\right)=\frac{1}{2} \operatorname{Tr}\left(\sigma_{i} U \sigma_{j} U^{\dagger}\right) v_{j}=\Omega_{i j} v_{j} .
$$

(c) Show that Ω is an orthogonal transformation, i.e. if $\vec{v}^{\prime}=\Omega \vec{v}$ and $\vec{w}^{\prime}=\Omega \vec{w}$, then $\vec{v}^{\prime} \cdot \vec{w}^{\prime}=\vec{v} \cdot \vec{w}$.
From a direct computation, for any matrix $\bar{u}=u_{i} \sigma_{i}$, and $\bar{u}^{\prime}=U \bar{u} U^{\dagger}$, we have

$$
\operatorname{det}\left(\bar{u}^{\prime}\right)=\operatorname{det}\left(U \bar{u} U^{\dagger}\right)=(\underbrace{\operatorname{det} U}_{=1}) \operatorname{det}(\bar{u})(\underbrace{\operatorname{det} U^{\dagger}}_{=1})=\operatorname{det}(\bar{u}) .
$$

This gives
$\vec{v}^{\prime} \cdot \vec{w}^{\prime}=\frac{1}{4}\left[\operatorname{det}\left(\bar{v}^{\prime}-\bar{w}^{\prime}\right)-\operatorname{det}\left(\bar{v}^{\prime}+\bar{w}^{\prime}\right)\right]=\frac{1}{4}[\operatorname{det}(\bar{v}-\bar{w})-\operatorname{det}(\bar{v}+\bar{w})]=\vec{v} \cdot \vec{w}$.

