
Symmetry in Particle Physics, Problem Sheet 10 [SOLUTIONS]

1. Consider the following Lagrangian for a real scalar field φ and a Dirac spinor ψ:

L =
1

2
(∂µφ)(∂µφ)− V (φ) + iψ̄γµ∂µψ − gφψ̄ψ , V (φ) ≡ 1

2
µ2φ2 +

λ

4
φ4 , λ > 0 ,

(a) Show that the Lagrangian is invariant under the transformation

φ→ −φ , ψ → iγ5ψ .

The part of the Lagrangian containing only the scalar field is invariant because
it is an even function of φ.

For the part that contains the fermions, we need first the transformation for ψ̄,
which is

ψ̄ = ψ†γ0 → (iγ5ψ)†γ0 = −iψ†γ5γ0 = iψ†γ0γ5 = iψ̄γ5 .

Therefore

ψ̄γµψ → (iψ̄γ5)γµ(iγ5ψ) = −i2ψ̄(γ5)2γµψ = ψ̄γµψ .

Similarly
φψ̄ψ → (−φ)(iψ̄γ5)(iγ5ψ) = φψ̄ψ .

(b) Ground state configurations for a scalar field are those who have the minimun
energy. As such, they have no kinetic energy and minimise the potential. Find
the ground state configurations φ0 for µ2 ≥ 0. What particles (spin and masses)
does the Lagrangian describe?

The ground state configurations are those that minimise the potential. For µ2 ≥
0 the potential is positive definite, hence the only minimum is for φ0 = 0.

The scalar field describes a particle of spin 0. From the quartic part of the
Lagrangian we read the mass squared of the particle which is µ2.

The part containing the Dirac field describes one massless Dirac particle, or
equivalently four massless particles, two with helicity 1/2, and two with helicity
-1/2.

Assume that µ2 < 0 and show that the ground state configurations obey

φ0 = ±v , with v ≡
√
−m

2

λ
.

We now set to zero the first derivative of the potential:

V ′(φ0) = m2φ0 + λφ3
0 = 0 ⇔ φ0 = 0,±

√
−m

2

λ
≡ ±v .
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Comparing the value of the potential for the two cases we get

V (v) =
v2

2

(
m2 +

λ

2
v2
)

= m2v
2

4
< 0 = V (0) .

Expand the scalar field φ around the vacuum configuration v as follows:

φ(x) = v + h(x) ,

where h(x) is a new scalar field. Rewrite the Lagrangian in terms of h(x). What
particles (spin and masses) does the theory describe in this case?

Since v is a constant ∂µh = ∂µφ, so the kinetic part of the Lagrangian for the
scalar field is ∂µh∂

µh/2.

The potential becomes

V (v + h) =
1

2
µ2(v + h)2 +

λ

4
(v + h)4 =

1

2
µ2v2 +

λ

4
v4︸ ︷︷ ︸

constant → drop

+
(
µ2 + λv

)︸ ︷︷ ︸
=0

h

+
1

2
(µ2 + 3λv2)︸ ︷︷ ︸

≡m2

h2 + λvh3 +
λ

4
h4 = const. + V (h) .

From the above expression we see that the Lagrangian describes a particle of spin
zero, with a mass squared

m2 = µ2 + 3λv2 = µ2 + 3λ

(
−µ

2

λ

)
= −2µ2 .

Consider now the part of the Lagrangian containing the Dirac field. Expanding
the field φ around v we obtain

L ⊃ −gvψ̄ψ

This a Dirac mass term with
mD = gv .

Therefore, the Lagrangian describes a Dirac fermion with mass mD.

Note that, in this case, the symmetry is spontaneously broken because the vac-
uum configuration is not invariant under the symmetry. Since the symmetry is
discrete, no massless scalars are expected.

2. Consider the following Lagrangian for a complex scalar field φ and a Dirac field ψ:

L = iψ̄γµ∂µψ + ∂µφ
∗∂µφ− V (φ∗φ)− g(φ ψ̄R ψL + φ∗ ψ̄L ψR) ,
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where ψL and ψR are the left- and right-handed components of ψ, defined by

ψL =
1

2
(1− γ5)ψ , ψR =

1

2
(1 + γ5)ψ ,

and

V (φ∗φ) = µ2φ∗φ+
λ

2
(φ∗φ)2

with λ > 0. The above Lagrangian is invariant under the global chiral transformation

ψR → eiαψR , ψL → e−iαψL , φ→ e2iαφ

(a) Consider the case µ2 ≥ 0. Show that the ground state of the theory corresponds
to the field configuration φ = 0. What particles (masses and spin) does this
theory describe?

The ground state corresponds to the configurations with the smallest energy,
hence those constant configurations such that the potential is at a minimum.

Since λ > 0 and µ2 ≥ 0, the potential is positive definite, hence its only minimum
is for φ = 0.

Looking at the quadratic part of the Lagrangian for the scalar field

L ⊃ (∂µφ
∗)(∂µφ)− µ2φ∗φ , ,

we see that it describes a particle of spin-0 and (tree-level) mass µ, and its
antiparticle.

The Lagrangian for the Dirac field describes a left-handed and a right-handed
massless particle of spin 1/2, as well as their antiparticles. Since the masses
are zero in both cases, the Lagrangian in fact describes two massless particles
with helicity 1/2, and two massless particles with helicity -1/2.

(b) Consider now the case µ2 < 0. What are the field configurations corresponding
to the ground state?

Taking the derivative of the potential with respect to φ we obtain

d

dφ
V (φ∗φ) = φ∗

(
µ2 + λ(φ∗φ)2

)
.

This is zero for

φ = 0 , |φ| =
√
−µ2

λ
.

However, φ = 0 is not the minimum of the potential, in fact

V (0) = 0 > V

(
−µ2

λ

)
= −µ

4

2λ
.

Therefore, there exists infinitely many vacuum configurations, those satisfying
|φ| =

√
−µ2/λ.
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(c) What particles (spin and masses) does the theory describe in the case µ2 < 0?

Hint. Write vacuum configurations φ0 in the form φ0 = eiα0v, with v ≥ 0.
Choose one of them, and expand the field around φ0, as follows

φ(x) =
eiα0

√
2

(v + h(x) + iχ(x)) .

We choose a vacuum configuration φ0 and expand the Lagrangian around that
configuration to find its quadratic part. For instance, choosing

φ0
1√
2

(v + h(x) + iχ(x)) =
√
−µ2/λ ≡ v√

2
=⇒ φ(x) =

1√
2

(v + h(x) + iχ(x))

we obtain, for the part containing φ,

L =
1

2
(∂µh− i∂µχ)(∂µh+ i∂µχ)− µ2

2

(
(v + h)2 + χ2

)
− λ

8

(
(v + h)2 + χ2

)2
=

1

2
∂µh∂

µh+
1

2
∂µχ∂

µχ− v
(
µ2 +

λv2

2

)
︸ ︷︷ ︸

=µ2−µ2=0

h− 1

2

(
µ2 +

3λ2v2

2

)
︸ ︷︷ ︸
µ2−3µ2=−2µ2

h2 − 1

2

(
µ2 +

λv2

2

)
︸ ︷︷ ︸

=µ2−µ2=0

χ2 + . . .

The above Lagrangian describes two particles of spin zero, one of mass m =√
−2µ2 and the other of mass zero.

We now consider the part of the Lagrangian containing the interaction between
the Dirac and the scalar field. Expanding the scalar field around its vacuum
configuration, we obtain

L ⊃ −g v√
2

( ψ̄L ψR + ψ̄R ψL) = −g v√
2
ψ̄ψ .

This is a Dirac mass term with mass

mD = g
v√
2
.

Therefore, the Lagrangian describes a massive Dirac fermion with mass mD.

Note that, in this case, chiral symmetry is broken because a chiral transforma-
tion transforms one vacuum configuration into another vacuum configuration.
Also, the fact that we have a massless boson of spin zero is expected in view
of Goldstone theorem, which states that for each generator of a spontaneously
broken continuous symmetry there exists a massless spin-0 boson.

3. Consider the following Lagrangian for two spinor fields ψ1, ψ2, and four scalar fields
σ, π1, π2, π3:

L = iψ̄γµ∂µψ +
1

2
(∂µσ)(∂µσ) +

1

2
(∂µ~π)(∂µ~π)− gψ̄

(
σ − i(~π · ~σ)γ5

)
ψ − V (σ2 + ~π2) ,

where we have introduced the doublet ψ ≡ (ψ1, ψ2)
T of spinor fields and the triplet

~π ≡ (π1, π2, π3)
T of scalar fields, and ~σ is a vector containing the three Pauli matrices.
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(a) Introduce the matrix

Σ ≡ σ + i~π · ~σ =

(
σ + iπ3 π1 − iπ2
π1 + iπ2 σ − iπ3

)
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