Symmetry in Particle Physics, Problem Sheet 1

1. Consider a group G. Then show the following:
(a) for any $a, b, c \in G$, if $a b=a c$, then $b=c$ (cancellation rule);
(b) the unit element is unique;
(c) the inverse of any group element is unique;
(d) $\left(g^{-1}\right)^{-1}=g$.
2. Consider a field $(\mathbb{K},+, \cdot)$ and let 0 be the unit of the + operation. Then show the following:
(a) for any $x \in \mathbb{K}$, we have $0 x=0$;
(b) for any $x, y \in \mathbb{K}, x \neq 0$ and $y \neq 0$ implies $x y \neq 0$;
(c) for any $x, y \in \mathbb{K}, x(-y)=(-x) y=-(x y)$.
(d) $(-x)(-y)=x y$.
3. Show that D is a representation of a group G into a vector space V if and only if $D\left(g_{1} g_{2}^{-1}\right)=D\left(g_{1}\right) D\left(g_{2}\right)^{-1}$.
4. Consider the following map $D: \mathbb{Z}_{3} \rightarrow G L(3, \mathbb{C})$ given by

$$
D(e)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad D(a)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad D(b)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Show that D is a representation of \mathbb{Z}_{3}.
5. Let V be a real vector space and g a scalar product. Let $\left\{e_{i}\right\}_{i=1,2, \ldots, n}$ be an orthornomal basis and let us define the matrix $g_{i j}=g\left(e_{i}, e_{j}\right)= \pm \delta_{i j}$. By construction, the matrix g is its own inverse, in fact $g^{2}=\mathbb{1}$.
(a) Consider a vector $u=u_{i} e_{i} \in V$. Show that $u_{i}=g_{i j} g\left(e_{j}, u\right)$.
(b) Let M be an orthogonal operator, and let us define the matrix $M_{i j}=g\left(e_{i}, M e_{j}\right)$. Show that

$$
M^{T} g M=g
$$

where g is the matrix whose components are the $g_{i j}$.
6. Let $\left(A^{\dagger}\right)_{i j}$ be the matrix associated to the adjoint of the operator A. Show that $\left(A^{\dagger}\right)_{i j}=A_{i j}^{*}$.
7. Let U be an anti-unitary operator. Show that $U^{\dagger}=U^{-1}$.

