Symmetry in Particle Physics, Problem Sheet 1, Solutions

1. Consider a group G. Then show the following:
(a) for any $a, b, c \in G$, if $a b=a c$, then $b=c$ (cancellation rule);

$$
b=1 \cdot b=a^{-1}(a b)=a^{-1}(a c)=c .
$$

(b) the unit element is unique;

Suppose there exists another unit e^{\prime}. Then, for any $g \in G$, we have

$$
g=e g=e^{\prime} g \Longrightarrow e=e^{\prime} .
$$

(c) the inverse of any group element is unique;

Consider an element g, with two inverses g^{-1} and $\left(g^{-1}\right)^{\prime}$. Then

$$
e=g g^{-1}=g\left(g^{-1}\right)^{\prime} \Longrightarrow g^{-1}=\left(g^{-1}\right)^{\prime}
$$

(d) $\left(g^{-1}\right)^{-1}=g$.

$$
e=\left(g^{-1}\right)^{-1} g^{-1}=g g^{-1} \Longrightarrow\left(g^{-1}\right)^{-1}=g .
$$

2. Consider a field $(\mathbb{K},+, \cdot)$ and let 0 be the unit of the + operation. Then show the following:
(a) for any $x \in \mathbb{K}$, we have $0 x=0$;

Using the fact that 0 is a unit, the distributive property and the cancellation rule, we get

$$
0 x+0=0 x=(0+0) x=0 x+0 x \Longrightarrow 0 x=0
$$

(b) for any $x, y \in \mathbb{K}, x \neq 0$ and $y \neq 0$ implies $x y \neq 0$;

Suppose $x y=0$. Then, since both x and y have inverses, we have

$$
0=\left(x^{-1} y^{-1}\right)(x y)=1
$$

But this is not possible because by construction $1 \neq 0$. Hence it must be $x y \neq 0$.
(c) for any $x, y \in \mathbb{K}, x(-y)=(-x) y=-(x y)$.

We need to show that $x(-y)+(x y)=0$. In fact

$$
x(-y)+(x y)=x(-y+y)=x 0=0 .
$$

Similarly

$$
(-x) y+(x y)=(-x+x) y=0 y=0 .
$$

(d) $(-x)(-y)=x y$.

Using the result of part (c), we find

$$
(-x)(-y)=-[x(-y)]=-[-(x y)]=x y
$$

3. Show that D is a representation of a group G into a vector space V if and only if $D\left(g_{1} g_{2}^{-1}\right)=D\left(g_{1}\right) D\left(g_{2}\right)^{-1}$.
If D is a representation of a group G, then $D\left(g^{-1}\right)=D(g)^{-1}$ for any $g \in G$. Also, for any $g_{1}, g_{2} \in G$

$$
D\left(g_{1} g_{2}^{-1}\right)=D\left(g_{1}\right) D\left(g_{2}^{-1}\right)=D\left(g_{1}\right) D\left(g_{2}\right)^{-1}
$$

Now we deal with the reversed implication. For any $g \in G$, we have

$$
D(e)=D\left(g g^{-1}\right)=D(g) D(g)^{-1}=\mathbb{1}
$$

Also, for any $g_{1}, g_{2} \in G$, we have

$$
D\left(g_{1} g_{2}\right)=D\left(g_{1}\left(g_{2}^{-1}\right)^{-1}\right)=D\left(g_{1}\right) D\left(g_{2}^{-1}\right)^{-1}=D\left(g_{1}\right)\left(D\left(g_{2}\right)^{-1}\right)^{-1}=D\left(g_{1}\right) D\left(g_{2}\right)
$$

4. Consider the following map $D: \mathbb{Z}_{3} \rightarrow G L(3, \mathbb{C})$ given by

$$
D(e)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad D(a)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad D(b)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Show that D is a representation of \mathbb{Z}_{3}.
By construction $D(e)=\mathbb{1}$. An explicit calculation gives $D(a) D(b)=\mathbb{1}$, which gives the multiplication table of \mathbb{Z}_{3}.
5. Let V be a real vector space and g a scalar product. Let $\left\{e_{i}\right\}_{i=1,2, \ldots, n}$ be an orthornomal basis and let us define the matrix $g_{i j}=g\left(e_{i}, e_{j}\right)= \pm \delta_{i j}$. By construction, the matrix g is its own inverse, in fact $g^{2}=\mathbb{1}$.
(a) Consider a vector $u=u_{i} e_{i} \in V$. Show that $u_{i}=g_{i j} g\left(e_{j}, u\right)$.

$$
u=u_{i} e_{i} \Longrightarrow g\left(e_{j}, u\right)=u_{k} g_{k j} \Longrightarrow g_{i j} g\left(e_{j}, u\right)=u_{k} g_{i j} g_{j k}=u_{k} \delta_{i k}=u_{i}
$$

(b) Let M be an orthogonal operator, and let us define the matrix $M_{i j}=g\left(e_{i}, M e_{j}\right)$. Show that

$$
M^{T} g M=g
$$

where g is the matrix whose components are the $g_{i j}$.
The statatement to prove is better understood by writing indexes separately.

$$
g_{k l} M_{k i} M_{l j}=g_{i j}
$$

Since M is orthogonal, $g\left(M e_{i}, M e_{j}\right)=g\left(e_{i}, e_{j}\right)=g_{i j}$. Using the result of part (a), we have

$$
M e_{i}=\left(M e_{i}\right)_{l} e_{l}=g_{k l} g\left(e_{k}, M e_{i}\right) e_{l}
$$

This gives, using the bilinearity of the scalar product,

$$
g\left(M e_{i}, M e_{j}\right)=g_{k l} g\left(e_{k}, M e_{i}\right) g\left(e_{l}, M e_{j}\right)=g_{k l} M_{k i} M_{l j}=g_{i j}
$$

which is what we needed to show.
6. Let $\left(A^{\dagger}\right)_{i j}$ be the matrix associated to the adjoint of the operator A. Show that $\left(A^{\dagger}\right)_{i j}=A_{i j}^{*}$.

$$
\left(A^{\dagger}\right)_{i j} \equiv\left\langle e_{i} \mid A^{\dagger} e_{j}\right\rangle=\left\langle A e_{i} \mid e_{j}\right\rangle=\left\langle e_{j} \mid A e_{i}\right\rangle^{*}=A_{i j}^{*} .
$$

7. Let U be an anti-unitary operator. Show that $U^{\dagger}=U^{-1}$.

For any v, w in a Hilbert space, the unitarity of U implies

$$
\langle U v \mid U w\rangle=\langle v \mid w\rangle^{*} .
$$

From the definition of the adjoint of an anti-unitary operator, we have

$$
\langle v \mid w\rangle^{*}=\langle U v \mid U w\rangle=\left\langle U^{\dagger} U v \mid w\right\rangle^{*} \Longrightarrow U^{\dagger} U=\mathbb{1}
$$

