
Symmetry in Particle Physics, Problem Sheet 1, Solutions

1. Consider a group G. Then show the following:

(a) for any a, b, c ∈ G, if ab = ac, then b = c (cancellation rule);

b = 1 · b = a−1(ab) = a−1(ac) = c .

(b) the unit element is unique;

Suppose there exists another unit e′. Then, for any g ∈ G, we have

g = eg = e′g =⇒ e = e′ .

(c) the inverse of any group element is unique;

Consider an element g, with two inverses g−1 and (g−1)′. Then

e = gg−1 = g(g−1)′ =⇒ g−1 = (g−1)′ .

(d) (g−1)−1 = g.
e = (g−1)−1g−1 = gg−1 =⇒ (g−1)−1 = g .

2. Consider a field (K,+, ·) and let 0 be the unit of the + operation. Then show the
following:

(a) for any x ∈ K, we have 0x = 0;

Using the fact that 0 is a unit, the distributive property and the cancellation
rule, we get

0x+ 0 = 0x = (0 + 0)x = 0x+ 0x =⇒ 0x = 0 .

(b) for any x, y ∈ K, x 6= 0 and y 6= 0 implies xy 6= 0;

Suppose xy = 0. Then, since both x and y have inverses, we have

0 = (x−1y−1)(xy) = 1 .

But this is not possible because by construction 1 6= 0. Hence it must be xy 6= 0.
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(c) for any x, y ∈ K, x(−y) = (−x)y = −(xy).

We need to show that x(−y) + (xy) = 0. In fact

x(−y) + (xy) = x(−y + y) = x0 = 0 .

Similarly
(−x)y + (xy) = (−x+ x)y = 0y = 0 .

(d) (−x)(−y) = xy.

Using the result of part (c), we find

(−x)(−y) = −[x(−y)] = −[−(xy)] = xy .

3. Show that D is a representation of a group G into a vector space V if and only if
D(g1g

−1
2 ) = D(g1)D(g2)

−1.

If D is a representation of a group G, then D(g−1) = D(g)−1 for any g ∈ G. Also,
for any g1, g2 ∈ G

D(g1g
−1
2 ) = D(g1)D(g−12 ) = D(g1)D(g2)

−1 .

Now we deal with the reversed implication. For any g ∈ G, we have

D(e) = D(gg−1) = D(g)D(g)−1 = 1 .

Also, for any g1, g2 ∈ G, we have

D(g1g2) = D
(
g1(g

−1
2 )−1

)
= D(g1)D(g−12 )−1 = D(g1)

(
D(g2)

−1)−1 = D(g1)D(g2) .

4. Consider the following map D : Z3 → GL(3,C) given by

D(e) =

 1 0 0
0 1 0
0 0 1

 , D(a) =

 0 0 1
1 0 0
0 1 0

 , D(b) =

 0 1 0
0 0 1
1 0 0

 .

Show that D is a representation of Z3.

By construction D(e) = 1. An explicit calculation gives D(a)D(b) = 1, which gives
the multiplication table of Z3.

5. Let V be a real vector space and g a scalar product. Let {ei}i=1,2,...,n be an or-
thornomal basis and let us define the matrix gij = g(ei, ej) = ±δij. By construction,
the matrix g is its own inverse, in fact g2 = 1.
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(a) Consider a vector u = uiei ∈ V . Show that ui = gijg(ej, u).

u = uiei =⇒ g(ej, u) = ukgkj =⇒ gijg(ej, u) = ukgijgjk = ukδik = ui .

(b) Let M be an orthogonal operator, and let us define the matrix Mij = g(ei,Mej).
Show that

MTgM = g .

where g is the matrix whose components are the gij.

The statatement to prove is better understood by writing indexes separately.

gklMkiMlj = gij ,

Since M is orthogonal, g(Mei,Mej) = g(ei, ej) = gij. Using the result of part
(a), we have

Mei = (Mei)lel = gklg(ek,Mei)el .

This gives, using the bilinearity of the scalar product,

g(Mei,Mej) = gklg(ek,Mei)g(el,Mej) = gklMkiMlj = gij ,

which is what we needed to show.

6. Let (A†)ij be the matrix associated to the adjoint of the operator A. Show that
(A†)ij = A∗ij.

(A†)ij ≡ 〈ei|A†ej〉 = 〈Aei|ej〉 = 〈ej|Aei〉∗ = A∗ij .

7. Let U be an anti-unitary operator. Show that U † = U−1.

For any v, w in a Hilbert space, the unitarity of U implies

〈Uv|Uw〉 = 〈v|w〉∗ .

From the definition of the adjoint of an anti-unitary operator, we have

〈v|w〉∗ = 〈Uv|Uw〉 = 〈U †Uv|w〉∗ =⇒ U †U = 1 .

3


