Symmetry in Particle Physics, Problem Sheet 1, Solutions

1. Consider a group G. Then show the following:
(a) for any a,b,c € G, if ab = ac, then b = ¢ (cancellation rule);

b=1-b=a"(ab) = a '(ac) = c.

(b) the unit element is unique;

Suppose there exists another unit €. Then, for any g € G, we have

g=eg=¢cg — e=¢".

(c) the inverse of any group element is unique;
Consider an element g, with two inverses g~* and (¢~'). Then

e=g9 '=g(g7") = g '=("").

(d) (¢ =g L

e=(g ) g =95 = () '=g.

2. Consider a field (K, +,-) and let 0 be the unit of the + operation. Then show the
following:

(a) for any = € KK, we have 0z = 0;

Using the fact that 0 is a unit, the distributive property and the cancellation
rule, we get

0z +0=0r=(0+0)z =02+ 0z = 0Oz =0.

(b) for any x,y € K, x # 0 and y # 0 implies zy # 0;

Suppose xy = 0. Then, since both x and y have inverses, we have

0=(z7"y )(ay) = 1.

But this is not possible because by construction 1 # 0. Hence it must be xy # 0.



(©) for any 2,y € K, o(—y) = (~z)y = —(zy).
We need to show that x(—y) + (xy) = 0. In fact

z(—y)+ (zy) =z(—y+y)=20=0.

Simalarly
(=2)y + (vy) = (—w +2)y =0y = 0.

(d) (=2)(-y) = y.
Using the result of part (c), we find

3. Show that D is a representation of a group G into a vector space V if and only if
D(g19;") = D(g1)D(g2)"".
If D is a representation of a group G, then D(g~') = D(g)~* for any g € G. Also,
for any g1, 92 € G

D(g195") = D(91)D(g5") = D(g1)D(g2) "

Now we deal with the reversed implication. For any g € G, we have

D(e) = D(g99~") = D(9)D(9)"" = 1.

Also, for any g1, 92 € G, we have

D(g192) = D (91(9:")™") = D(91)D(g5 ") " = D(gn) (D(g2)_1)71 = D(g1)D(g2) -
4. Consider the following map D : Z3 — GL(3,C) given by
1 00 0 01 010
Dey=[0o10], D@=|100)|, DB=[001
0 01 010 1 00

Show that D is a representation of Zs.
By construction D(e) = 1. An ezplicit calculation gives D(a)D(b) = 1, which gives
the multiplication table of Z.s.

5. Let V' be a real vector space and g a scalar product. Let {e;},—12, ., be an or-
thornomal basis and let us define the matrix g;; = g(e;, ;) = £0,;. By construction,
the matrix ¢ is its own inverse, in fact ¢ = 1.
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(a) Consider a vector u = u;e; € V. Show that u; = g;;9(ej, u).

u=ue; = glej,u) = urgr; = 9i;9(€;,u) = Urgijgjk = Urdir = Ui .

(b) Let M be an orthogonal operator, and let us define the matrix M;; = g(e;, Me;).
Show that

MTgM =g.
where g is the matrix whose components are the g;;.

The statatement to prove is better understood by writing indexes separately.
G My My = gij
Since M is orthogonal, g(Me;, Me;) = g(e;,e;) = gij. Using the result of part

(a), we have
Me; = (Me;)ier = grg(ex, Me;)e; .

This gives, using the bilinearity of the scalar product,
g(Me;, Mej) = gruglex, Me;)gler, Mej) = guMypiMi; = gij ,
which 1s what we needed to show.

6. Let (A");; be the matrix associated to the adjoint of the operator A. Show that
(A);; = Aj;.

(AN)i; = (ei] ATes) = (Aeslej) = (5] Aes)” = Ay

7. Let U be an anti-unitary operator. Show that UT = U1

For any v, w in a Hilbert space, the unitarity of U implies
(Uv|Uw) = (v|w)™.
From the definition of the adjoint of an anti-unitary operator, we have

(w|w)* = (Uv|Uw) = (UTUv|w)* = UU =1.



