Unified Composite Nature of Higgs and Dark Matter

Francesco Sannino

Cosmology & Particle Physics

Much ado for 5%

95% is unknown!

Richer than 5%? Most likely!

The Standard Model ado

Fields:

Gauge fields + fermions + scalars

Interactions:

Gauge: SU(3) x SU(2) x U(1) at EW scale

Yukawa: Fermion masses/Flavour

Culprit: Higgs

Scalar self-interaction

Two main issues

• EW scale stability

• UV triviality (Landau Pole)

The Compositeness Solution

• EW scale = Composite scale

UV non trivial theories

Composite Higgs dynamics

 $DH^{\dagger}DH - V(H) + \overline{\Psi}_{L}H\psi_{R}$ $m_W^2 WW$ $m_{\psi}\psi_L\psi_R$ TC Extended TC

Technicolor

Higgs is the lightest scalar excitation of the condensate

Inside the box

- Break EW
- Theories available/unexplored
- Vacuum stable
- Natural

Outside the box

- Fermion masses vs FCNC
- Electroweak precision data
- Light Higgs

TC Higgs

TC - Higgs is the lightest spin-0 scalar made of TC-fermions

$$H \sim c_1 \bar{Q}Q + c_2 \bar{Q}Q \bar{Q}Q + \cdots$$

Will contain also a TC-glue component

QCD lightest scalar is $f_0(500)$ with mass ~ 400-550 MeV

Sannino & Schechter 95 PRD ['t Hooft 1/N, crossing, chiral, pole mass] Harada, Sannino & Schechter 95 PRD [f₀(980)], 96PRL Pelaez - Confinement X - lecture

Narrow state in strong dynamics?

Example f₀(980)

 $\Gamma = 40 - 100 \text{ MeV} \qquad \qquad m = 990 \pm 20 \text{ MeV}$

Narrow because near/below 2 kaon threshold

 $m_{2Kaons} \simeq 987.4 \text{ MeV}$

Harada, Sannino & Schechter 95 PRD [f₀(980)], 96PRL [Large N apparent violation]

S. Weinberg 2013

Top - corrections

Foadi, Frandsen, Sannino, 1211.1083 PRD Cacciapaglia, Sannino 1402.0233 JHEP

Narrow due to kinematics [Similar to f₀(980) in QCD]

Fodor, Holland, Kuti, Nogradi, Schroeder, Wong, 1209.0391 [LHC collaboration]

 $M_{\rho} \simeq 1754 \pm 104 \,\,\mathrm{GeV}$

 $M_{A_1} \simeq 2327 \pm 121 \text{ GeV}$

$M_H^{TC}\approx 200-700~{\rm GeV}$

Scalar mass in line with theory expectations: 1401.2176

US - Germany - Hungary collaboration

Di-leptons -predictions for SU(3)_S MWT

Composite Goldstone Higgs

D.B. Kaplan & H. Georgi, 84

Higgs is a pseudo goldstone boson

Inside the box

- Higgs is massless
- Gauge boson couplings

Outside the box

- Underlying theory
- Higgs mass
- Fermion masses/couplings
- EW vacuum alignment

Work in 4 dimensions

Composite Dynamics 2014+

Cacciapaglia and Sannino arXiv:1402.0233 JHEP

- Unified TC and CH framework
- Fund 4D underlying theory
- Spectrum via lattice

Fundamental Composite (Goldstone) Higgs Dynamics

Giacomo Cacciapaglia^{1,*} and Francesco Sannino^{2,†}

¹Université de Lyon, F-69622 Lyon, France: Université Lyon 1, Villeurbanne CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon. ²CP³-Origins & Danish Institute for Advanced Study DIAS,

University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Abstract

We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the condensate. We show that, in general, these states mix with repercussions on the electroweak physics and phenomenology. Our results will help clarify the main differences, similarities, benefits

CoDyCE project: Unified pheno + Lattice @ LHC13.5 underway

Higgs is massive excitation

What fixes θ ?

- Gauge bosons quantum corrections
- Top corrections
- Explicit breaking of global symmetry

Mixed case is natural: $0 < \theta < \pi/2$

A pattern SU(4) \rightarrow Sp(4)~SO(5)

- Fundam. underlying 4d dynamics
- 5 Goldstone Bosons
- 3 eaten by W⁺, W⁻ and Z

Appelquist, Sannino, 98, 99 Ryttov, Sannino, 2008 Katz, Nelson Walker, 2005 Gripaios, Pomarol, Riva, Serra, 2009 Galloway, Evans, Luty, Tacchi, 2010

- θ near zero
- One GB is Higgs-like
- Other GB is SM neutral

- Complex GB, SM-neutral
- Natural DM candidate*

TC

 θ near $\pi/2$

Generic properties

- TC-Higgs and PGB Higgs mix
- Top reduces TC-Higgs mass
- Top contributes PGB Higgs mass

@ θ near zero

 $\frac{g_{WWh_1}}{g_{WWh}^{SM}} = 1 + C_{h_2h_1} \theta + \mathcal{O}(\theta^2)$

$$\frac{g_{t\bar{t}h_1}}{g_{t\bar{t}h}^{SM}} = 1 + D_{h_2h_1}\,\theta + \mathcal{O}(\theta^2)$$

- h₁ and h₂ are eigenstates
- C & D vanish for large m_{h2} mass
- Modified higgs phenomenology
- A new TeV scalar before vectors?

Spin one resonances

- Simply rescale TC limit by $\sin\theta$
- Small coupling to SM fermions via GB mixing

$$m_{\rho} = \frac{m_{\rho}^{TC}}{\sin \theta} \qquad m_{A} = \frac{m_{A}^{TC}}{\sin \theta}$$

Minimal Fund. Gauge Theory

Appelquist, Sannino, 98, 99

Ryttov, Sannino, 2008

Järvinen, Ryttov, Sannino, 2009

Lewis, Pica, Sannino 2012

Hietanen, Lewis, Pica, Sannino 2013, 2014

Mass term respects Sp(4) with 10 generators

$$\delta \mathcal{L} = \frac{m}{2} Q^T (-i\sigma^2) C E Q + \text{h.c.} \qquad E = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

Theoretical expectations

$$\langle Q^T(-i\sigma^2)C\,EQ\rangle = \langle \bar{U}U + \bar{D}D\rangle = \Lambda^3 \neq 0$$

- SU(4) can break spontaneously to Sp(4)
- Composite spectrum are representations of Sp(4)
- 5 Goldstones

Hadronic operators

Mesons

$$\begin{aligned} \mathcal{O}_{\overline{U}D}^{(\Gamma)} &\equiv \overline{U}(x)\Gamma D(x) ,\\ \mathcal{O}_{\overline{D}U}^{(\Gamma)} &\equiv \overline{D}(x)\Gamma U(x) ,\\ \mathcal{O}_{\overline{U}U\pm\overline{D}D}^{(\Gamma)} &\equiv \frac{1}{\sqrt{2}}\bigg(\overline{U}(x)\Gamma U(x)\pm\overline{D}(x)\Gamma D(x)\bigg) \end{aligned}$$

$$\mathcal{O}_{UD}^{(\Gamma)} \equiv U^{T}(x)(-i\sigma^{2})C\Gamma D(x) , \quad \bullet \text{ Baryons (diquarks)} \\ \mathcal{O}_{DU}^{(\Gamma)} \equiv D^{T}(x)(-i\sigma^{2})C\Gamma U(x) , \\ \mathcal{O}_{UU\pm DD}^{(\Gamma)} \equiv \frac{1}{\sqrt{2}} \left(U^{T}(x)(-i\sigma^{2}C)\Gamma U(x) \pm D^{T}(x)(-i\sigma^{2}C)\Gamma D(x) \right)$$

$$\Gamma=1,\gamma^5,\gamma^\mu,\ldots$$

Facts

- Mesons and baryons are mass-degenerate
- Equal angular momentum & opposite parity

$$J\left(\mathcal{O}_{UD}^{(\Gamma)}\right) = J\left(\mathcal{O}_{\overline{UD}}^{(\Gamma)}\right),$$
$$P\left(\mathcal{O}_{UD}^{(\Gamma)}\right) = -P\left(\mathcal{O}_{\overline{UD}}^{(\Gamma)}\right)$$

5 Goldstones

pseudoscalar Π^+ $\Pi^ \Pi^0$ scalar baryon Π_{UD} $\Pi_{\overline{UD}}$

Minimal TC Model & DM

• Gauge SU_L(2)xU_Y(1) in SU(4) $f_{\Pi} \simeq 246~{
m GeV}$

Appelquist, Sannino, 98, 99 Ryttov, Sannino, 2008 Järvinen, Ryttov, Sannino, 2009

Such that

 $\theta = \frac{\pi}{2}$

 Π^+ $\Pi^ \Pi^0$ Longitudinal W and Z

 Π_{UD} $\Pi_{\overline{UD}}$ Goldstone DM & anti-DM, SM singlet

• Fermion mass generation sectors can yield mass to DM

Composite EW on Lattice

Lewis, Pica, Sannino 2012

Hietanen, Pica, Sannino, Søndergaard 2013

Hietanen, Lewis, Pica, Sannino 2013

Hietanen, Lewis, Pica, Sannino 2014

Canadian-Danish collaboration

Wilson action

\

$$S_{W} = \frac{\beta}{2} \sum_{x,\mu,\nu} \left(1 - \frac{1}{2} \operatorname{ReTr} U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x) \right) + (4+m_{0}) \sum_{x} \bar{\psi}(x) \psi(x) \\ - \frac{1}{2} \sum_{x,\mu} \left(\bar{\psi}(x) (1-\gamma_{\mu}) U_{\mu}(x) \psi(x+\hat{\mu}) + \bar{\psi}(x+\hat{\mu}) (1+\gamma_{\mu}) U_{\mu}^{\dagger}(x) \psi(x) \right)$$

β	Volume	m_0	Therm.	Conf.
2.0	$16^{3} \times 32$	-0.85, -0.9, -0.94, -0.945, -0.947, -0.949	320	680
2.0	32^{4}	-0.947	500	680
2.2	$16^3 \times 32$	-0.60, -0.65, -0.68, -0.70, -0.72, -0.75	320	680
2.2	$24^3 \times 32$	-0.75	500	~2000
2.2	32 ⁴	-0.72,-0.735, -0.75	500	~2000

• Fermion mass via PCAC

$$m_{q} = \lim_{t \to \infty} \frac{1}{2} \frac{\partial_{t} V_{\Pi}}{V_{PP}}$$
$$V_{\Pi}(t_{i} - t_{f}) = a^{3} \sum_{x_{1}, x_{2}, x_{3}} \langle \overline{u}(t_{i}) \gamma_{0} \gamma_{5} d(t_{i}) \overline{u}(t_{f}) \gamma_{5} d(t_{f}) \rangle$$
$$V_{PP}(t_{i} - t_{f}) = a^{3} \sum_{x_{1}, x_{2}, x_{3}} \langle \overline{u}(t_{i}) \gamma_{5} d(t_{i}) \overline{u}_{1}(t_{f}) \gamma_{5} d(t_{f}) \rangle$$

Decay constant

$$f_{\Pi} = \frac{m_{\rm q}}{m_{\Pi}^2} G_{\Pi} \qquad \qquad V_{\rm PP}(t_i - t_f) = -\frac{G_{\Pi}^2}{m_{\Pi}} \exp\left[-m_{\Pi}(t_i - t_f)\right]$$

2 point functions

$$C_{\overline{u}d}^{(\Gamma)}(t_i - t_f) = \sum_{\vec{x}_i, \vec{x}_f} \left\langle \mathcal{O}_{ud}^{(\Gamma)}(x_f) \mathcal{O}_{ud}^{(\Gamma)\dagger}(x_i) \right\rangle \qquad S_{u\overline{u}}(x, y) = \left\langle u(x)\overline{u}(y) \right\rangle$$
$$= \sum_{\vec{x}_i, \vec{x}_f} \operatorname{Tr} \Gamma S_{d\overline{d}}(x_f, x_i) \gamma^0 \Gamma^{\dagger} \gamma^0 S_{u\overline{u}}(x_i, x_f)$$

Nonzero decay constant

Perturbative estimate of Z_a

$$Z_a = 1 - \frac{g_0^2}{16\pi^2} \frac{N^2 - 1}{2N} 15.7 \stackrel{N=2}{=} 1 - 0.2983/\beta$$

Spin one spectrum

- 2 Volumes: 16³ x 32 and 32⁴ in lighter colors
- Smaller volume effects for beta = 2.0
- Larger volume effects for the most chiral points for beta = 2.2
- Volume corrections for lighter masses

Continuum estimates

 $m_{\rho} \simeq 2510(40)(280)(300) \text{ GeV}$

 $f_{\Pi} \simeq 246 \,\,{
m GeV} \qquad m_A \simeq 3270(130)(370)(370)\,\,{
m GeV}$ (stat.) (continuum) (Z_a)

Lattice for LHC

- SU(4) breaks to Sp(4)
- 5 Goldstone bosons
- Goldstone form factors

Lewis, Pica, Sannino 2012

Hietanen, Lewis, Pica, Sannino 2013, 2014

Unified spin one spectrum predictions:

 $m_{\rho} = 2.5 \pm 0.5 \text{ TeV/sin } \theta$ $m_A = 3.3 \pm 0.7 \text{ TeV/sin } \theta$

Canadian-Danish

Hietanen, Lewis, Pica, Sannino 1404.2794

Composite (Goldstone) Dark Matter

 $\theta = \frac{\pi}{2}$

DM-photon interaction

- U_L and D_L form a weak doublet
- U_R and D_R fields are weak singlets
- U (D) have 1/2 (-1/2) electric charge
- No gauge and Witten anomalies

Dark coupling to photon via charge radius

Need to determine 3-point functions (GBs form factors)

GBs vector form factors

Lattice electromagnetic current

$$V_{\mu}(x) = \frac{1}{2} V_{\mu}^{U}(x) - \frac{1}{2} V_{\mu}^{D}(x)$$

$$V_{\mu}^{X}(x) = \frac{1}{2} \overline{X}(x + \hat{\mu})(1 + \gamma_{\mu}) U_{\mu}^{\dagger}(x) X(x)$$

$$- \frac{1}{2} \overline{X}(x)(1 - \gamma_{\mu}) U_{\mu}(x) X(x + \hat{\mu})$$

$$F_{\Pi}(Q^2) = \frac{C_{ud}^{(3)}(t_i, t, t_f, \vec{p_i}, \vec{p_f}) C_{ud}^{(2)}(t_i, t, \vec{p_f})}{C_{ud}^{(2)}(t_i, t, \vec{p_i}) C_{ud}^{(2)}(t_i, t_f, \vec{p_f})} \left(\frac{2E_{\Pi}(\vec{p_i})}{E_{\Pi}(\vec{p_i}) + E_{\Pi}(\vec{p_f})}\right)$$

Avoiding disconnected diagrams

- Lattice simulation expensive for different fermion masses
- But for $m_U = m_D$ form factors vanish
- Up and Down are related in QCD at large N [works for N=3]

$$F_{\pi^{+}}(Q^{2}) \approx \frac{2}{3} \left(\frac{m_{\rho}^{2}}{m_{\rho}^{2} + Q^{2}} \right) + \frac{1}{3} \left(\frac{m_{\rho}^{2}}{m_{\rho}^{2} + Q^{2}} \right)$$

$$F_{K^{+}}(Q^{2}) \approx \frac{2}{3} \left(\frac{m_{\rho}^{2}}{m_{\rho}^{2} + Q^{2}} \right) + \frac{1}{3} \left(\frac{m_{\phi}^{2}}{m_{\phi}^{2} + Q^{2}} \right)$$

$$F_{K^{0}}(Q^{2}) \approx -\frac{1}{3} \left(\frac{m_{\rho}^{2}}{m_{\rho}^{2} + Q^{2}} \right) + \frac{1}{3} \left(\frac{m_{\phi}^{2}}{m_{\phi}^{2} + Q^{2}} \right)$$

We will test VMD for SU(2)

GB form factor vs vector pole

Lattice prediction

 Form factor requires isospin breaking from ETC

Lattice determines

$$\Lambda = m_{\rho} , \quad d_B = \frac{m_{\rho_U} - m_{\rho_D}}{m_{\rho}}$$

EM cross section with proton

$$\sigma_p^{\gamma} = \frac{\mu^2}{4\pi} \left(\frac{8\pi \alpha d_B}{\Lambda^2} \right)^2 \quad \mu = \frac{m_{\phi} m_N}{m_{\phi} + m_N} \qquad |d_B| < 1 \quad m_{\phi} > m_p$$

$$\sigma_p^{\gamma} < 2.3 \times 10^{-44} \ \mathrm{cm}^2$$

First principle !

DM inter. with Higgs ?

Basic interactions

$$\mathcal{L}_{h} = \frac{d_{1}}{\Lambda} h \partial_{\mu} \phi^{*} \partial^{\mu} \phi + \frac{d_{2}}{\Lambda} \mathcal{M}_{\phi}^{2} h \phi^{*} \phi$$
$$d_{1} \approx d_{2} \approx \mathcal{O}(1) \qquad \qquad \text{DM is a GB}$$

Cross section with the proton

$$\sigma_p = \frac{\mu^2}{4\pi} \left[\frac{(d_1 + d_2) f m_N m_\phi^2}{m_H^2 m_\phi v_{EW} \Lambda} + 8\pi \alpha \frac{d_B}{\Lambda^2} \right]^2 \qquad \qquad f \simeq 0.3$$

$$f_n = -\frac{(d_1 + d_2)fm_N m_\phi^2}{m_H^2 m_\phi v_{EW}\Lambda} \qquad \qquad f_p = -\frac{(d_1 + d_2)fm_N m_\phi^2}{m_H^2 m_\phi v_{EW}\Lambda} - 8\pi\alpha \frac{d_B}{\Lambda^2}$$

Lattice

Summary

A natural avenue: Compositeness

Relevance of Top corrections for Technicolor

Unified TC and Comp (Goldstone) Higgs description

SU(2): Univ. fund. template

First principle lattice predictions for LHC and DM