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What we see

Visible structures In the
Universe arise as
gravitational bound states
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What we see

r~10¢ pc -10 kpc



What we do not see/know

* What is the typical length/mass scale of Dark
Matter (DM)7

1072 eV 1076 ev 102 GeV 107" + 10" Mo
ULDM QCD axion WIMPS  «oveeeeeanenn PBHs T

e Does DM form bound states”

* Does DM experience dark forces (i.e. not gravity)?



Small (scale) troubles

* Cold Dark Matter (CDM) paradigm works very well
on cosmological scales (CMB, LSS, Lyman-a).

* On sub-galactic scales, N-body CDM simulations

produce cusps, whereas observations show
smooth cores.

 Maybe simple pressureless CDM is not the whole
story.
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Ultra-Light scalar Dark
Matter (ULDM)

» Particle de Broglie wavelength

100 k 1072% eV
)\dB%19Opc< m/s)( - )

(¥ T

e (Galactic-core size for

m ~ 1072 eV = 10722 eV

Fuzzy Dark Matter! Hu, Barkana, Gruzinov '00;.../
Hui, Ostriker, Tremaine Witten ‘16
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Schive, Chiueh, Broadhurst ‘14

Indistinguishable from CDM on cosmological scales
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Pros of ULDM

Schive, Chiueh, Broadhurst ‘14

p(r) /<{p>

10°

r (kpc)

Develops cores on sub galactic scales!



Understanding the core

- Non-relativistic regime

¢(£Ij,t) —

* Solve Schrodinger-Poisson equation

1
1041 = V2 + m®dy
2m

V20 = 4nGy|?
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Understanding the core

- Non-relativistic regime

V2 + m®y
VZ® = 4w G|y|? l

Wave pressure




Solitonic Cores

Bar, Blas, Blum, Sibiryakov * 18
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Cons of ULDM

IrSiC et al./Armengaud et al./Kobayashi et al. 17

1.0

Lyman-«a forest

0.8

Matter power
spectrum Is
suppressed on small
scales for
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m [eV]

from Kobayashi, Murgia, De Simone, IrsSic, Viel 17



Core Density p; [M,, pc™]

0.001}

Cons of ULDM

Deng, Hertzberg, Namjoo, Masoumi 18
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For ULDM solitons
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Bar, Blas, Blum, Sibiryakov ‘ 18
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Cons of ULDM

Bar, Blas, Blum, Sibiryakov ‘ 18

VVCirc
300,
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200|
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100|

Inner velocity is overestimated for  m <1072 eV



However

e Constraints are derived assuming homogeneous field with
cosine potential at matter-radiation (MR) equality.

* Soliton solution obtained neglecting early attractive self
interaCtiOnS. see Hertzberg, Schiappacasse '18 for late effects of self interactions

« ULDM with m > 107%* eV maybe do not solve core vs cusp, but
still very interesting!
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Implications of self interactions in axion potentials

|

DM bound states/inhomogeneities at MR equality!

lot of activity since
Kolb, Tkachev '93/°94/. ..



Implications of attractive
self-interactions



Inhomogenelty from axion
potentials

e Standard axion potential from gauge (and
gravitational?) instantons:

vior~ 11— on (2)

o |f PQ symmetry broken after inflation, axion is
iINnhomogeneous from the very beginning due to
topological defects (strings and domain walls).

e |nitial overdensities lead to miniclusters.
Kolb, Tkachev '93/94/...



Axions with large F

* Ultra-Light Axions (ULASs) usually come with
F z 1014 GeV Z Hinﬂation
e Field very likely homogenised by inflation!

plx,t) = o(t) +0o(t,x)  with 06 < ¢

 However, self-interactions can lead to growth of
iInhomogeneities!

Hertzberg, Schiappacasse '17 / Fukunaga, Kitajima, Urakawa ‘19



Parametric Resonance
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Parametric Resonance

Motion of field is periodic. Perturbations obey

i (t) + ) + (;; | V”(¢)> 0k (t) =0

* V" Is also periodic Floquet theory

O (t) ~ e " f(t)
Instability when ¥t (ux) > 0

Requires V” > 0, i.e. attractive self-interactions!



Axion potentials

* Parametric Resonance occurs If potential is flatter
than quadratic in some region.

* However, not efficient for cosine potential. ..

Hertzberg, Schiappacasse '17 / Fukunaga, Kitajima, Urakawa ‘19

* Well motivated possibility from UV point of view:
breaking of shift symmetry/multi-branched
potential:

212 T 2\ P7
Vig) = 12 1+(1=?2>




Axion potentials

- 1-Cos[¢/F]




Axion potentials

0<p<l
2 o 2\ P Axion monodrom
m;: [_1+(1+¢_>] o onodromy

Silverstein, Westphal '08/+McAllister

e 08/.../+Dong, Horn ‘10

for inflation Kallosh, Linde '13/.../Nomura, Qatari,
p < 0 Plateau Yamazaki '17/..., for DM Kitajima, Soda, Urakawa ‘18



Self-resonance in axion
e potentlals

reheating context

Do

Jk/Tn

00 02 04 08 C8 10 12 14

of .
00 0z 04 06 08 10 1.2 14

k/m

Initial misalignment can be larger than F

0.20



Self-resonance in axion

see also Amin, Easther, Finkel, "
Flauger, Hertzberg "11/... in p O e n I a S

reheating context

!
L

1F
!
L

] Ot
00 02 04 06 C8 1.0 1.2 1.4 00 0z 04 06 08 10 1.2 14

Z‘C/ m k’/ m

Hubble friction changes resonant k, but effect still there.



Oscillon Biography




Chapter |: Birth

from Kitajima,
Soda,
Urakawa ‘18




Oscillon birth

 Parametric resonance leaves behind localized,
approx spherically symmetric overdensities.
Profile well fitted by

A
cosh(r/o)

0P ~



Oscillon birth

 Parametric resonance leaves behind localized,
approx spherically symmetric overdensities.
Profile well titted by

J\

» Configurations keep oscillating in time!



Bogolyubosky, Makhanov 76/

|
Gleiser '93/Copeland, Gleiser,
S C | O n S Muller “95/.../ Hindmarsh et al

Oscillons are attractor solution of Klein-Gordon
equation in flat spacetime with nonlinear potential
(similar to breather of sine-gordon in 1+1).

ot 1) — 0rg(t,r) — % ot T) + V' (¢(t, 7)) =0



|
Bogolyubosky, Makhanov 76/
Gleiser '93/Copeland, Gleiser,

Muller "95/.../Hindmarsh

Localized oscillating bound state

_|_

radiated scalar waves.



|
Bogolyubosky, Makhanov 76/
Gleiser '93/Copeland, Gleiser,

Muller "95/.../Hindmarsh

Localized oscillating bound state

+

radiated scalar waves.

Radiated
energy Is
very small!

log /_)_5

Very large
ifetime!



Oscillons are kept together purely by
attractive self-interactions,
gravity not involved.

see |keda, Yoo, Cardoso
'17 for gravity effects

Well-known in inflationary models, in connection
with late reheating.

Amin, Easther, Finkel,
Flauger, Hertzberg '11/.../
Lozanov, Amin ‘19

Sometimes referred to as axitons for QCD axion
DM, but in this case they decay soon and/or form

very late.
Kolb, Tkachev ’'93/.../

Visinelli et al. ‘18



Oscillon ID
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Chapter Il: Lifetime

* Long-lived oscillon is attractor, initial conditions not

particularly relevant to estimate lifetime.

0

ﬁ \

p=1/2

0.0 0.2 0.4 0.6 0.8
mt

1.0
%107

see Salmi,
Hindmarsh 12
for previous
estimates



Oscillon lifetime

e Oscillon radius is much smaller than Hubble radius
at formation, object is essentially decoupled from
Hubble flow and behaves as DM.

4.0 1
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Oscillon lifetime

e
p=1/2
0.75
(.51
0.25
(.00 4 — ,
() ] 2 } 1

%108
m



Oscillon lifetime

0<p<l p <0
7~ 10% m™1 7> 10% m ™1
No decay
observed yet!

For small m, oscillon survive until MR equality!



Chapter IlI: death

 Decay occurs via burst of scalar waves with

e Potential warm contribution to DM.

 However, overdensity will generically be trapped
by its own gravitational potential, leading to mini
clusters and/or gravitational solitons.



Chapter IlI: death

 Decay occurs via burst of scalar waves with

k~R1<m

OSC ~v

e Potential warm contribution to DM.

 However, overdensity will generically be trapped
by its own gravitational potential, leading to mini
clusters and/or gravitational solitons.



Chapter |V: Legacy
or

Observational Impact



Oscillon independence

 Before parametric resonance, will-be DM is made
only of parent homogeneous (pseudo)scalar field.

* After parametric resonance

Light scalar quanta/waves .
o Heavy oscillons
from misalignment

Usually Poscillon z 0.5 PDM



Observational impact depends on
epoch at which oscillon decays.

Determined by the lifetime 7 , which
depends on p and m.



p=1/2
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Decay after MR equality

If decay occurs after MR equality, gravity comes
into play. Difficult to understand further evolution
(numerical simulations”)

Single oscillon: does gravity increase stability?

Overdensities of oscillons: they grow and lead to
Interactions, e.g. mergers, disruptions.

Oscillon leftovers: gravitational soliton waiting for
them at



Constraints from warm DM?

Not straightforward due to gravity.

Conservative constraint
R fj H_l(T)



Constraints from warm DM?
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'mmortal oscillons”?

» Can gravity extend lifetime (independently of p)?

* Potentials with p<0: currently only a lower
bound ~ 10 m ™! on lifetime.

o Simple fits suggest that lifetime is much larger!



g[F./GeV]

- 12

'mmortal oscillons?

R [kpc]
1.%107° 1.x10°7 {,x107" 1.x10°1° 1.x10°1°
SR DM
constraints
and oscillon
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Log[m geV]
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summary

 Attractive self-interactions in the DM sector can
lead to bound states/structures.

* Relevant e.g. for ULDM, with/without connection to
cusp vs core problem.

» Self-interactions can lead to fragmentation of
originally homogeneous field.



summary

» Parametric resonance leads to formation of long-
lived oscillating bound states (oscillons) in certain
well motivated potentials.

* For small masses and/or p<0, oscillons survive until
and beyond MR equality!

* Need to take them into account as initial
conditions for numerical simulations/analytical
studies of ULDM.



Open questions

* Fate of decaying oscillons after MR equality”
* Effects of gravity on oscillons?
Amin, Mocz ‘19
* Oscillon-to-soliton transition”
e Black hole formation” Cotner, Kusenko, Takhistov ‘18

* p<0, how to estimate lifetime?

. _ : - S Khmelnitsky,
Signatures of oscillons/solitons today? "'’ 13De

Martino et al. 17



Thank you!



GGravitational soliton solution

—22
M, ~ 2.8 1012 (10 eV) M.,

Fundamental solution m
10722 eV
R{ ~ 0.08 ( ) pC
m
My = \M;
One-parameter family ) A< 1
of solutions Ry =)A""Ry
F2
M)y = Mosc ~ :
° m Matching to

M 2 :
Ry~ (_p> R oscillon



Decay before MR equality
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Signature of ULDM from PTAs
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Signature of ULDM from PTAs
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