Super-renormalizable and Finite gravitational theories

Lesław Rachwał (rachwal@fudan.edu.cn) Fudan University (Shanghai, China)

29.09.2014, High Energy Seminar, University of Sussex

Super-renormalizable and Finite gravitational theories

 $\begin{array}{l} \Gamma = ? \\ \Gamma = ? \end{array}$

Lesław Rachwał (Fudan University)

[based on arXiv: hep-th/1407.8036] (in press in NPB)

In collaboration with L. Modesto and S. Giaccari

Motivation

- Effective Field Theory of Quantum Gravity:
- low energy QG is valid as QFT with a cutoff
- despite non-renormalizability of E-H QG predictions are possible and calculable in EFT
- Fundamental Theory of Quantum Gravity:
- defined without problems at any (high) energy scale
- with higher derivatives
- complete in UV regime
- renormalizable or even finite in quantum realm
- Is it possible to construct?

29.09.2014, HE Seminar, University of Sussex

Outline

- Quantum Gravity with Higher Derivative Action
- Renormalizability
- Analytic non-local Form-factors
- (1-loop) Super-renormalizability
- Killers of beta functions
- Finiteness
- Conclusions

29.09.2014, HE Seminar, University of Sussex

E-H QG as EFT

- Quantum field theory of small low-energetic fluctuations of metric degrees of freedom around flat Minkowski spacetime (Donoghue et al '94-'00) $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$
- General covariance as a gauge symmetry on the linearized level
- Gravitons around flat spacetime are massless *\approx* gauge symmetry
- Standard quantization using Faddeev-Popov trick for gauge theories
- Expansion of lagrangian in number of derivatives and in powers of graviton field $L_{grav} = \kappa^{-2} R(h) + o(R^2)$

Feynman diagrams for gravitons interacting with matter
29.09.2014, HE Seminar, University of Sussex
 Lesta

E-H QG as QFT

• Perturbative calculus with dimensionful coupling parameter (in d=4)

- Pure gravity: 1-loop finite (no divergences)
- Gravity+matter: non-renormalizable
- E-H Gravity non-renormalizable
- The reason:
- dimensionful coupling constant $M_{\rm Pl}^2 = \kappa^{-2}$
- only two derivatives in the bare action, too fast UV propagation
- metric fluctuations $h_{\mu\nu}$ are dimensionless, compare to gauge field

fluctuations A

$$[h_{\mu\nu}] = E^0 \qquad [A_{\mu}] = E^1$$

$$\kappa^2 = 16 \pi G_N$$

Quest for Quantum Gravity

- QE-H: Non-renormalizable, but unitary
- Way out: Asymptotic Safety Scenario (Weinberg, Reuter, Niedermaier)
- Let's first quantize matter, put it on curved spacetime background, only later quantize gravitation (Shapiro)

• Observation:

Counterterms needed to be added to the divergent matter effective action are of the type R^2 and C^2 (in d=4)

- Conclusions:
- These counterterms contain higher derivatives of the bckg metric
- We need quantum theory of gravity with higher derivatives

29.09.2014, HE Seminar, University of Sussex

Higher Derivative Quantum Gravity (HDQG)

• Four derivative theory '77 Stelle

$$L = \lambda + \kappa^{-2} R + \omega_0^1 R^2 + \omega_0^2 R_{\mu\nu}^2$$

- First QG renormalizable in *d*=4
- Improved UV behavior for propagation of modes $\Pi \sim k^{-4}$
- Asymptotically Free in UV like YM
- Improvement of the E-H action in EFT for QG
- Classical Ostrogradsky instabilities
- Presence of massive ghost with negative residue
- Violation of Unitarity
- Rapid decay of Gravitational Vacuum
- Can not be viewed as a fundamental theory

29.09.2014, HE Seminar, University of Sussex

Higher derivatives

$$L = \lambda + \kappa^{-2} R + \sum_{n=0}^{N} \omega_n^1 R \square^n R + \sum_{n=0}^{N} \omega_n^2 R_{\mu\nu} \square^n R^{\mu\nu}$$

- Behavior in UV improved even more
- Propagator is a polynomial of a degree N+2 in momentum k $\Pi \sim k^{-(4+2N)}$
- Asymptotic Freedom for all couplings
- At low energy reduces effectively to E-H QG
- New ghost poles with oscillating sign of residues
- Unitarity problems still present!!!

29.09.2014, HE Seminar, University of Sussex

Non-local form-factors

$$L = \lambda + \kappa^{-2} R + R F_1(\Box) R + R_{\mu\nu} F_2(\Box) R^{\mu\nu}$$

- Extension of the quadratic in curvature terms Tomboulis, Krasnikov
- The most general theory describing gravitons' propagation around flat spacetime
- Intrinsically non-local due to non-polynomial functions F_1 and F_2
- Example with one form-factor (multiplicative modification of the graviton propagator) $H(\Box(A^2))$

$$L = \lambda + \kappa^{-2} R + \kappa^{-2} G_{\mu\nu} \frac{e^{H(\Box/\Lambda)} - 1}{\Box} R^{\mu\nu}$$

29.09.2014, HE Seminar, University of Sussex

Non-local form-factors

Requirements:

• Propagator has only first single poles with real masses (no tachyons) and with positive residues (no ghosts)

• In the spectrum only physical massless transverse graviton (spin 2)

Demands on a form-factor $e^{H(z)}$: $z = \frac{\Box}{\Lambda^2}$

• is real and positive on the real axis and has no zeros on the complex plane, is analytic on the whole complex plane

• has proper asymptotics for large z (in UV) along and around real axis (nonpolynomial or polynomial with degree ≥ 1)

• Example:
$$H(z) = \frac{1}{2}\Gamma(0, p^2(z)) + \frac{1}{2}\gamma_E + \frac{1}{2}\log p^2(z)$$

29.09.2014, HE Seminar, University of Sussex

Non-local form-factors
$$H(z) = \frac{1}{2}\Gamma(0, p^{2}(z)) + \frac{1}{2}\gamma_{E} + \frac{1}{2}\log p^{2}(z)$$

- If *p*(*z*) is a polynomial then UV behavior is asymptotically polynomial, so asymptotically in UV HDQG
 But in *H*(*z*) there are no poles of *p*(*z*) due to analytic properties of *H*(*z*) !
- Unitarity of the theory secured at the perturbative level
- If degree of p(z) greater than zero, then theory is automatically multiplicatively renormalizable in d=4

• Define
$$\deg p(z) = \gamma + 1$$

29.09.2014, HE Seminar, University of Sussex

Super-renormalizability

- Progator of modes in UV regime (asymptotics) $\Pi \sim k^{-(4+2\gamma)}$
- General *L*-loop integral is Integral = $\int (d^4k)^L \frac{\text{vertices}}{\text{propagators}}$
- Superficial degree of divergence of L-loop graph Δ

 $\Delta = 4 L + V [vertex] - I [propagator]$

- Graviton field is dimensionless
- The same maximal number of derivatives in vertices as in propagators in UV $[vertex] = [propagator] = k^{4+2\gamma}$
- Topology of any graph I = V + L 1

 $\Delta \leq 4 L - (L-1)(4+2\gamma) \qquad \qquad \Delta \leq 4-2\gamma(L-1)$

29.09.2014, HE Seminar, University of Sussex

Super-renormalizability

In *d*=4 divergences are present:

- formally for γ =-1 at any loop order and Δ grows with growing $L \Rightarrow$ non-renormalizability of EH gravity
- for $\gamma=0$ at any loop order and $\Delta \leq 4 \Rightarrow$ renormalizability of R² gravity
- for γ =1 at loop order 1,2,3 \Rightarrow 3-loop super-renormalizability
- for $\gamma=2$ at loop order $1,2 \Rightarrow 2$ -loop super-renormalizability
- for γ =3 at loop order 1 \Rightarrow 1-loop super-renormalizability
- Divergences remain only at 1-loop order for $\gamma \ge 3$

We achieved 1-loop super-renormalizability!

29.09.2014, HE Seminar, University of Sussex

Finiteness

- No divergences at the quantum level
- Divergent part of the effective action ~ beta functions of the theory

 $\beta_i = 0$

related to scale (conformal) invariance and FP of RG flow

• In 1-loop superrenormalizable theory perturbative contributions only at one loop only to four couplings $\lambda \kappa^{-2} \omega_0^1 \omega_0^2$

$$L_{\rm div} = \lambda + \kappa^{-2} R + \omega_0^1 R^2 + \omega_0^2 R_{\mu\nu}^2$$

• Contributions only from generally covariant terms, with 2γ +4 to 2γ (partial) derivatives on the metric

29.09.2014, HE Seminar, University of Sussex

Finiteness

- Contributions to beta functions
- For cosmological constant
- For Planck constant
- For quadratic in curvature terms

 $\beta_{\lambda} \sim \frac{\omega_{\gamma-2}}{\omega_{\gamma}}, \left(\frac{\omega_{\gamma-1}}{\omega_{\gamma}}\right)^{2}$ $\beta_{\kappa^{-2}} \sim \frac{\omega_{\gamma-1}}{\omega_{\gamma}}, O(\text{Riem}^{3})$ $\beta_{\omega_{0}^{1,2}} \sim \frac{\omega_{\gamma}^{1}}{\omega_{\gamma}^{2}}, O(\text{Riem}^{3}), O(\text{Riem}^{4})$

- Set to zero all $\omega_{_{\!\gamma\!\text{-}\!2}}$ and $\omega_{_{\!\gamma\!\text{-}\!1}}$ and terms cubic, quartic in curvature
- Add two killers of beta functions $\beta_{\omega_0^1}$ and $\beta_{\omega_0^2}$

29.09.2014, HE Seminar, University of Sussex

Convergence in UV

- In UV regime $|z| \rightarrow +\infty$ $e^{H(z)} \rightarrow e^{\gamma_E/2} |p(z)|$
- If we choose $p(z)=z^{\gamma+1}$ then the kinetic term $G_{\mu\nu}\frac{e^{H(z)}-1}{\Box}R^{\mu\nu} \rightarrow e^{\gamma_E/2}R_{\mu\nu}\frac{|z^{\gamma+1}|}{\Box}R^{\mu\nu} - e^{\gamma_E/2}R\frac{|z^{\gamma+1}|}{2\Box}R$ with identification $z=\frac{\Box}{\Lambda^2}$ and $\omega=\frac{e^{\gamma_E/2}}{\Lambda^{2(\gamma+1)}\kappa^2}$ $\kappa^{-2}G_{\mu\nu}\frac{e^{H(z)}-1}{\Box}R^{\mu\nu} \rightarrow \omega R_{\mu\nu}\Box^{\gamma}R^{\mu\nu} - \frac{\omega}{2}R\Box^{\gamma}R$

• No other terms in the kinetic part (besides $\kappa^{-2}R$) due to strong UV convergence $\forall n \in N \quad \lim_{z \to +\infty} \left(\frac{e^{H(z)}}{e^{\gamma_E/2} |z^{\gamma+1}|} - 1 \right) z^n = 0$

29.09.2014, HE Seminar, University of Sussex

Killers

- Quadratic in curvature ("kinetic") part of the Lagrangian $L = \omega_{\gamma}^{1} R \Box^{\gamma} R + \omega_{\gamma}^{2} R_{\mu\gamma} \Box^{\gamma} R^{\mu\gamma}$
- One of the simplest choice

$$s_1 R^2 \Box^{\gamma-2} R^2 + s_2 R_{\mu\nu} R^{\mu\nu} \Box^{\gamma-2} R_{\rho\sigma} R^{\rho\sigma}$$

• Contribution to beta functions from killers $\beta_{\omega_0^{1,2} \text{ kill}} \sim \frac{s}{\omega_y}$

Finiteness if
$$\beta_{\omega_0^{1,2}} + \beta_{\omega_0^{1,2} \text{ kill}} = 0$$

• Contribution of killers to be computed using Barvinsky-Vilkovisky technology for traces of covariant operators on any background and in Dimensional Regularization ($d=4-\epsilon$)

29.09.2014, HE Seminar, University of Sussex

Computation

- 1-loop Quantum Effective Action $\Gamma = \frac{i}{2} \operatorname{Tr} \ln \hat{H} \qquad \Gamma_{\text{div}} = -\frac{1}{\varepsilon} \sum_{i} \beta_{i} X_{i}$
- Kinetic operator for quantum fluctuations on any curved background $H^{\mu\nu,\rho\sigma} = \frac{\delta^2 S}{\delta g_{\mu\nu} \delta g_{\rho\sigma}}$
- Contribution from killers we need only to quadratic in curvature order
- In BV trace technology killers contribute only to U terms (with 2γ derivatives), $i = 24 R^2$

$$\operatorname{Tr} \ln \hat{H}_{KI} = s_1 \frac{i}{\varepsilon} \frac{24 R^2}{3 \omega_{\gamma}^1 + \omega_{\gamma}^2}$$
$$\operatorname{Tr} \ln \hat{H}_{K2} = s_2 \frac{i}{\varepsilon} \left(\frac{(-10 \omega_{\gamma}^1 + \omega_{\gamma}^2) R^2}{3 \omega_{\gamma}^2 (3 \omega_{\gamma}^1 + \omega_{\gamma}^2)} + \frac{2 (20 \omega_{\gamma}^1 + 7 \omega_{\gamma}^2) R_{\mu\nu}^2}{3 \omega_{\gamma}^2 (3 \omega_{\gamma}^1 + \omega_{\gamma}^2)} \right)$$

29.09.2014, HE Seminar, University of Sussex

Finiteness

• Beta functions of quadratic in curvature couplings

$$\beta_{R^2} := a_1 s_1 + a_2 s_2 + c_1 \qquad \beta_{R^2_{\mu\nu}} := b_2 s_2 + c_2$$

- c_1 and c_2 are contributions from terms in "kinetic" part of Lagrangian
- Coefficients of killers required to kill beta functions

$$s_{1} = \frac{-(3\omega_{y}^{1} + \omega_{y}^{2})(40c_{1}\omega_{y}^{1} + 10c_{2}\omega_{y}^{1} + 14c_{1}\omega_{y}^{2} - c_{2}\omega_{y}^{2})}{24(20\omega_{y}^{1} + 7\omega_{y}^{2})}$$
$$s_{2} = \frac{-3c_{2}\omega_{y}^{2}(3\omega_{y}^{1} + \omega_{y}^{2})}{20\omega_{y}^{1} + 7\omega_{y}^{2}}.$$

29.09.2014, HE Seminar, University of Sussex

Finite Quantum Gravity
One of the simplest Lagrangian for finite QG theory in
$$d=4$$

 $L=\lambda+\kappa^{-2}R+\kappa^{-2}G_{\mu\nu}\frac{e^{H(z)}-1}{\Box}R^{\mu\nu}+s_1R^2\Box R^2+s_2R_{\mu\nu}R^{\mu\nu}\Box R_{\rho\sigma}R^{\rho\sigma}+$
 $+\sum_i c_i^{(3)}(R^3)_i+\sum_i c_i^{(4)}(R^4)_i+\sum_i c_i^{(5)}(R^5)_i \qquad z=\frac{\Box}{\Lambda^2}$
with $H(z)=\frac{1}{2}\Gamma(0,p^2(z))+\frac{1}{2}\gamma_E+\frac{1}{2}\log p^2(z) \qquad p(z)=z^4 \qquad \gamma=3$

Lagrangian in UV

$$L_{\rm UV} = \lambda + \kappa^{-2} R + \omega R_{\mu\nu} \Box^3 R^{\mu\nu} - \frac{\omega}{2} R \Box^3 R + s_1 R^2 \Box R^2 + s_2 R_{\mu\nu}^2 \Box R_{\rho\sigma}^2 + \sum_i c_i^{(3)} (R^3)_i + \sum_i c_i^{(4)} (R^4)_i + \sum_i c_i^{(5)} (R^5)_i \qquad \omega = \frac{e^{\gamma_E/2}}{\Lambda^8 \kappa^2}$$

29.09.2014, HE Seminar, University of Sussex

- E-H QG is valid non-renormalizable EFT below Planck scale
- HDQG is renormalizable, can be made even 1-loop superrenormalizable, has massive ghosts
- Nonlocality in formfactors solves unitarity problems, HDQG revival !!
- Still possible polynomial behaviors for propagation asymptotically in UV
- Divergences only at one-loop order
- Perturbative finiteness obtained by adding killers
- Easy generalizations to higher dimensions and for higher curvature terms in the action

29.09.2014, HE Seminar, University of Sussex

Conclusions

Finite Quantum Gravity Exists!!!

29.09.2014, HE Seminar, University of Sussex

Thank you for attention!