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Motivation

● Effective Field Theory of Quantum Gravity:
- low energy QG is valid as QFT with a cutoff
- despite non-renormalizability of E-H QG 
 predictions are possible and calculable in EFT

● Fundamental Theory of Quantum Gravity:
- defined without problems at any (high) energy scale
- with higher derivatives
- complete in UV regime
- renormalizable or even finite in quantum realm

● Is it possible to construct?
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Outline
● Quantum Gravity with Higher Derivative Action

● Renormalizability

● Analytic non-local Form-factors

● (1-loop) Super-renormalizability

● Killers of beta functions

● Finiteness

● Conclusions

29.09.2014, HE Seminar, University of Sussex Lesław Rachwał



  

E-H QG as EFT
● Quantum field theory of small low-energetic fluctuations of
 metric degrees of freedom around flat Minkowski spacetime
(Donoghue et al ‘94-’00)

● General covariance as a gauge symmetry on the linearized level

● Gravitons around flat spacetime are massless ⇐  gauge symmetry

● Standard quantization using Faddeev-Popov trick for gauge 
theories

● Expansion of lagrangian in number of derivatives
 and in powers of graviton field

● Feynman diagrams for gravitons interacting with matter 

g=h

Lgrav=
−2 Rho R2
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E-H QG as QFT
● Perturbative calculus with dimensionful coupling parameter (in d=4)

● Pure gravity: 1-loop finite (no divergences)
● Gravity+matter: non-renormalizable
● E-H Gravity non-renormalizable

● The reason:
- dimensionful coupling constant
- only two derivatives in the bare action, too fast UV propagation
- metric fluctuations h

µν
 are dimensionless, compare to gauge field 

fluctuations A
µ

2=16G N

M Pl
2 =−2

[h ]=E 0 [A]=E1

2=16G N2=16G N
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Quest for Quantum Gravity
● QE-H: Non-renormalizable, but unitary
● Way out: Asymptotic Safety Scenario (Weinberg, Reuter, Niedermaier)

● Let's first quantize matter, put it on curved spacetime background, 
only later quantize gravitation (Shapiro)

● Observation:
Counterterms needed to be added to the divergent matter effective 

action are of the type R2 and C2 (in d=4)

● Conclusions:
- These counterterms contain higher derivatives of the bckg metric
- We need quantum theory of gravity with higher derivatives
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Higher Derivative Quantum Gravity 
(HDQG)

● Four derivative theory '77 Stelle

● First QG renormalizable in d=4
● Improved UV behavior for propagation of modes
● Asymptotically Free in UV like YM
● Improvement of the E-H action in EFT for QG

● Classical Ostrogradsky instabilities
● Presence of massive ghost with negative residue
● Violation of Unitarity
● Rapid decay of Gravitational Vacuum

● Can not be viewed as a fundamental theory

L=−2R0
1 R20

2R
2L=−2R0

1 R20
2R

2

~k−4
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Higher derivatives

● Behavior in UV improved even more

● Propagator is a polynomial of a degree N+2 in momentum k

● Asymptotic Freedom for all couplings

● At low energy reduces effectively to E-H QG

● New ghost poles with oscillating sign of residues

● Unitarity problems still present!!!

L=−2R∑n=0

N
n

1 Rn R∑n=0

N
n

2 R
n R

~k−42N
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Non-local form-factors

● Extension of the quadratic in curvature terms Tomboulis, Krasnikov

● The most general theory describing gravitons' propagation around 
flat spacetime

● Intrinsically non-local due to non-polynomial functions F
1
 and F

2

● Example with one form-factor (multiplicative modification of the 
graviton propagator)

L=−2RR F1RR F2R


L=−2R−2G
eH /2−1

 R

L=−2RR F1RR F2R
L=−2RR F1RR F2R
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Non-local form-factors

Requirements: 
● Propagator has only first single poles with real masses (no 
tachyons) and with positive residues (no ghosts)
● In the spectrum only physical massless transverse graviton (spin 2)

Demands on a form-factor :
● is real and positive on the real axis and has no zeros on the 
complex plane, is analytic on the whole complex plane
● has proper asymptotics for large z (in UV) along and around real 
axis (nonpolynomial or polynomial with degree ≥1)

● Example:

eH  z

H  z =1
2
0, p2  z 1

2
E

1
2

log p2 z 

z=
2
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Non-local form-factors

● If p(z) is a polynomial then UV behavior is asymptotically 
polynomial, so asymptotically in UV HDQG
● But in H(z) there are no poles of p(z) due to analytic properties of 
H(z) !

● Unitarity of the theory secured at the perturbative level

● If degree of p(z) greater than zero, then theory is automatically 
multiplicatively renormalizable in d=4
● Define 

H  z =1
2
0, p2  z 1

2
E

1
2

log p2 z 

deg p z =1
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Super-renormalizability
● Progator of modes in UV regime (asymptotics)

● General L-loop integral is

● Superficial degree of divergence of L-loop graph ∆

● Graviton field is dimensionless 
● The same maximal number of derivatives in vertices as in 
propagators in UV

● Topology of any graph

~k−42~k−42

≤4−2 L−1

I=VL−1

Integral=∫ d 4 k L vertices
propagators

[vertex ]=[propagator ]=k 42

≤4 L−L−142

=4 LV [vertex ]− I [ propagator ]

Integral=∫ d 4 k L vertices
propagators
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Super-renormalizability
 In d=4 divergences are present:

● formally for γ=-1 at any loop order and ∆ grows with growing L ⇒ 
non-renormalizability of EH gravity

● for γ=0 at any loop order and ∆ ≤ 4 ⇒ renormalizability of R2 gravity
● for γ=1 at loop order 1,2,3 ⇒ 3-loop super-renormalizability
● for γ=2 at loop order 1,2 ⇒ 2-loop super-renormalizability
● for γ=3 at loop order 1 ⇒ 1-loop super-renormalizability

● Divergences remain only at 1-loop order for γ≥3

We achieved 1-loop super-renormalizability!
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Finiteness
● No divergences at the quantum level

● Divergent part of the effective action ~ beta functions of the theory

 related to scale (conformal) invariance and FP of RG flow
● In 1-loop superrenormalizable theory perturbative contributions only 
at one loop only to four couplings

● Contributions only from generally covariant terms, with 2γ+4 to 2γ 
(partial) derivatives on the metric

i=0i=0

 −2 0
1 0

2

Ldiv=
−2 R0

1 R20
2 R

2
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Finiteness
● Contributions to beta functions

● For cosmological constant

● For Planck constant

● For quadratic in curvature terms

● Set to zero all ω
γ-2

 and ω
γ-1

 and terms cubic, quartic in curvature

● Add two killers of beta functions        and 

~
−2


,
−1



2

−2~
−1


,O Riem3

0
1,2~


1


2 ,ORiem3 ,O Riem4


0

2
0

1
0

1
0
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0

2
0
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Convergence in UV
● In UV regime

● If we choose

then the kinetic term

 with identification and

● No other terms in the kinetic part (besides κ-2R) due to strong UV 
convergence

eH  zeE /2∣p  z ∣

G
eH z−1
 R eE /2 R

∣z 1∣
 R−eE /2 R∣z

1∣
2

R

∣z∣∞

z=
2 =

eE /2

2 12

−2G
eH  z−1
 R R

 R−
2
R R

∀ n∈N    lim z∞ eH z 

e E/2∣z1∣
−1 z n=0

p  z =z 1
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Killers
● Quadratic in curvature (“kinetic”) part of the Lagrangian

● One of the simplest choice

● Contribution to beta functions from killers

Finiteness if

● Contribution of killers to be computed using Barvinsky-Vilkovisky 
technology for traces of covariant operators on any background and 
in Dimensional Regularization (d=4-ε)

s1 R
2−2 R2s2 R R

−2RR


L=
1 RR

2 R
 R

0
1,2 kill~

s


0
1,2 kill~

s



0

1,20
1,2 kill=0
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Computation

Tr ln H K1=s1
i


24 R2

3
1

2

● 1-loop Quantum Effective Action

●  Kinetic operator for quantum fluctuations on any curved 
background

● Contribution from killers we need only to quadratic in curvature 
order
● In BV trace technology killers contribute only to U terms (with 2γ 
derivatives)

 

=
i
2

Tr ln H

H  , = 2S
 g g 

div=−
1
∑i

i X i

Tr ln H K2=s2
i
  −10

1
2 R2

3
2 3

1
2 


2 20
17

2 R
2

3
2 3

1
2  
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Finiteness
● Beta functions of quadratic in curvature couplings 

● c
1
 and c

2
 are contributions from terms in “kinetic” part of Lagrangian

● Coefficients of killers required to kill beta functions

s1=
−3

1
2 40 c1

110c2
114 c1

2−c2
2

24 20
17

2 

R2:=a1 s1a2 s2c1 R
2 :=b2 s2c2

s2=
−3c2

2 3
1

2

20
17

2 .
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Finite Quantum Gravity
 One of the simplest Lagrangian for finite QG theory in d=4

 

 with

Lagrangian in UV

H  z =1
2
0, p2  z 1

2
E

1
2

log p2 z 

∑i c i
3R3i∑i ci

4R4i∑i ci
5R5i

p  z =z 4 =3

∑i c i
3R3i∑i ci

4R4i∑i ci
5R5i

∑i c i
3R3i∑i ci

4R4i∑i ci
5R5i∑i c i

3R3i∑i ci
4R4i∑i ci

5R5i

L=−2R−2G
eH z −1
 Rs1 R

2R2s2R R
RR



H  z =1
2
0, p2  z 1

2
E

1
2

log p2 z H  z =1
2
0, p2  z 1

2
E

1
2

log p2 z 

LUV=
−2 RR

3 R−
2
R3 Rs1 R

2R2s2R
2 R

2 LUV=
−2 RR

3 R−
2
R3 Rs1 R

2R2s2R
2 R

2 LUV=
−2 RR

3 R−
2
R3 Rs1 R

2R2s2R
2 R

2 

L=−2R−2G
eH z −1
 Rs1 R

2R2s2R R
RR

L=−2R−2G
eH z −1
 Rs1 R

2R2s2R R
RR



z=
2

=
eE /2

82∑i c i
3R3i∑i ci

4R4i∑i ci
5R5i
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Conclusions
● E-H QG is valid non-renormalizable EFT below Planck scale

● HDQG is renormalizable, can be made even 1-loop super-
renormalizable, has massive ghosts

● Nonlocality in formfactors solves unitarity problems, HDQG revival !!

● Still possible polynomial behaviors for propagation 
asymptotically in UV 

● Divergences only at one-loop order

● Perturbative finiteness obtained by adding killers

● Easy generalizations to higher dimensions and for higher curvature 
terms in the action
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Conclusions

 Finite Quantum Gravity Exists!!!
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Thank you 
for attention!
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