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Motivation

« Effective Field Theory of Quantum Gravity:

- low energy QG is valid as QFT with a cutoff

- despite non-renormalizability of E-H QG
predictions are possible and calculable in EFT

 Fundamental Theory of Quantum Gravity:

- defined without problems at any (high) energy scale
- with higher derivatives

- complete in UV regime

- renormalizable or even finite in quantum realm

e |s it possible to construct?
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« Quantum Gravity with Higher Derivative Action
 Renormalizability

« Analytic non-local Form-factors

* (1-loop) Super-renormalizability

» Killers of beta functions

* Finiteness

e Conclusions
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E-H QG as EFT

* Quantum field theory of small low-energetic fluctuations of
metric degrees of freedom around flat Minkowski spacetime
(Donoghue et al '94-'00) _ I

guv_nuv+ uv

» General covariance as a gauge symmetry on the linearized level
» Gravitons around flat spacetime are massless <« gauge symmetry

e Standard quantization using Faddeev-Popov trick for gauge
theories

« Expansion of lagrangian in number of derivatives
and in powers of graviton field 1 =x"*R(h)+0(R?)

 Feynman diagrams for gravitons interacting with matter
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E-H QG as QFT

» Perturbative calculus with dimensionful coupling parameter (in d=4)
2—

« Pure gravity: 1-loop finite (no divergences) K=16mG y

» Gravity+matter: non-renormalizable

» E-H Gravity non-renormalizable

e The reason: .
- dimensionful coupling constant M=k
- only two derivatives in the bare action, too fast UV propagation

- metric fluctuations hIle are dimensionless, compare to gauge field

fluctuations A“

[, |1=E° [4,]=E

[TRY
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Quest for Quantum Gravity

 QE-H: Non-renormalizable, but unitary
« Way out: Asymptotic Safety Scenario (Weinberg, Reuter, Niedermaier)

e Let's first quantize matter, put it on curved spacetime background,
only later quantize gravitation (Shapiro)

» Observation:
Counterterms needed to be added to the divergent matter effective

action are of the type R* and C? (in d=4)

» Conclusions:
- These counterterms contain higher derivatives of the bckg metric
- We need quantum theory of gravity with higher derivatives
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Higher Derivative Quantum Gravity
(HDQG)

* Four derivative theory '77 Stelle . o,
L=A+k "R+w,R"+w R,

 First QG renormalizable in d=4

- Improved UV behavior for propagation of modes IT~k *

« Asymptotically Free in UV like YM

* Improvement of the E-H action in EFT for QG

« Classical Ostrogradsky instabilities

* Presence of massive ghost with negative residue
* Violation of Unitarity

» Rapid decay of Gravitational Vacuum

« Can not be viewed as a fundamental theory
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Higher derivatives

N N
L=A+k ’R+), _ w,RA"R+D> _ wiR, " R"
» Behavior in UV improved even more
* Propagator is a polynomial of a degree N+2 in momentum k
H~k—(4+2N)
» Asymptotic Freedom for all couplings
» At low energy reduces effectively to E-H QG

* New ghost poles with oscillating sign of residues

« Unitarity problems still present!!!
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Non-local form-factors

L=A+k'R+RF (J)R+R,, F,(0)R"

« Extension of the quadratic in curvature terms Tomboulis, Krasnikov

* The most general theory describing gravitons' propagation around
flat spacetime

« Intrinsically non-local due to non-polynomial functions £ and F,

« Example with one form-factor (multiplicative modification of the
graviton propagator)

. . eH(EI/AZ)_l
L=A+k "R+k "G,

J

R"’
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Non-local form-factors

Requirements:

e Propagator has only first single poles with real masses (no
tachyons) and with positive residues (no ghosts)

* In the spectrum only physical massless transverse graviton (spin 2)

(z) =

Z=—7

Demands on a form-factor e e

e is real and positive on the real axis and has no zeros on the
complex plane, is analytic on the whole complex plane

 has proper asymptotics for large z (in UV) along and around real
axis (nonpolynomial or polynomial with degree =1)

« Example: | | 1

H(z)=5F(0,p2(z))+5>/E+510gp2(z)
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Non-local form-factors
1 1 1
H(z)=2T(0,p"(z))+5y,+5logp(2)
* If p(z) is a polynomial then UV behavior is asymptotically
polynomial, so asymptotically in UV HDQG
e But in H(z) there are no poles of p(z) due to analytic properties of

H(z)!
 Unitarity of the theory secured at the perturbative level

* If degree of p(z) greater than zero, then theory is automatically
multiplicatively renormalizable in d=4

e Define degp(z)=y—|—1
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Super-renormalizability

- Progator of modes in UV regime (asymptotics)  IT~k “*2Y
1 vertices
propagators

» General L-loop integral is Integral=f (d*k)

* Superficial degree of divergence of L-loop graph A
A=4 L+V |vertex |— I | propagator |

e Graviton field is dimensionless
e The same maximal number of derivatives in vertices as in

propagators in UV [ vertex |=| propagator |=k*"*”
» Topology of any graph I=V+L—1
A<4L—(L—1)(4+2y) A<4—2y(L—1)
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Super-renormalizability

In d=4 divergences are present:

* formally for y=-1 at any loop order and A grows with growing L []
non-renormalizability of EH gravity

« for y=0 at any loop order and A <4 [0 renormalizability of R* gravity
* for y=1 at loop order 1,2,3 [ 3-loop super-renormalizability

* for y=2 at loop order 1,2 I 2-loop super-renormalizability

* for y=3 at loop order 1 [ 1-loop super-renormalizability

* Divergences remain only at 1-loop order for y=3

We achieved 1-loop super-renormalizability!
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Finiteness

* No divergences at the quantum level

 Divergent part of the effective action ~ beta functions of the theory
B,=0

related to scale (conformal) invariance and FP of RG flow

 In 1-loop superrenormalizable theory perturbative contributions only

at one loop only to four couplings A «° w, w,

_ -2 1 2 2 2
Ly, =A+K "R+w R +wy R,

* Contributions only from generally covariant terms, with 2y+4 to 2y
(partial) derivatives on the metric
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Finiteness

e Contributions to beta functions ,
6Y) o

B~ =2, (=)
e For cosmological constant Yw, T w,

w
- y—1 . 3
B~ ,O(Riem”)

y

* For Planck constant

O(Riem’), O (Riem")

1
. ~— Y

« For quadratic in curvature terms B ek
Y

- Setto zero all @ , and w , and terms cubic, quartic in curvature

» Add two killers of beta functions B, and B8,;
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Convergence in UV

. H(z 212
* In UV regime z[—+00 ¥ — e p(z)
e If we choose  p(z)=z"""
] ] G eH(Z)_l RHV YE/2R |Zy+1|RIJV_ YE/2R|Zy+l|R
then the kineticterm Yw ™3 —e T, ¢ 0]
0 eYE/z
with identification Sy and w=A2(y+1)K2
-2 e'—1 uv y puv__ W y
<26, g R —wR, 'RV =TROR

* No other terms in the kinetic part (besides k*R) due to strong UV

convergence H(z)

V neN limHm( ° 1)Z"=o

20 y+1|
eYE ZY |
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Killers

« Quadratic in curvature (“kinetic”) part of the Lagrangian
L=w,RR+w,R, " R"
* One of the simplest choice
s RO R +5,R, R"°R R
» Contribution to beta functions from Kkillers Bwé,zkm“’i

W,

Finiteness if B2t B =0

 Contribution of killers to be computed using Barvinsky-Vilkovisky
technology for traces of covariant operators on any background and

in Dimensional Regularization (d=4-¢)
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Computation

o 1- I I ] A |
1-loop Quantum Effective Action _ 1+ . & Fdw:_gZ,ﬁiXi

 Kinetic operator for quantum fluctuations on any curved
background 52 S

08,,08,,

» Contribution from killers we need only to quadratic in curvature
order
* In BV trace technology killers contribute only to U terms (with 2y

derivatives) : 2
TrinH,,=s, L_24R

H" "=

€ 3w +a))2/

i [ (10w, +w )R2_|_2(20w1-I—7oo2)R2
3w (3w + w ) 3w (3w + )

A%

TrlnHK2 Szg
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Finiteness

» Beta functions of quadratic in curvature couplings
B.i=as +a,s,+c, BRiV:=b2S2+ C,

- ¢, and c, are contributions from terms in “kinetic” part of Lagrangian

» Coefficients of killers required to kill beta functions
—(3w,+w,)(40 ¢, w,+10c,w, +14c, w;—c,w;)

24 (20 w,+7 w;)

N

-3¢, w;(3 w;—l—wi)

2Ow)1/—l—7w)2/

SH=
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Finite Quantum Gravity

One of the simplest Lagrangian for finite QG theory in d=4

H(z)
L=A+kR+KG,, 5 —L R" 45, ROR+s,R, R OR, R+
+2 R+ RN+ &V (R, Z=%
. 1 11
With = H(z)=2T(0,p*(2)+5 ys+5logp*(z) plz)=z" y=3

Lagrangian in UV
Lyy=A+k”R+wR,, ¥ R“V—%REI3R+SI RPOR*+s,R2,OR +

yel2

+ 3, R T, AR T R, et
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Conclusions

 E-H QG is valid non-renormalizable EFT below Planck scale

« HDQG is renormalizable, can be made even 1-loop super-
renormalizable, has massive ghosts

» Nonlocality in formfactors solves unitarity problems, HDQG revival !!

« Still possible polynomial behaviors for propagation
asymptotically in UV

* Divergences only at one-loop order
» Perturbative finiteness obtained by adding killers

» Easy generalizations to higher dimensions and for higher curvature
terms in the action
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Conclusions

Finite Quantum Gravity Exists!!!
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Thank you
for attention!
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