Heavy vector-like quarks
 Constraints and phenomenology at the LHC

Luca Panizzi

University of Southampton, UK

Outline

(9) Motivations and Current Status
(2) The effective lagrangian
(3) Constraints on model parameters

4 Signatures at LHC

Outline

(9) Motivations and Current Status

2 The effective lagrangian

3 Constraints on model parameters

4 Signatures at LHC

What are vector-like fermions?

 and where do they appear?The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

What are vector-like fermions?

 and where do they appear?The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Why are they called "vector-like"?

What are vector-like fermions?

 and where do they appear?The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Why are they called "vector-like"?

$$
\mathcal{L}_{W}=\frac{g}{\sqrt{2}}\left(J^{\mu+} W_{\mu}^{+}+J^{\mu-} W_{\mu}^{-}\right) \quad \text { Charged current Lagrangian }
$$

What are vector-like fermions?

 and where do they appear?The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Why are they called "vector-like"?

$$
\mathcal{L}_{W}=\frac{g}{\sqrt{2}}\left(J^{\mu+} W_{\mu}^{+}+J^{\mu-} W_{\mu}^{-}\right) \quad \text { Charged current Lagrangian }
$$

- SM chiral quarks: ONLY left-handed charged currents

$$
J^{\mu+}=J_{L}^{\mu+}+J_{R}^{\mu+} \quad \text { with } \quad\left\{\begin{array}{l}
J_{L}^{\mu+}=\bar{u}_{L} \gamma^{\mu} d_{L}=\bar{u} \gamma^{\mu}\left(1-\gamma^{5}\right) d=V-A \\
J_{R}^{\mu+}=0
\end{array}\right.
$$

What are vector-like fermions?

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Why are they called "vector-like"?

$$
\mathcal{L}_{W}=\frac{g}{\sqrt{2}}\left(J^{\mu+} W_{\mu}^{+}+J^{\mu-} W_{\mu}^{-}\right) \quad \text { Charged current Lagrangian }
$$

- SM chiral quarks: ONLY left-handed charged currents

$$
J^{\mu+}=J_{L}^{\mu+}+J_{R}^{\mu+} \quad \text { with } \quad\left\{\begin{array}{l}
J_{L}^{\mu+}=\bar{u}_{L} \gamma^{\mu} d_{L}=\bar{u} \gamma^{\mu}\left(1-\gamma^{5}\right) d=V-A \\
J_{R}^{\mu+}=0
\end{array}\right.
$$

- vector-like quarks: BOTH left-handed and right-handed charged currents

$$
J^{\mu+}=J_{L}^{\mu+}+J_{R}^{\mu+}=\bar{u}_{L} \gamma^{\mu} d_{L}+\bar{u}_{R} \gamma^{\mu} d_{R}=\bar{u} \gamma^{\mu} d=V
$$

What are vector-like fermions?

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Vector-like quarks in many models of New Physics

- Warped or universal extra-dimensions KK excitations of bulk fields
- Composite Higgs models VLQ appear as excited resonances of the bounded states which form SM particles
- Little Higgs models partners of SM fermions in larger group representations which ensure the cancellation of divergent loops
- Gauged flavour group with low scale gauge flavour bosons required to cancel anomalies in the gauged flavour symmetry
- Non-minimal SUSY extensions

VLQs increase corrections to Higgs mass without affecting EWPT

SM and a vector-like quark

$\mathcal{L}_{M}=-M \bar{\psi} \psi \quad$ Gauge invariant mass term without the Higgs

SM and a vector-like quark

$\mathcal{L}_{M}=-M \bar{\psi} \psi \quad$ Gauge invariant mass term without the Higgs

Charged currents both in the left and right sector

SM and a vector-like quark

$\mathcal{L}_{M}=-M \bar{\psi} \psi \quad$ Gauge invariant mass term without the Higgs

Charged currents both in the left and right sector

They can mix with SM quarks

$$
b^{\prime} \rightarrow \times-d_{i}
$$

Dangerous FCNCs \longrightarrow strong bounds on mixing parameters BUT
Many open channels for production and decay of heavy fermions
Rich phenomenology to explore at LHC

Searches at the LHC

Overview of ATLAS searches

from ATLAS Twiki page

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots
$4^{\text {th }}$ generation: $b^{\prime} b^{\prime}\left(T_{5 / 3} T_{5 / 3}\right) \rightarrow$ WtWt $\quad L=4.7 \mathrm{~b}^{\mathbf{4}}, 7$ TeV [ATLAS-conf-2012-130] $\quad 670 \mathrm{GeV} \mathrm{b}^{\prime}\left(\mathrm{T}_{53}\right)$ mass
New quark $\mathrm{b}^{\prime}: \mathrm{b}^{\prime \prime} \mathrm{b}^{3} \rightarrow \mathrm{Zb}+\mathrm{X}, m_{\text {z }}$
Top partner : TT $\rightarrow \mathrm{tt}+\mathrm{A}_{0} \mathrm{~A}_{0}$ (dilepton, $\mathrm{M}_{\mathrm{T} 2}{ }^{20}$)
Vector-like quark: $\mathrm{CC}, m_{\text {laq }}$
Vector-like quark: $\mathrm{NC}, m_{\|}$

Overview of CMS searches

 from CMS Twiki pagehttps://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

But look at the hypotheses ...

Example: b^{\prime} pair production

Common assumption $B R\left(b^{\prime} \rightarrow t W\right)=100 \%$

Searches in the same-sign dilepton channel (possibly with b-tagging)

Example: b^{\prime} pair production

Common assumption $B R\left(b^{\prime} \rightarrow t W\right)=100 \%$

Searches in the same-sign dilepton channel (possibly with b-tagging)

If the b^{\prime} decays both into $W t$ and $W q$

There can be less events in the same-sign dilepton channel!

Representations and lagrangian terms

Assumption: vector-like quarks couple with SM quarks through Yukawa interactions

Representations and lagrangian terms

Assumption: vector-like quarks couple with SM quarks through Yukawa interactions

	SM	Singlets (U) (D)		Doublets$\binom{X}{U}\binom{U}{D}_{\binom{D}{Y}}$			Triplets$\left(\begin{array}{l} X \\ U \\ D \end{array}\right) \quad\left(\begin{array}{l} U \\ D \\ Y \end{array}\right)$	
	$\binom{u}{d}\binom{$ c }{$s}\binom{$ t }{$b}$							
$S U(2)_{L}$	2 and 1	1		2			3	
$U(1)_{Y}$	$\begin{gathered} q_{L}=1 / 6 \\ u_{R}=2 / 3 \\ d_{R}=-1 / 3 \end{gathered}$	2/3			1/6	-5/6	2/3	-1/3
\mathcal{L}_{Y}	$\begin{gathered} -y_{u}^{i} \bar{a}_{L}^{i} H^{c} u_{R}^{i} \\ -y_{d}^{i} \bar{q}_{L}^{i} V_{C K M}^{i, j} H d_{R}^{j} \end{gathered}$	$\begin{gathered} -\lambda_{i}^{i} \bar{q}_{L}^{i} H^{c} U_{R} \\ -\lambda_{d}^{i} \bar{q}_{L}^{i} H D_{R} \end{gathered}$					$-\lambda_{i} \bar{q}_{L}^{i} \tau^{a} H^{(c)} \psi_{R}^{a}$	

Representations and lagrangian terms

Assumption: vector-like quarks couple with SM quarks through Yukawa interactions

Representations and lagrangian terms

Assumption: vector-like quarks couple with SM quarks through Yukawa interactions

	SM $\binom{u}{d}\binom{c}{s}\binom{t}{b}$	Singlets (t^{\prime}) (b^{\prime})	Doublets $\binom{X}{t^{\prime}}\binom{t^{\prime}}{b^{\prime}}\binom{b^{\prime}}{Y}$	Triplets $\left(\begin{array}{l} X \\ t^{\prime} \\ b^{\prime} \end{array}\right) \quad\left(\begin{array}{l} t^{\prime} \\ b^{\prime} \\ Y \end{array}\right)$
$S U(2)_{L}$	2 and 1	1	2	3
$U(1)_{Y}$	$\begin{gathered} q_{L}=1 / 6 \\ u_{R}=2 / 3 \\ d_{R}=-1 / 3 \end{gathered}$	2/3 $-1 / 3$	$7 / 6 \quad 1 / 6 \quad-5 / 6$	2/3 -1/3
\mathcal{L}_{Y}	$\begin{gathered} -\frac{y_{i}^{i} v}{\sqrt{2}} \bar{u}_{L}^{i} u_{R}^{i} \\ -\frac{y_{d} d}{\sqrt{2}} \bar{d}_{L}^{i} V_{C K M}^{i j} d_{R}^{i j} \\ \hline \end{gathered}$	$\begin{aligned} & -\frac{\lambda_{i}^{i} v}{\sqrt{2}} \bar{u}_{L}^{i} U_{R} \\ & -\frac{\lambda_{i} v}{\sqrt{2}} \bar{d}_{L}^{i} D_{R} \end{aligned}$	$\begin{aligned} & -\frac{\lambda_{i}^{i} v}{\sqrt{2}} U_{L} u_{R}^{i} \\ & -\frac{\lambda_{i} v}{\sqrt{2}} D_{L} d_{R}^{i} \end{aligned}$	$\begin{aligned} & -\frac{\lambda_{i}}{\sqrt{2}} \bar{u}_{L}^{i} U_{R} \\ & -\lambda_{i} v \bar{d}_{L}^{i} D_{R} \end{aligned}$
\mathcal{L}_{m}		$-M \bar{\psi} \psi$	(gauge invariant sinc	vector-like)
Free parameters		$\begin{gathered} 4 \\ M+3 \times \lambda^{i} \end{gathered}$	$\begin{gathered} 4 \text { or } 7 \\ M+3 \lambda_{u}^{i}+3 \lambda_{d}^{i} \end{gathered}$	$\begin{gathered} 4 \\ M+3 \times \lambda^{i} \end{gathered}$

Outline

(4) Motivations and Current Status

2 The effective lagrangian

3 Constraints on model parameters

4 Signatures at LHC

Mixing between VL and SM quarks

Flavour and mass eigenstates

$$
\left(\begin{array}{c}
\tilde{u} \\
\tilde{c} \\
\tilde{t} \\
U
\end{array}\right)_{L, R}=V_{L, R}^{u}\left(\begin{array}{c}
u \\
c \\
t \\
t^{\prime}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
\tilde{d} \\
\tilde{s} \\
\tilde{b} \\
D
\end{array}\right)_{L, R}=V_{L, R}^{d}\left(\begin{array}{c}
d \\
s \\
b \\
b^{\prime}
\end{array}\right)
$$

The exotics $X_{5 / 3}$ and $Y_{-4 / 3}$ do not mix \rightarrow no distinction between flavour and mass eigenstates

$$
\mathcal{L}_{y+M}=(\overline{\tilde{u}} \overline{\tilde{c}} \overline{\tilde{t}} \bar{U})_{L} \mathcal{M}_{u}\left(\begin{array}{c}
\tilde{u} \\
\tilde{c} \\
\tilde{t} \\
U
\end{array}\right)_{R}+(\overline{\tilde{d}} \overline{\tilde{s}} \overline{\tilde{b}} \bar{D})_{L} \mathcal{M}_{d}\left(\begin{array}{c}
\tilde{d} \\
\tilde{s} \\
\tilde{b} \\
D
\end{array}\right)_{R}+\text { h.c. }
$$

Mixing between VL and SM quarks

Flavour and mass eigenstates

$$
\left(\begin{array}{c}
\tilde{u} \\
\tilde{c} \\
\tilde{t} \\
U
\end{array}\right)_{L, R}=V_{L, R}^{u}\left(\begin{array}{c}
u \\
c \\
t \\
t^{\prime}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
\tilde{d} \\
\tilde{s} \\
\tilde{b} \\
D
\end{array}\right)_{L, R}=V_{L, R}^{d}\left(\begin{array}{c}
d \\
s \\
b \\
b^{\prime}
\end{array}\right)
$$

The exotics $X_{5 / 3}$ and $Y_{-4 / 3}$ do not mix \rightarrow no distinction between flavour and mass eigenstates

$$
\mathcal{L}_{y+M}=(\overline{\tilde{u}} \overline{\tilde{c}} \overline{\tilde{t}} \bar{U})_{L} \mathcal{M}_{u}\left(\begin{array}{c}
\tilde{u} \\
\tilde{c} \\
\tilde{t} \\
U
\end{array}\right)_{R}+(\overline{\tilde{d}} \overline{\tilde{s}} \overline{\tilde{b}} \bar{D})_{L} \mathcal{M}_{d}\left(\begin{array}{c}
\tilde{d} \\
\tilde{s} \\
\tilde{b} \\
D
\end{array}\right)_{R}+h . c .
$$

Mixing matrices depend on representations

- Singlets and triplets:

$$
\mathcal{M}_{u}=\left(\begin{array}{llll}
\tilde{m}_{u} & & & x_{1} \\
& \tilde{m}_{c} & & x_{2} \\
& & \tilde{m}_{t} & x_{3} \\
& & & M
\end{array}\right) \quad \mathcal{M}_{d}=\left(\begin{array}{llll}
\tilde{V}_{L}^{C K M}\left(\begin{array}{lll}
\tilde{m}_{d} & & \\
& \tilde{m}_{s} & \\
& & \tilde{m}_{b}
\end{array}\right) \tilde{V}_{R}^{C K M} & \begin{array}{l}
x_{1} \\
x_{2} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array} & & \\
\hline
\end{array}\right.
$$

- Doublets: $\mathcal{M}_{u, d}^{4 I} \leftrightarrow \mathcal{M}_{u, d}^{I 4}$

Mixing matrices

$$
\mathcal{L}_{m}=\left(\bar{u} \bar{c} \bar{t} \bar{t}^{\prime}\right)_{L}\left(V_{L}^{u}\right)^{\dagger} \mathcal{M}_{u}\left(V_{R}^{u}\right)\left(\begin{array}{c}
u \\
c \\
t \\
t^{\prime}
\end{array}\right)_{R}+\left(\bar{d} \bar{s} \bar{b} \bar{b}^{\prime}\right)_{L}\left(V_{L}^{d}\right)^{\dagger} \mathcal{M}_{d}\left(V_{R}^{d}\right)\left(\begin{array}{l}
d \\
s \\
b \\
b^{\prime}
\end{array}\right)_{R}+h . c .
$$

$$
\left(V_{L}^{u}\right)^{\dagger} \mathcal{M}_{u}\left(V_{R}^{u}\right)=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}, m_{t^{\prime}}\right) \quad\left(V_{L}^{d}\right)^{\dagger} \mathcal{M}_{d}\left(V_{R}^{d}\right)=\operatorname{diag}\left(m_{d}, m s, m_{b}, m_{b^{\prime}}\right)
$$

Mixing matrices

$$
\mathcal{L}_{m}=\left(\bar{u} \bar{c} \bar{t} \overline{t^{\prime}}\right)_{L}\left(V_{L}^{u}\right)^{+} \mathcal{M}_{u}\left(V_{R}^{u}\right)\left(\begin{array}{c}
u \\
c \\
t \\
t^{\prime}
\end{array}\right)_{R}+\left(\bar{d} \bar{s} \bar{b} \bar{b}^{\prime}\right)_{L}\left(V_{L}^{d}\right)^{+} \mathcal{M}_{d}\left(V_{R}^{d}\right)\left(\begin{array}{l}
d \\
s \\
b \\
b^{\prime}
\end{array}\right)_{R}+h . c .
$$

$$
\left(V_{L}^{u}\right)^{\dagger} \mathcal{M}_{u}\left(V_{R}^{u}\right)=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}, m_{t^{\prime}}\right) \quad\left(V_{L}^{d}\right)^{\dagger} \mathcal{M}_{d}\left(V_{R}^{d}\right)=\operatorname{diag}\left(m_{d}, m s, m_{b}, m_{b^{\prime}}\right)
$$

Mixing in left- and right-handed sectors behave differently

$$
\left\{\begin{array}{l}
\left(V_{L}^{q}\right)^{\dagger}\left(\mathcal{M}^{\dagger}\right)\left(V_{L}^{q}\right)=\operatorname{diag} \\
\left(V_{R}^{\varphi}\right)^{\dagger}\left(\mathcal{M}^{\dagger} \mathcal{M}\right)\left(V_{R}^{q}\right)=\operatorname{diag}
\end{array}\right.
$$

$$
q_{L, R}^{I} \xrightarrow[\neq]{V_{L, R}^{q}} q_{L, R}^{J}
$$

Mixing matrices

$$
\mathcal{L}_{m}=\left(\bar{u} \bar{c} \bar{c} \bar{t}^{\prime}\right)_{L}\left(V_{L}^{u}\right)^{\dagger} \mathcal{M}_{u}\left(V_{R}^{u}\right)\left(\begin{array}{c}
u \\
c \\
t \\
t^{\prime}
\end{array}\right)_{R}+\left(\bar{d} \bar{s} \bar{b} \bar{b}^{\prime}\right)_{L}\left(V_{L}^{d}\right)^{\dagger} \mathcal{M}_{d}\left(V_{R}^{d}\right)\left(\begin{array}{l}
d \\
s \\
b \\
b^{\prime}
\end{array}\right)_{R}+h . c .
$$

$$
\left(V_{L}^{u}\right)^{\dagger} \mathcal{M}_{u}\left(V_{R}^{u}\right)=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}, m_{t^{\prime}}\right) \quad\left(V_{L}^{d}\right)^{\dagger} \mathcal{M}_{d}\left(V_{R}^{d}\right)=\operatorname{diag}\left(m_{d}, m s, m_{b}, m_{b^{\prime}}\right)
$$

Mixing in left- and right-handed sectors behave differently

$$
\left\{\begin{array}{ll}
\left(V_{L}^{q}\right)^{+}\left(\mathcal{M} \mathcal{M}^{\dagger}\right)\left(V_{L}^{q}\right)=\operatorname{diag} \\
\left(V_{R}^{q}\right)^{\dagger}\left(\mathcal{M}^{\dagger} \mathcal{M}\right)\left(V_{R}^{\prime}\right)=\text { diag }
\end{array} \quad q_{L, R}^{I} \xrightarrow{V_{L, R}^{q}} q_{L, R}^{J}\right.
$$

Singlets and triplets (case of up-type quarks)

$$
\begin{aligned}
& V_{L}^{u} \Longrightarrow \mathcal{M}_{u} \cdot \mathcal{M}_{u}^{+}=\left(\begin{array}{cccc}
\tilde{m}_{u}^{2}+\left|x_{1}\right|^{2} & x_{1}^{*} x_{2} & x_{1}^{*} x_{3} & x_{1}^{*} M \\
x_{2}^{*} x_{1} & \tilde{m}_{c}^{2}+\left|x_{2}\right|^{2} & x_{2}^{*} x_{3} & x_{2}^{*} M \\
x_{3} x_{1} & x_{3} x_{2} & \tilde{m}_{t}^{2}+x_{3}^{2} & x_{3} M \\
x_{1} M & x_{2} M & x_{3} M & M^{2}
\end{array}\right) \begin{array}{c}
\text { mixing in the left sector } \\
\text { present also for } \tilde{m}_{q} \rightarrow 0
\end{array} \\
& \begin{array}{l}
\text { flavour constraints for } q_{L} \\
\text { are relevant }
\end{array} \\
& V_{R}^{u} \Longrightarrow \mathcal{M}_{u}^{+} \cdot \mathcal{M}_{u}=\left(\begin{array}{ccccc}
\tilde{m}_{u}^{2} & & & x_{1}^{*} \tilde{m}_{u}^{2} \\
& \tilde{m}_{c}^{2} & & x_{2}^{*} \tilde{m}_{c}^{2} \\
& & \tilde{m}_{t}^{2} & x_{3} \tilde{m}_{t}^{2} \\
x_{1} \tilde{m}_{u} & x_{2} \tilde{m}_{c} & x_{3} \tilde{m}_{t} & \sum_{i=1}^{3}\left|x_{i}\right|^{2}+M^{2}
\end{array}\right) \quad \begin{array}{c}
m_{q} \propto \tilde{m}_{q} \\
\frac{\text { mixing is suppressed }}{\text { by quark masses }}
\end{array}
\end{aligned}
$$

Doublets: other way round

Now let's check how couplings are modified

 this will allow us to identify which observables can constrain masses and mixing parameters
Couplings

With Z

$$
\begin{aligned}
\mathcal{L}_{Z} & =\frac{g}{c_{W}}\left(\bar{q}_{1} \bar{q}_{2} \bar{q}_{3} \bar{q}_{1}^{\prime}\right)_{L}\left(V_{L}^{q}\right)^{+}\left[\left(T_{3}^{q}-Q^{q} s_{w}^{2}\right)\left(\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right)+\left(T_{3}^{q^{\prime}}-T_{3}^{q}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
\\
\\
1
\end{array}\right)\right] \gamma^{\mu}\left(V_{L}^{q}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q^{\prime}
\end{array}\right)_{L} Z_{\mu} \\
& +\frac{g}{c_{W}}\left(\bar{q}_{1} \bar{q}_{2} \bar{q}_{3} \bar{q}_{1}^{\prime}\right)_{R}\left(V_{R}^{q}\right)^{\dagger}\left[\left(-Q^{q} s_{w}^{2}\right)\left(\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right)+T_{3}^{q^{\prime}}\left(\begin{array}{c}
0 \\
0 \\
\\
\\
1
\end{array}\right)\right] \gamma^{\mu}\left(V_{R}^{q}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q^{\prime}
\end{array}\right)_{R} Z_{\mu}
\end{aligned}
$$

Couplings

With Z

$$
\begin{aligned}
\mathcal{L}_{Z} & =\frac{g}{c_{W}}\left(\bar{q}_{1} \bar{q}_{2} \bar{q}_{3} \bar{q}_{1}^{\prime}\right)_{L}\left(V_{L}^{q}\right)^{+}\left[\left(T_{3}^{q}-Q^{q_{s}^{2}} s_{w}\right)\left(\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right)+\left(T_{3}^{q^{\prime}}-T_{3}^{q}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right)\right] \gamma^{\mu}\left(V_{L}^{q}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{3}^{\prime}
\end{array}\right)_{L} \\
& \left.+\frac{g}{c_{W}}\left(\bar{q}_{1} \bar{q}_{2} \bar{q}_{\bar{q}} \bar{q}_{1}^{\prime}\right)_{R}\left(V_{R}^{q}\right)^{+}\left[\left(-Q^{q_{s}^{2}}\right)^{2}\right)\left(\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right)+T_{3}^{q^{\prime}}\left(\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right)\right] \gamma^{\mu}\left(V_{R}^{q}\right)\left(\begin{array}{c}
q_{1} \\
q_{2} \\
q_{3} \\
q^{\prime}
\end{array} z_{R}\right.
\end{aligned}
$$

FCNC, are induced by the mixing with vector-like quarks!
$\left.s_{Z L}^{I I}=\frac{g}{c_{W}}\left(T_{3}^{q}-Q^{q} s_{T W}^{2}\right) \delta^{I I}+\frac{g}{c_{W}}\left(T_{3}^{q^{\prime}}-T_{3}^{q}\right)\left(V_{L}^{*}\right)^{\prime}\right)^{\prime} V_{L}^{q^{\prime}}$
$g_{Z R}^{I I}=\frac{g}{c_{W}}\left(-Q^{g} s_{w}^{2}\right) \delta^{I I} \quad+\frac{g}{c_{W}} T_{3}^{q^{\prime}}\left(V_{R}^{*}\right)^{9^{\prime} /} V_{R}^{q^{\prime} J}$

$\propto\left(V_{L, R}^{*}\right)^{t^{\prime} u} u_{L, R}^{t_{R}^{\prime}}$

Couplings

With $W^{ \pm}$

$$
\begin{aligned}
\mathcal{L}_{W^{ \pm}} & =\frac{g}{\sqrt{2}}\left(\bar{u} \bar{c} \bar{y} \mid \bar{t}^{\prime}\right)_{L}\left(V_{L}^{u}\right)^{+}\binom{\tilde{V}_{L}^{\text {CKM }}}{\hdashline} \gamma^{\mu} V_{L}^{d}\left(\begin{array}{c}
d \\
s \\
b \\
b^{\prime}
\end{array}\right)_{L} W_{\mu}^{+} \\
& +\frac{g}{\sqrt{2}}\left(\bar{u} \bar{c} \bar{\epsilon} \mid \bar{t}^{\prime}\right)_{R}\left(V_{R}^{u}\right)^{+}\left(\begin{array}{ll}
0 & \\
0 & 0
\end{array}\right) \gamma^{\mu} V_{R}^{d}\left(\begin{array}{c}
d \\
s \\
\frac{b}{b^{\prime}}
\end{array}\right)_{R} W_{\mu}^{+}+\text {h.c. }
\end{aligned}
$$

CKM matrices for left and right handed sector:

$$
g_{W L}=\frac{g}{\sqrt{2}}\left(V_{L}^{u}\right)^{+}\left(\begin{array}{l|l}
\tilde{V}_{C K M} & \\
\hline
\end{array}\right) V_{L}^{d} \equiv \frac{g}{\sqrt{2}} V_{L}^{C K M} \quad g_{W R}=\frac{g}{\sqrt{2}}\left(V_{R}^{u}\right)^{\dagger}\left(\begin{array}{c|}
0 \\
0 \\
0^{0} \\
\hline
\end{array}\right) V_{R}^{d} \equiv \frac{g}{\sqrt{2}} V_{R}^{C K M}
$$

If BOTH t^{\prime} and b^{\prime} are present $\longrightarrow \mathrm{CC}$ between right-handed quarks

Couplings

With Higgs

$$
\mathcal{L}_{h}=\frac{1}{v}\left(\bar{q}_{1} \bar{q}_{2} \bar{q}_{3} \bar{q}_{1}^{\prime}\right)_{L}\left(V_{L}^{q}\right)^{+}\left[\mathcal{M}_{q}-M\left(\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right)\right]\left(V_{R}^{q}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q^{\prime}
\end{array}\right)_{R} h+h . c .
$$

The coupling is:

$$
C=\frac{1}{v}\left(V_{L}^{q}\right)^{+} \mathcal{M}_{q}\left(V_{R}^{q}\right)-\frac{M}{v}\left(V_{L}^{q}\right)^{+}\left(\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right)\left(V_{R}^{q}\right)=\frac{1}{v}\left(\begin{array}{c}
m_{q_{1}} \\
m_{q_{2}} \\
\\
\\
\\
\\
m_{q_{3}} \\
m_{q^{\prime}}
\end{array}\right)-\frac{M}{v}\left(V_{L}^{q}\right)^{+}\left(\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right)\left(V_{R}^{q}\right)
$$

FCNC induced by vector-like quarks are present in the Higgs sector too!

$$
C^{I I}=\frac{1}{v} m_{1} I^{I^{I}}-\frac{M}{v}\left(V_{L}^{*}\right)^{q^{\prime} I} V_{R}^{q^{\prime} J}
$$

Outline

(9) Motivations and Current Status

2 The effective lagrangian

(3) Constraints on model parameters

4 Signatures at LHC

Rare FCNC top decays

Suppressed in the SM, tree-level with t^{\prime}

$B R(t \rightarrow \mathrm{Zq})=\mathcal{O}\left(10^{-14}\right)$
SM prediction

Rare FCNC top decays

Suppressed in the SM, tree-level with t^{\prime}

$$
\begin{gathered}
B R(t \rightarrow Z q)=\mathcal{O}\left(10^{-14}\right) \\
\text { SM prediction }
\end{gathered}
$$

Loop decays with both SM and vector-like quarks

$$
\begin{aligned}
B R(t \rightarrow Z q) & =\mathcal{O}\left(10^{-12}\right) \quad \text { SM prediction } \\
B R(t \rightarrow g u) & <5.7 \times 10^{-5} \\
B R(t \rightarrow g c) & <2.7 \times 10^{-4}
\end{aligned} \text { ATLAS @ } 2.5 \mathrm{fb}^{-1}
$$

Rare FCNC top decays

Suppressed in the SM, tree-level with t^{\prime}

$$
\begin{gathered}
B R(t \rightarrow Z q)=\mathcal{O}\left(10^{-14}\right) \\
\text { SM prediction }
\end{gathered}
$$

Loop decays with both SM and vector-like quarks

$$
\begin{aligned}
B R(t \rightarrow Z q) & =\mathcal{O}\left(10^{-12}\right) \quad \text { SM prediction } \\
B R(t \rightarrow g u) & <5.7 \times 10^{-5} \\
B R(t \rightarrow g c) & <2.7 \times 10^{-4}
\end{aligned} \text { ATLAS @ } 2.5 \mathrm{fb}^{-1}
$$

Bound on mixing parameters $\quad \Longrightarrow \quad B R(t \rightarrow Z q, g q)=f\left(V_{L, R^{\prime}}^{q^{\prime} u} V_{L, R}^{q^{\prime} c}, V_{L, R}^{q^{\prime} t}\right) \leq B R^{\exp }$

$Z c \bar{c}$ and $Z b \bar{b}$ couplings

Coupling measurements

$$
\left.\begin{array}{c}
\left\{\begin{array} { l }
{ g _ { Z Z L } ^ { c } = 0 . 3 4 5 3 \pm 0 . 0 0 3 6 } \\
{ g _ { Z R } ^ { c } = - 0 . 1 5 8 0 \pm 0 . 0 0 5 1 }
\end{array} \left\{\begin{array}{lr}
g_{Z L}^{b}=-0.4182 \pm 0.00315 \\
g_{Z R}^{b}= & 0.0962 \pm 0.0063
\end{array}\right.\right. \\
\text { data from LEP EWWG }
\end{array}\right\}
$$

Asymmetry parameters

$A_{q}=\frac{\left(g_{\text {ZL }}^{q}\right)^{2}-\left(g_{Z R}^{q}\right)^{2}}{\left(g_{Z L}^{q}\right)^{2}+\left(g_{Z R}^{g}\right)^{2}}=A_{q}^{S M}\left(1+\delta A_{q}\right) \quad\left\{\begin{array}{l}A_{c}=0.670 \pm 0.027 \\ A_{b}=0.923 \pm 0.020 \\ \text { PDG fit }\end{array} \quad\left\{\begin{array}{c}A_{c}=0.66798 \pm 0.00055 \\ A_{b}=0.93462_{-0.00016}^{+0.00020}\end{array}\right.\right.$

Decay ratios

$$
R_{q}=\frac{\Gamma(Z \rightarrow q \bar{q})}{\Gamma(Z \rightarrow \text { hadrons })}=R_{q}^{S M}\left(1+\delta R_{q}\right) \quad\left\{\begin{array} { l }
{ R _ { c } = 0 . 1 7 2 1 \pm 0 . 0 0 3 0 } \\
{ R _ { b } = 0 . 2 1 6 2 9 \pm 0 . 0 0 0 6 6 }
\end{array} \quad \left\{\begin{array}{l}
R_{c}=0.17225_{-0.00012}^{+0.00016} \\
R_{b}=0.21583_{-0.00045}^{+0.00033}
\end{array}\right.\right.
$$

Atomic Parity Violation

Atomic parity is violated through exchange of Z between nucleus and atomic electrons
Weak charge of the nucleus

$$
Q_{W}=\frac{2 c_{W}}{g}\left[(2 Z+N)\left(g_{Z L}^{u}+g_{Z R}^{u}\right)+(Z+2 N)\left(g_{Z L}^{d}+g_{Z R}^{d}\right)\right]=Q_{W}^{S M}+\delta Q_{W}^{V L}
$$

From Z couplings $\left\{\begin{array}{l}\frac{2 c_{W}}{g} g_{Z L}^{q q}=2\left(T_{3}^{q}-Q^{q} S_{W}^{2}\right)+2\left(T_{3}^{q^{\prime}}-T_{3}^{q}\right)\left|V_{L}^{q^{\prime} q}\right|^{2} \\ \frac{2 c_{W}}{g} g_{Z R}^{q q}=2\left(-Q^{q} S_{W}^{2}\right) \quad+2\left(T_{3}^{q^{\prime}}\right)\left|V_{R}^{q^{\prime} q^{2}}\right|^{2}\end{array}\right.$

Atomic Parity Violation

Atomic parity is violated through exchange of Z between nucleus and atomic electrons
Weak charge of the nucleus

$$
Q_{W}=\frac{2 c_{W}}{g}\left[(2 Z+N)\left(g_{Z L}^{u}+g_{Z R}^{u}\right)+(Z+2 N)\left(g_{Z L}^{d}+g_{Z R}^{d}\right)\right]=Q_{W}^{S M}+\delta Q_{W}^{V L}
$$

From Z couplings $\begin{cases}\frac{2 c_{W}}{g} g_{Z L}^{q q}=2\left(T_{3}^{q}-Q^{q} S_{W}^{2}\right) & +2\left(T_{3}^{q^{\prime}}-T_{3}^{q}\right)\left|V_{L}^{q^{\prime} q}\right|^{2} \\ \frac{2 c_{W}}{g} g_{Z R}^{q q}=2\left(-Q^{q} s_{W}^{2}\right) & +2\left(T_{3}^{q^{\prime}}\right)\left|V_{R}^{q^{\prime} q}\right|^{2}\end{cases}$

$$
\delta Q_{W}^{V L}=2\left[(2 Z+N)\left(\left(T_{3}^{t^{\prime}}-\frac{1}{2}\right)\left|V_{L}^{t^{\prime} u}\right|^{2}+T_{3}^{t^{\prime}}\left|V_{R}^{t^{\prime} u}\right|^{2}\right)+(Z+2 N)\left(\left(T_{3}^{b^{\prime}}+\frac{1}{2}\right)\left|V_{L}^{b^{\prime} d}\right|^{2}+T_{3}^{b^{\prime}}\left|V_{R}^{b^{\prime} d}\right|^{2}\right)\right]
$$

Atomic Parity Violation

Atomic parity is violated through exchange of Z between nucleus and atomic electrons

Weak charge of the nucleus

$$
Q_{W}=\frac{2 c_{W}}{g}\left[(2 Z+N)\left(g_{Z L}^{u}+g_{Z R}^{u}\right)+(Z+2 N)\left(g_{Z L}^{d}+g_{Z R}^{d}\right)\right]=Q_{W}^{S M}+\delta Q_{W}^{V L}
$$

From Z couplings $\left\{\begin{array}{l}\frac{2 c_{W}}{g} g_{Z L}^{q q}=2\left(T_{3}^{q}-Q^{q} S_{W}^{2}\right)+2\left(T_{3}^{q^{\prime}}-T_{3}^{q}\right)\left|V_{L}^{q^{\prime} q}\right|^{2} \\ \frac{2 c_{W}}{g} g_{Z R}^{q q}=2\left(-Q^{q} S_{W}^{2}\right) \quad+2\left(T_{3}^{q^{\prime}}\right)\left|V_{R}^{q^{\prime} q^{\prime}}\right|^{2}\end{array}\right.$

$$
\delta Q_{W}^{V L}=2\left[(2 Z+N)\left(\left(T_{3}^{t^{\prime}}-\frac{1}{2}\right)\left|V_{L}^{t^{\prime} u}\right|^{2}+T_{3}^{t^{\prime}}\left|V_{R}^{t^{\prime} u}\right|^{2}\right)+(Z+2 N)\left(\left(T_{3}^{b^{\prime}}+\frac{1}{2}\right)\left|V_{L}^{b^{\prime} d}\right|^{2}+T_{3}^{b^{\prime}}\left|V_{R}^{b^{\prime} d}\right|^{2}\right)\right]
$$

Bounds from experiments

Most precise test in Cesium ${ }^{133} \mathrm{Cs}$:

$$
\left.Q_{W}\left({ }^{133} \mathrm{Cs}\right)\right|_{\text {exp }}=-73.20 \pm\left. 0.35 \quad Q_{W}\left({ }^{133} \mathrm{Cs}\right)\right|_{S M}=-73.15 \pm 0.02
$$

Flavour constraints

example with $D^{0}-\bar{D}^{0}$ mixing and $D^{0} \rightarrow l^{+} l^{-}$decay

In the SM

Mixing ($\Delta C=2$):

$$
\begin{aligned}
& x_{D}=\frac{\Delta m_{D}}{\Gamma_{D}}=0.0100_{-0.0026}^{+0.0024} \\
& y_{D}=\frac{\Delta \Gamma_{D}}{2 T_{D}}=0.0076_{-0.0018}^{+0.0017}
\end{aligned}
$$

Decay $(\Delta C=1)$:

$$
\begin{aligned}
& B R\left(D^{0} \rightarrow e^{+} e^{-}\right)_{\exp }<1.2 \times 10^{-6} \\
& B R\left(D^{0} \rightarrow \mu^{+} \mu^{-}\right)_{\exp }<1.3 \times 10^{-6} \\
& B R\left(D^{0} \rightarrow \mu^{+} \mu^{-}\right)_{t h, S M}=3 \times 10^{-13}
\end{aligned}
$$

Flavour constraints

example with $D^{0}-\bar{D}^{0}$ mixing and $D^{0} \rightarrow l^{+} l^{-}$decay
Contributions at tree level
Mixing $(\Delta C=2)$:

$$
\delta x_{D}=f\left(m_{D}, \Gamma_{D}, m_{c}, m_{Z}, g_{Z L}^{u c}, g_{Z R}^{u c}\right)
$$

Decay $(\Delta C=1)$:

$$
\delta B R=g\left(m_{D}, \Gamma_{D}, m_{l}, m_{Z}, g_{Z L}^{u c}, g_{Z R}^{u c}\right)
$$

Flavour constraints

example with $D^{0}-\bar{D}^{0}$ mixing and $D^{0} \rightarrow l^{+} l^{-}$decay
Contributions at tree level
Mixing ($\Delta C=2$):

$$
\delta x_{D}=f\left(m_{D}, \Gamma_{D}, m_{c}, m_{Z}, g_{Z L}^{u c}, g_{Z R}^{u c}\right)
$$

Decay $(\Delta C=1)$:

$$
\delta B R=g\left(m_{D}, \Gamma_{D}, m_{l}, m_{Z}, g_{Z L}^{u c}, g_{Z R}^{u c}\right)
$$

Contributions at loop level

- Relevant only if tree-level contributions are absent
- Possible sources of CP violation

EW precision tests and CKM

EW precision tests

Contributions of new fermions to S,T,U parameters

EW precision tests and CKM

EW precision tests

Contributions of new fermions to S,T,U parameters

CKM measurements

- Modifications to CKM relevant for singlets and triplets because mixing in the left sector is NOT suppressed
- The CKM matrix is not unitary anymore
- If BOTH t^{\prime} and b^{\prime} are present, a CKM for the right sector emerges

Higgs coupling with gluons/photons

Production and decay of Higgs at the LHC

New physics contributions mostly affect loops of heavy quarks t and q^{\prime} :

$$
\kappa_{g g}=\kappa_{\gamma \gamma}=\frac{v}{m_{t}} g_{h t \bar{t}}+\frac{v}{m_{q^{\prime}}} g_{h q^{\prime} \bar{q}^{\prime}}-1
$$

Higgs coupling with gluons/photons

Production and decay of Higgs at the LHC

New physics contributions mostly affect loops of heavy quarks t and q^{\prime} :

$$
\kappa_{g g}=\kappa_{\gamma \gamma}=\frac{v}{m_{t}} g_{h t \bar{t}}+\frac{v}{m_{q^{\prime}}} g_{h q^{\prime} \bar{q}^{\prime}}-1
$$

The couplings of t and q^{\prime} to the higgs boson are:

$$
\begin{gathered}
g_{h t \bar{t}}=\frac{m_{t}}{v}-\frac{M}{v} V_{L}^{*, t^{\prime} t} V_{R}^{t^{\prime} t} \quad g_{h q^{\prime} \bar{q}^{\prime}}=\frac{m_{q^{\prime}}}{v}-\frac{M}{v} V_{L}^{*, q^{\prime} q^{\prime}} V_{R}^{q^{\prime} q^{\prime}} \\
\text { In the SM: } \kappa_{g g}=\kappa_{\gamma \gamma}=0
\end{gathered}
$$

The contribution of just one VL quark to the loops turns out to be negligibly small Result confirmed by studies at NNLO

Outline

(9) Motivations and Current Status

2 The effective lagrangian

3 Constraints on model parameters
(4) Signatures at LHC

Production channels

Vector-like quarks can be produced in the same way as SM quarks plus FCNCs channels

- Pair production, dominated by QCD and sentitive to the q^{\prime} mass independently of the representation the q^{\prime} belongs to
- Single production, only EW contributions and sensitive to both the q^{\prime} mass and its mixing parameters

Production channels

Production channels

Pair vs single production, example with non-SM doublet $\left(X_{5 / 3} t^{\prime}\right)$

pair production depends only on the mass of the new particle and decreases faster than single production due to different PDF scaling
current bounds from LHC are around the region where (model dependent) single production dominates

Decays

SM partners

Exotics

Only Charged currents

Not all decays may be kinematically allowed
it depends on representations and mass differences

Decays of t^{\prime}

Examples with non-SM doublet $\left(X_{5 / 3} t^{\prime}\right)$

Decays of t^{\prime}

Examples with non-SM doublet $\left(X_{5 / 3} t^{\prime}\right)$

Bounds at $\sim 600 \mathrm{GeV}$ assuming

$$
\begin{gathered}
B R\left(t^{\prime} \rightarrow b W\right)=100 \% \\
\text { or } \\
B R\left(t^{\prime} \rightarrow t Z\right)=100 \%
\end{gathered}
$$

Charge	Resonant state	After t^{\prime} decay
0	$t^{\prime} \bar{t}^{\prime}$	$\begin{gathered} t \bar{t}+\{Z Z, Z H, H H\} \\ t j+\{Z Z, Z H, H H\} \\ j j+\{Z Z, Z H, H H\} \\ t W^{-}+\{b, j\}+\{Z, H\} \\ W^{+} W^{-}+\{b b, b j, j j\} \end{gathered}$
	$t^{\prime} \bar{u}_{i} \quad t^{\prime} t$	$\begin{gathered} t \bar{t}+\{Z, H\} \\ t j+\{Z, H\} \\ j j+\{Z, H\} \\ t W^{-}+\{b, j\} \\ W^{ \pm}+\{b j, j j\} \end{gathered}$
1/3	$t^{\prime} d_{i} \quad t^{\prime} b$	$\begin{gathered} t+\{b, j\}+\{Z, H\} \\ \{b j, j j\}+\{Z, H\} \\ W^{ \pm}+\{b b, b j, j j\} \end{gathered}$
	$W^{+} \bar{t}^{\prime}$	$\begin{gathered} t W^{-}+\{Z, H\} \\ j W^{-}+\{Z, H\} \\ W^{+} W^{-}+\{b, j\} \\ \hline \end{gathered}$
2/3	$t^{\prime} Z \quad t^{\prime} H$	$\begin{gathered} t+\{Z Z, Z H, H H\} \\ W^{ \pm}+\{b, j\}+\{Z, H\} \end{gathered}$
1	$t^{\prime} \bar{d}_{i} \quad t^{\prime} \bar{b}$	$\begin{gathered} t+\{b, j\}+\{Z, H\} \\ \{b j, j j\}+\{Z, H\} \\ W^{ \pm}+\{b b, b j, j j\} \end{gathered}$
4/3	$t^{\prime} t^{\prime}$	$\begin{gathered} t t+\{Z \mathrm{ZZ}, \mathrm{ZH}, H H\} \\ t j+\{Z \mathrm{ZZ}, \mathrm{ZH}, H H\} \\ j j+\{\mathrm{ZZ}, \mathrm{ZH}, H H\} \\ t W^{+}+\{b, j\}+\{Z, H\} \\ W^{ \pm} W^{ \pm}+\{b b, b j, i j\} \end{gathered}$
	$t^{\prime} u_{i} \quad t^{\prime} t$	$\begin{gathered} t t+\{Z, H\} \\ t W^{+}+\{b, j\} \\ t j+\{Z, H\} \\ W^{ \pm}+\{b j, j j\} \end{gathered}$

Possible final states

 from pair and single production of t^{\prime} in general mixing scenarioonly 2 effectively tested since now

Signatures of $X_{5 / 3}$

Current searches vs general mixing scenario
based on arXiv:1211.4034, accepted by JHEP

Decays of $X_{5 / 3}$

Examples with non-SM doublet $\left(X_{5 / 3} t^{\prime}\right)$

Decays of $X_{5 / 3}$

Examples with non-SM doublet $\left(X_{5 / 3} t^{\prime}\right)$

Current bounds

Direct pair $X_{5 / 3}$ searches

ATLAS search with $4.7 \mathrm{fb}^{-1}$
Assumption
$B R\left(X_{5 / 3} \rightarrow W^{+} t\right)=100 \%$
same-sign dilepton $+\geq 2$ jets
$m_{X_{5 / 3}} \geq 670 \mathrm{GeV}$

Pair b^{\prime} searches

CMS search with $5 \mathrm{fb}^{-1}$
Assumption
$B R\left(b^{\prime} \rightarrow W^{-} t\right)=100 \%$
same-sign dilepton + jets

$$
m_{b^{\prime}} \geq 675 \mathrm{GeV}
$$

Selection of kinematical cuts

Base selection

H_{T}

same-sign dilepton
to kill most of the background

$$
\left\{\begin{array}{l}
\geq \text { 2jets } \\
H_{T}>200 \mathrm{GeV} \\
R_{l j}>0.5
\end{array}\right.
$$

to kill VV+jets to reduce $t I$

Comparison of selections

Our selection: $\left\{\begin{array}{l}2 \text { same-sign leptons } \\ \geq 2 \text { jets } \\ H_{T} \geq 200 \mathrm{GeV} \\ R_{l j}>0.5\end{array}\right.$

Full Signal
(BRs depend on mass)

Our bounds
observation: 561 GeV
discovery: 609 GeV

Comparison of selections

Full Signal
(BRs depend on mass)

Our bounds observation: 561 GeV discovery: 609 GeV

Only WtWt channel

Our selection is more effective for $W t W c$ channel not considered in CMS study
(well, it has been designed exactly for this purpose...)

Comparison of selections

Branching ratio as free parameter

$$
B R\left(X_{5 / 3} \rightarrow W^{+} t\right)=b \quad \text { and } \quad B R\left(X_{5 / 3} \rightarrow W^{+} u, W^{+} c\right)=1-b
$$

CMS search well reproduced for $B R\left(W^{+} t\right)=1$
Search more sensitive for $B R\left(W^{+} t\right)<1$

Conclusions and Outlook

- Vector-like quarks are a very promising playground for searches of new physics
- Fairly rich phenomenology at the LHC and many possibile channels to explore
\rightarrow Signatures of single and pair production of VL quarks are accessible at current CM energy and luminosity and have been explored to some extent
\rightarrow Current bounds on masses around $500-600 \mathrm{GeV}$, but searches are not fully optimized for general scenarios.

