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Figure 1. Effective masses and constant energy in the model
against m̃λ = m/mp where mp is the Planck mass.

We have made assumptions on Ψ and the field strength analogous to those that
provide the Newtonian gravity limit (as explained in Section 4), hence the above
should be viewed as, by definition, the exact noncommutative version of Newtonian
gravity or of any other inverse square force in Newtonian mechanics (on interpreting
γ suitably). This is important because otherwise the approximations made in the
derivation would typically far exceed any effects from λ. Working in this Newtonian
gravity limit, the only assumption on λ was with regard to Ψ also slowly varying
on that timescale, resulting in the finite-difference aspect of the noncommutative
geometry being washed out in the approximation. This was not essential (and ∂0
could be used instead) but aids comparison with the usual Schroedinger picture of
an inverse square force. Indeed, writing our equation in the form

ı� ∂

∂t
Ψ = − �2

2mI
∆̄flatΨ+ (V0 −

GMmG

r
)Ψ

we see thus that the principal effects are:

(1) An effective inertial mass

mI = m
sinh(m̃λ)

m̃λ
e−m̃λ = m(1− m̃λ+ o((m̃λ)2))

(2) An effective passive gravitational mass

mG = m

�
m̃λ+ e−m̃λ − 1
m̃λ
2

sinh(m̃λ)

�
= m(1− m̃λ

3
+ o((m̃λ)2))

(3) A constant term in the potential

V0 = mc2
m̃λ

sinh(m̃λ)

�
1−

sinh( m̃λ
2
)

m̃λ
2

�
= −mc2

24
(m̃λ)2 + o((m̃λ)4)).
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as in Newtonian gravity. This is a standard derivation which we include for com-

pleteness only.

Next we consider how the associated spacetime Laplace-Beltrami wave operator

changes. Classically this is

�̄ψ =

�
β
∂2

∂t2
+

∂2

∂x2
i

− 1

2β

∂β

∂xi

∂

∂xi

�
ψ ≈ β

∂2

∂t2
ψ + ∆̄flatψ

where we can discard − 1

2
β−1∂β ≈ ∂Φ/c2 as long as the fields ψ are slowly varying

in space. We do not make the same assumption about slow variation in t and indeed

we now consider fields of the form

ψ = Ψe−ıtmc2

�

where Ψ is slowly varying in both space and time, and where mc2 is the rest mass

of our test particle moving in the above geometry. In this case the spacetime wave

equation �̄ψ =
m2c2

�2 ψ becomes

1

c2
(1− 2Φ

c2
)

�
m2c4

�2 Ψ+ 2ı
mc2

� Ψ̇+ Ψ̈

�
+ ∆̄flatΨ =

m2c2

�2 Ψ

in which we can drop the Ψ̈ term in comparison to the others. We cancel leading

terms, to obtain

ı� ∂

∂t
Ψ = − �2

2m
∆̄flatΨ+mΦΨ

at our level of approximation, which is indeed the correct quantum mechanical de-

scription of a test particle of mass m moving in a gravitational potential Φ (created

by a matter density ρ). One can then take the classical limit of the theory to

recover the classical Newtonian force of gravity. This is a different route to the

one usually taken of geodesic deviation equation reducing to Newtonian motion of

classical particles. It gives the interpretation of the parameter β in the metric.

5. Effects in the quantum case

We have looked above at the classical wave operator and its nonrelativistic limit. We

now do the same for the quantum wave operator of Section 2. We are particularly

interested in Φ = −GM
r where G is Newtons constant and M is a gravitational

mass concentrated at the origin and let γ =
2GM
c2 . Then from Section 3 we have

β = − 1

c2
(1 +

γ

r
), µ = − 1

c2
(
1

2
+

γ

r
), ν = − 1

c2
(
1

2
− γ

r
ln(

γ

r
))

∆0f(t) = ∆β=−1/c2

0
f(t)− γ

c2r
∆hybrid

0
f(t+ ıλ), ∆hybrid

0
=

1

ıλ

�
∂

∂t
− ∂0

�

We see that the effect in ∆0 of the potential γ/r in β is an additional term which

is a hybrid double derivative expressed as the difference of the classical and finite

derivatives.

As result, and also accounting for the term in ∆̄ from β−1∂β, we have on normal

ordered ψ(x, t) =
�

ψn(x)tn on the spacetime,

�ψ(t) = �β=−1/c2ψ(t)− 1

2

γ

r3(1 + γ
r )

xi
∂

∂xi
ψ(t+ ıλ)− 2γ

c2r
∆hybrid

0
ψ(t+ ıλ)
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as the flat bicrossproduct spacetime wave operator (1.4) with correction due to the
Newtonian γ/r potential.

In order to take a quantum mechanical limit as we did before in the classical case,
we note that for any functions f(t), g(t)

∆β=const
0

(fg) = (∆β=const
0

f)g(t+ ıλ) + f(t− ıλ)∆β=const
0

g + (∂0f)∂0g(t+ ıλ)

∆hybrid
0

(fg) = (∆hybrid
0

f)g + f(t− ıλ)∆hybrid
0

g + (∂0f)
∂

∂t
g.

The first is a standard identity for the finite double difference and the second
proven in just the same way from the definitions. We also have to take a view on
the noncommutative Klein-Gordon equation in the bicrossproduct model and we
take this to be

�ψ = m2c2ψ.

In the flat space case this is justified[2] by invariance under the bicrossproduct
quantum Poincare group and we are making the minimum assumption that it still
applies but for the wave operator quantizing the new metric (2.4).

Now let normal ordered ψ be of the form ψ = Ψ(x, t)e−ımc2

� t with Ψ slowly varying
with respect to t and for brevity let

m̃ = mc2/�, ζ = em̃λ.

Then the noncommutative Klein-Gordon equation becomes

ζ∆̄Ψ(t+ ıλ)− 1

c2

�
ζ2∆β=1

0
Ψ+

ζ + ζ−1 − 2

(ıλ)2
Ψ(t− ıλ) + 2

ζ − 1

ıλ
∂0Ψ

�

− γ

c2r

�
ζ2∆hybrid

0
Ψ(t+ ıλ) +

1

ıλ
(−ım̃− 1− ζ−1

ıλ
)Ψ− 2ım̃ζ∂0Ψ(t+ ıλ)

�
=

m̃2

c2
Ψ.

We assume that Ψ is slowly varying in the usual sense |Ψ̈| << m̃|Ψ̇| of the New-
tonian limit and λ|Ψ̈| << |Ψ̇| and we assume the same for our finite difference
and hybrid double time derivatives. By definition, dropping these two terms is the
Newtonian limit.

We now suppose for the sake of discussion that λ is of order the Planck time on the
grounds that the noncommutativity is a quantum gravity effect. Mainly in order
to simplify the equation we assume that Ψ is also slowly varying compared to this
time scale, so λ|Ψ̈| << |Ψ̇| and also λ|∆̄Ψ| << |∆̄Ψ|. The first means that we
can approximate ∂0Ψ ≈ Ψ̇ while the second means that we can ignore the t + ıλ
shift in ∆̄Ψ. We also write Ψ(t − ıλ) = Ψ − ıλ∂0Ψ. We also ignore the correction
− 1

2
β−1∂β to the Laplacian as we did this in the classical analysis of the Newtonian

limit. Then our equation becomes

c2ζ∆̄flatΨ =

�
ζ − ζ−1

ıλ
− γζ

r
2ım̃

�
Ψ̇+

�
m̃2 +

ζ + ζ−1 − 2

(ıλ)2
− γ

rıλ
(ım̃+

1− ζ−1

ıλ
)

�
Ψ.

Finally, making once again our weak field assumption that γ
r << 1 we drop the γ

r Ψ̇
term to arrive after rearrangement at

ı� sinh(m̃λ)

m̃λ

∂

∂t
Ψ = −�2em̃λ

2m
∆̄flatΨ+

�
mc2(1−

sinh( m̃λ
2
)

m̃λ
2

)− GMm

r
(
m̃λ+ e−m̃λ − 1

m̃2λ2

2

)

�
Ψ

SM Euro Phys. J. Web of Conferences, 70 (2014) 00082 

Freedom in extended differential structure = newtonian gravity

Eg point source:

VSL prediction
Gamma-ray bursts

separation of intertial 
and gravl masses

quantum Poincare group relation

http://www.epj-conferences.org/articles/epjconf/pdf/2014/07/epjconf_icfp2012_00082.pdf
http://www.epj-conferences.org/articles/epjconf/pdf/2014/07/epjconf_icfp2012_00082.pdf


BH potential + minimal coupling => quantum Schw. black hole 
wave operator => FT of      obeys

S.M  Commun. Math. Phys. 310 (2012) 
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then decaying rapidly to zero). Also note that although we are speaking in terms of
Planck scale the noncommutativity parameter λp might have a different interpre-
tation and a much more accessible value in another context. Of course we cannot
expect to learn too much about Planck scale physics from Newtonian gravity. Our
main purpose has been to give a tangible interpretation of β in the bicrossproduct
calculus (5.1).

5.3. Minimally coupled Schwarzschild black hole. In contrast to Section 6,
here we give a slightly more ad-hoc but more computable approach to the black
hole, namely built on bicrossproduct spacetime with the same τ = ρ and α = 1 as
before but a particular choice

(5.2) β = − 1

c2(1− γ
r
)
.

where γ = 2GM/c2 will now be the Schwarzschild radius for a black hole of mass
M . The Newtonian gravity point source model above is the just first two terms
of the geometric expansion of this β. We construct the calculus and df to define
the wave operator � from Corollary 3.4, but this is not yet the black hole since
∆̄ = ∆̄flat − 1

2
β−1d̄β∗ is not the spatial part of the black-hole wave operator.

However, there is nothing stopping us replacing ∆̄flat by the Laplace-Beltrami
operator ∆̄LB in (4.4) for the specific 3-geometry in Proposition 4.3 that underlies
the Schwarzschild black hole. This is similar to working in flat space coordinates
and a process of ‘minimal coupling’ where a covariant derivative is then put in by
hand. Thus, we compute within the spatially flat space bicrossproduct model, most
importantly ∆0, but adjust the wave operator to

�BHψ(t) = 2∆0ψ(t) + ∆̄LBψ(t+ λ)− 1

2β
(d̄β, d̄ψ)(t+ λ)

on normal ordered spacetime functions ψ =
�

n
ψntn. Explicitly,

(5.3) �BHψ(t) = 2∆0ψ(t) +

�
(
2

r
− γ

r2
)
∂

∂r
+ (1− γ

r
)
∂2

∂r2
+ eiei

�
ψ(t+ λ)

is our ‘minimally coupled’ noncommutative black hole wave operator.

It remains to study ∆0 further. In order to effectively work with this we Fourier
transform, i.e. consider the effect on functions with time dependence ψ(t) = eıωt

where ω ∈ R and we let λ = ıλp.

Proposition 5.7. For the Schwarzschild β in (5.2) we have

∆0e
ıωt =

1

c2
D(ω, r)eıωt

where

D(ω, r) =
1

λ2
p

�
sinh(ωλp) + e−ωλp(1− γ

r
)

�
1− eωλp − γ

r
ln

�
eωλpr − γ

r − γ

���

has limits

lim
λp→0

D(ω, r) =
ω2

2(1− γ
r
)
, lim

r→∞
D(ω, r) =

cosh(ωλp)− 1

λ2
p

, lim
r→γ

D(ω, r) =
sinh(ωλp)

λ2
p
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Figure 1. Numerical solutions of the noncommutative wave equa-
tion on normal ordered functions with frequency ω > 0 and γ = 1,
and comparison with the classical black hole at same boundary
conditions. (a) Shows the exterior region r > γ with waves ap-
pearing to have a finite frequency at the event horizon r = γ as
a new feature. (b) Shows the interior region r < γe−ωλp and the
new possibility of standing waves with a finite number of ‘cycles’.
The quantum solutions can be continued through from either side
into (c) an interregnum region γe−ωλp ≤ r ≤ γ where they ‘am-
plify’ and typically diverge. The left plot shows solutions driven
from the black hole interior and the right plot from the black hole
exterior. Shown are real and imaginary parts.

event 
horizon

The time dilation/redshift is finite at the event horizon and 
frequency dependent => harmonic multiples destroyed by gravity                            

Non-zero cosmological constant may be forced by quantum spacetime
which would explain why its small compared to Planck scale

Continuum ⇒ ∞ zero point energy. Planck scale cut off still 10122x obs.

∂
2

t



Ω
1 a((db)c)=(a(db))c `bimodule’

d : A → Ω
1 d(ab)=(da)b+a(db) `Leibniz rule’

space of 1-forms, i.e. `differentials dx’

Quantum differentials on an algebra A

require this to extend to a DGA Ω = TAΩ
1/I = ⊕nΩ

n, d
2

= 0

Thm.  (SM+W. Tao) Let A = U(g) = Tg/〈xy − yx − [x, y]〉

bicovariant Ω1(U(g)) ↔ Z1(g,Λ1)surjective 

connected and of classical dim         pre-Lie algebra for   
◦ : g⊗ g → g [x, y] = x ◦ y − y ◦ x

6 SHAHN MAJID & WEN-QING TAO

Next we recall that a left pre-Lie algebra (also called Vinberg algebra) is defined

to be a vector space V equipped with a necessarily associative ‘product’ map ◦ :

V ⊗ V → V s.t.

(4.4) (x ◦ y) ◦ z − (y ◦ x) ◦ z = x ◦ (y ◦ z)− y ◦ (x ◦ z).

In this case, V is necessarily a Lie algebra with Lie bracket given by

(4.5) [x, y]V := x ◦ y − y ◦ x

for all x, y ∈ V , where the Jacobi identity holds due to (4.4.

Corollary 4.2. A connected and simply connected Poisson-Lie group G with Lie
algebra g admits a compatible left-invariant flat preconnection if and only if g∗

admits a pre-Lie structure via Ξ. This is bicovariant iff Ξ obeys (3.3).

Proof. This is shown by (2.6) and (4.3) and is an interpretation of the preceding

Theorem 4.1. �

Note the first part does not seem to depend on the Lie algebra structure of g itself

*** seems remarkable, should check ***

Example 4.3. Let m be a finite-dimensional Lie algebra and G = m∗
be an abelian

Poisson-Lie group with its Kirillov-Kostant Poisson-Lie group structure {x, y} =

[x, y] for all x, y ∈ m ⊂ C∞
(m∗

) or S(m) in an algebraic context. By Corollary 4.2,

this admits a compatible left-invariant flat preconnection iff m admits a pre-Lie

algebra structure. Here Ξ = ◦ and

γx̂dy = d(x ◦ y), ∀x, y ∈ m.

In fact the algebra and calculus in this example works to all orders. Thus the

quantisation of m∗
is U(m) regarded as a noncommutative coordinate algebra with

relations xy − yx = λ[x, y]. If m has an underlying pre-Lie algebra then the above

results lead to relations

[x, dy] = λd(x ◦ y), ∀x, y ∈ m

and one can check that this works exactly and not only to order λ precisely as a con-

sequence of the pre-Lie algebra axiom. Indeed, according to [our paper] bicovariant

calculi on U(m) with left-invariant 1-forms m are classified by invertible 1-cocycles

in Z(m,m) and it is known ***reference needed*** that the latter correspond to

pre-Lie algebra structures for m.

Example 4.4. Let g be a quasi-triangular bialgebra with r-matrix r = r(1)⊗r(2) ∈
g⊗ g. Then g acts on its dual g∗ by coadjoint action ad

∗
and by Lemma 3.8 in [18]

g∗ becomes a left g-crossed module with Ξ(φ,ψ) = −�φ, r(2)�adr(1)ψ. To satisfy

compatibility (2.6), (g, r) is required to obey r+�x = 0 for any x ∈ g, where

r+ = (r + r21)/2 is the symmetric part of r. In this case g∗ has a pre-Lie algebra

structure with Ξ(φ,ψ) = −�φ, r(2)�ad∗r(1)ψ by Corollary 4.2. We see in particular

that every finite-dimensional cotriangular Lie bialgebra is canonically a pre-Lie

algebra.

 
dx = 1⊗ ζ(x), Ω1 = U(g)⊗Λ1

⇒ Ω(U(g))

ζ ∈

Λ
1∼=g

`surjectivity’{
∑

adb} = Ω
1

↔ g

ker d = k.1 (`connected’)

[x,dy] = λd(x ◦ y)



Classification in 2D 

g :

ii) r ◦ t = βr, t ◦ r = (β − 1)r, t ◦ t = βt

iii) t ◦ r = −r, t ◦ t = r − t

iv) r ◦ r = t, t ◦ r = −r, t ◦ t = −2t

v) r ◦ t = r, t ◦ t = r + t

[r, t] = r A = Uλ(g)
i) t ◦ r = −r, t ◦ t = αt

[xi, t] = λxi

(i) [t, dxi] = −λdxi, [t, dt] = λαdt

(ii) [xi,dt] = λβdxi, [t, dxi] = λ(β − 1)dxi, [t, dt] = λβdt

=> Calculi in n-D on                          that are rotationally inv:

=> Calculi in n-D rotationally inv among the 

  -calculus

  -calculusβ

α

Burde 1998 



Quantum metric tensor

g ∈ Ω
1
⊗
A

Ω
1

( , ) : Ω1
⊗
A

Ω1
→ A

need this to be able to contract/ `raise/lower’ via metric, eg to have 
well defined contraction:

∧(g) = 0 `quantum symmetric’

invertible in the sense exists inverse:              

Ω
1
⊗
A

Ω
1
⊗
A

Ω
1
→ Ω

1
Tµνρ !→ gµνTµνρ

“                               “

a(ω, η) = (aω, η), (ω, η)a = (ω, ηa) `bimodule map (tensorial)’

( , )⊗ id :

(( , )⊗ id)(ω⊗ g) = ω = (id⊗( , ))(g⊗ω), ∀ω ∈ Ω1

but

(ω, g
1)g2

a = ωa = (ωa, g
1)g2 = (ω, ag

1)g2

g = g
1
⊗
A

g
2

(ω, g
1)g2 = ω

⇒

⇒ ag = ga, ∀a ∈ A  need metric to be central
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formalism of noncommutative Riemannian geometry. We then weaken this by re-

quiring only that g commutes with functions of the radius r =
�

x2

1
+ x2

2
+ x2

3
and

t and in this case we find a reasonable 2-parameter family of quantum metrics

(1.3) g = r2dΩ+ adr ⊗⊗dr + b (v∗ ⊗ v + λ(dr ⊗ v − v∗ ⊗ dr))

in polar coordinates, where the parameters a, b �= 0 are real and v = rdt − tdr,
v∗ = (dt)r − (dr)t. The first term of g is the angular part of the metric as for flat

spacetime.

We will not actually develop the quantum geometry of such metrics in this paper,

rather we first want to understand their classical limit λ → 0. We find that the

geometry in this limit is curved and for critical values a = 1 and a = −3 we find

that the Einstein tensor matches Einstein’s equation for a perfect fluid of a certain

pressure ad density depending on b. This gives a physical interpretation as the

Universe being filled with one of these two (albeit not very physical) types of fluid

as a plausible necessity of the existence of noncommutative geometry.

We also find that the classical metric is, after a change of variables afforded by

our geodesic flows, a conformal rescaling of a flat metric. Although we regard the

model here as a toy model or ‘proof of concept’ we believe the rigidity phenomenon

uncovered here to be a generic feature of quantum spacetimes.

As a small application back to noncommutative geometry, the geodesic coordinates

suggest new variables for the quantum algebra and its calculus, and we describe

them in Section 4.

2. Moduli of quantum metrics

We shall use polar coordinates for the bicrossproduct model spacetime[?] where we
replace dxi by ωi = eijdxj where eij = δij − xixj

r2 is projection to the sphere of

constant radius at any point and r2 = xixi. One has xiωi = 0. The angular part

of the metric above is ωi ⊗ ωi. The polar coordinate relations become

[f(r), t] = λrf �
(r), [

xi

r
, t] = 0, [f(t), r] = (f(t)− f(t+ λ))r

for the algebra, for any function f , and

[ωi, t] = [ωi, r] = [dr, t] = [dr, r] = 0

[f(r), dt] = λf �
(r)dr, [f(t), dt] = (f(t)− f(t− λ))dt.

The relations between 1-forms in the exterior algebra are as classically [?]

{ωi,ωj} = {ωi, dr} = {ωi, dt} = {dt, dr} = (dr)2 = (dt)2 = 0.

Working with this polar coordinate description one can verify the following lemma.

Since commutation with t entails a shift by λ, functions of t that are invariant

under such a shift will automatically be central, we call them ‘periodic’ (depending

on the precise formulation of the algebra completion there may not be any).
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Propn.: In 2D the quantum metric has the unique form                        

         Calculusβ = 1

Work over      but specify real differential geometry via  C

∗ : A → A antilinear involution `*-algebra’ 

extends to graded-anti-algebra hom on Ω(A), [∗,d] = 0

metric hermitian in sense  (∗⊗∗)(g) = flip(g)

Our case:   xi∗
= xi, t∗ = t, λ∗

= −λ, r
∗

= r

⇒ in classical limit only     
g = dr⊗dr + bv⊗ v = (1 + bt2)dr2 + br2dt2 − 2brtdr dt

can emerge (i.e. be quantised) 
     => strong gravitational source/expanding universe
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[f, g] = 0,∀f => 

3

strongly tensorial’) with respect to multiplication by co-
ordinates in the sense[1],

f(ω, η) = (fω, η), (ωf, η) = (ω, fη), (ω, ηf) = (ω, η)f

for all elements f of the quantum coordinate algebra and
all 1-forms ω, η. It is shown in [1] that this requires g
to commute with elements of the quantum coordinate
algebra. We also require that g is ‘quantum symmetric’
in the sense ∧(g) = 0. The quantum wedge product here
is an extension of the 1-forms to an associative product on
forms of all degree and to which d extends. Here the basic
one forms dxi, dt obey the usual exterior or Grassmann
algebra (they anticommute). Finally, we need a condition
that expresses reality of the metric coefficients, which we
express as [1, 12]

(∗ ⊗1 ∗)flip(g) = g (4)

where ‘flip’ swaps the factors of ⊗1. We will in practice
omit the subscript on the tensor product as this should
be clear from context.

A. Quantum metrics for the α-calculus

For the α family (2) we consider a quantum metric of the
arbitrary form

g =
3�

i,j

aijdx
i⊗dxj+

3�

i

bi(dx
i⊗dt+dt⊗dxi)+cdt⊗dt,

where the coefficients aij , bi, c are all elements in the
quantum spacetime algebra and obey aij = aji. This
form is dictated by ‘quantum symmetry’ in the form
∧(g) = 0. Using the Leibniz rule and the relation (2)
we have

[g, t] =
3�

i,j

([aij , t] + 2λaij)dx
i ⊗ dxj

+
3�

i

([bi, t]− λ(α− 1)bi)(dx
i ⊗ dt+ dt⊗ dxi)

+([c, t]− 2λαc)dt⊗ dt.

[g, xk] =
3�

i,j

[aij , x
k]dxi ⊗ dxj +

3�

i

[bi, x
k](dxi ⊗ dt

+dt⊗ dxi) + [c, xk]dt⊗ dt.

This means that g central amounts to

[aij , t] = −2λaij , ∀i, j, [bi, t] = λ(α− 1)bi, ∀i,

[c, t] = 2λαc, [aij , x
k] = 0, ∀i, j, k,

[bi, x
k] = 0, ∀i, k, [c, xk] = 0, ∀k.

By solving this, we see that our requirements are that
aij , bi, c are all functions only of x, and aij , bi, c are func-
tions in x1, x2, x3 of degree −2,α − 1, 2α respectively.
Hence there is a larger moduli of metrics for this dif-
ferential calculus; we just have to make sure that the
coefficients are homogeneous of the appropriate degree.

If we look among spherically symmetric quantum met-
rics, which seems natural from the form of the algebra
(1), then we have

g = δ−1r−2
�

i

ωi ⊗ ωi + ar−2dr ⊗ dr

+brα−1(dr ⊗ dt+ dt⊗ dr) + cr2αdt⊗ dt (5)

for δ, a, b, c ∈ R, which by the above is central. Here
δ > 0 could be normalised to δ = 1 but we have refrained
from this as it is dimensionful with dimensions of inverse
square length. The quantum metric is quantum sym-
metric and obeys the ‘reality’ condition (4) given that r
commutes with dxi, dt in this calculus.

B. Quantum metrics for the β-calculus

The β family (3) contains the standard calculus at β = 1
and we find basically the same result as for that in [1].
We will omit the details and the proof as the methods
are the same but the result is: For the β family calculi
in dimension n > 2 there are no central quantum metrics
among a reasonable class of coefficient functions.

One can, however, consider metrics that are spherically
symmetric and commute with functions of r, t. To do this
let us first note that the elements

u = rβ−1dr, v = rβ−1(rdt− βtdr), rβ−1ωi

commute with r, t. Also

u∗ = u, v∗ = λβ(β − 2)u+ v, ω∗
i = ωi

using the commutation relations. Looking in the 2D r−t
sector, the element

g2D = v∗⊗v+βλ(u⊗v−v∗⊗u)−γ1(u⊗v+v∗⊗u)+γ2u⊗u

then manifestly commutes with t, r and is ‘real’ in the
hermitian sense provided γ1, γ2 are real, and also man-
ifestly obeys ∧(g) = 0. Now let t� = t + γ1

β , so dt� =

dt, v� = rβ−1(rdt� − βt�dr) = v − γ1u, thus

g2D = v�∗ ⊗ v� + βλ(u⊗ v� − v�∗ ⊗ u) + γu⊗ u,

where γ = γ2 − γ12 is a real parameter. Therefore we
can assume that the time variable has been shifted to
eliminate the γ1 term as the expense of the γ2 term. We
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now combine this information with the angular part of
the metric, so

g = r2β−2
�

i

ωi⊗ωi+au⊗u+bv∗⊗v+βbλ(u⊗v−v∗⊗u),

(6)
for a, b ∈ R, a, b �= 0, commutes with r, t. One could
insert an overall normalisation to fix the dimensions of g.
The additional angular term commutes, has zero wedge
product and obeys the reality condition, so these features
all still hold for g. This metric generalises the one in [1]
from the case β = 1. Using the same methods as in [1]
we can show that up to a shift in the t variable, this is
the most general form of spherically symmetric metric
that commutes with r, t and involves a reasonable class
of functions.

IV. CLASSICAL LIMITS AND MATCHING TO
A PERFECT FLUID

We now look at the classical limit of the restricted moduli
of quantum metrics found in Section III. In each case we
ask for which parameter values the Einstein tensor G
obeys

G = 8πGNT, T = pg + (p+ ρ)u⊗ u, u2 = −1

for a timelike 1-form u. Here T is the stress energy tensor
of a perfect fluid of density ρ and pressure p. We use
GN for Newton’s gravitational constant. We will write
Gµ

ν = gµαGαν , Uµ = gµαuα and dΩ2 for the standard
metric of the unit sphere Sn−2 when we are working in
spacetime dimension n.

A. Emergence of de Sitter-like metric from the α
family

Here we look at the classical limit of the metric in Sec-
tion IIIA, namely

g = δ−1dΩ2 + ar−2dr ⊗ dr

+brα−1(dr ⊗ dt+ dt⊗ dr) + cr2αdt⊗ dt (7)

where a, b, c ∈ R, δ > 0 and we need b2 − ac > 0 for a
Minkowski signature. The first thing we do is define the
combination

δ =
cα2

b2 − ac

and we study the three cases.

(i) If δ > 0 then this implies c, a+ α2

δ
> 0 and we define

a change of variables

t� =
α√
δ
ln r, r� =

√
ct−

�
a+ α2

δ

αrα

when b > 0 and the opposite sign in the 2nd term of r�

when b < 0. Then our metric becomes

g = δ−1dΩ2 + e2t
�
√

δdr�2 − dt�2. (8)

From this we see that up to coordinate transforma-
tions we have a 2-parameter moduli of metrics in di-
mensions n > 2 that are spatially rotationally invariant
and the classical limit of a quantum metric on our quan-
tum spacetime differential algebra, governed by a pair
of inverse-square length scales δ, δ. Our metric in this
canonical form can be compared to de Sitter in the flat
slicing

gdS = e2t
√
δ(r2dΩ2 + dr2)− dt2

but is not equal to it because de Sitter spacetime is con-
formally flat whereas for n > 3 our metric does not have
vanishing Weyl tensor while for n = 3 we will prove also
that it is not de Sitter. Its scaler curvature is

S = (n− 2)(n− 3)δ + 2δ. (9)

For n = 2 we do not have the δ term and our metric
is indeed 2D de Sitter with inverse square-length scale
δ, so this is forced out of nothing but our quantisability
assumption in 2D as the only possibility, for some scale
δ which is not determined by our arguments.

For n ≥ 3 we now compute the Einstein tensor as

G = − (n− 2)(n− 3)

2
δg + ((n− 3)δ − δ)dΩ2 (10)

so that G is diagonal in our coordinate basis with eigen-
values

− (n− 2)(n− 3)

2
δ, −δ − (n− 3)(n− 4)

2
δ (11)

where the first eigenspace is spanned by the t, r direc-
tions and the other eigenspace is spanned by the angular
directions. Now if the two eigenvalues of such a G are
distinct then it cannot match a perfect fluid. That is be-
cause G = 8πGN(p id + U ⊗ u) would require u to have
only one non-zero entry (since otherwise U ⊗ u would
have off-diagonals) and in that case it could only change
the eigenvalue in a 1-dimensional subspace, contradicting
the equality of the eigenvalues in the r, t subspace given
that u is timelike. Hence we can only match a perfect
fluid if the eigenvalues coincide, which means

(n− 3)δ = δ, G = − (n− 2)(n− 3)

2
δg,

S = n(n− 3)δ, Ricci = (n− 3)δg

which indeed is the obvious solution from (10), i.e. this is
the only solution. We conclude for n ≥ 3 that our mod-
uli of spherically symmetric classical limits of quantum
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that expresses reality of the metric coefficients, which we
express as [1, 12]

(∗ ⊗1 ∗)flip(g) = g (4)

where ‘flip’ swaps the factors of ⊗1. We will in practice
omit the subscript on the tensor product as this should
be clear from context.

A. Quantum metrics for the α-calculus

For the α family (2) we consider a quantum metric of the
arbitrary form

g =
n−1�

i,j

aijdx
i⊗dxj+

n−1�

i

bi(dx
i⊗dt+dt⊗dxi)+cdt⊗dt,

where the coefficients aij , bi, c are all elements in the
quantum spacetime algebra and obey aij = aji. This
form is dictated by ‘quantum symmetry’ in the form
∧(g) = 0. Using the Leibniz rule and the relation (2)
we have

[g, t] =
n−1�

i,j

([aij , t] + 2λaij)dx
i ⊗ dxj

+
n−1�

i

([bi, t]− λ(α− 1)bi)(dx
i ⊗ dt+ dt⊗ dxi)

+([c, t]− 2λαc)dt⊗ dt.

[g, xk] =
n−1�

i,j

[aij , x
k]dxi ⊗ dxj +

n−1�

i

[bi, x
k](dxi ⊗ dt

+dt⊗ dxi) + [c, xk]dt⊗ dt.

This means that g central amounts to

[aij , t] = −2λaij , ∀i, j, [bi, t] = λ(α− 1)bi, ∀i,

[c, t] = 2λαc, [aij , x
k] = 0, ∀i, j, k,

[bi, x
k] = 0, ∀i, k, [c, xk] = 0, ∀k.

By solving this, we see that our requirements are that
aij , bi, c are all functions only of x, and aij , bi, c are func-
tions in x1, x2, x3 of degree −2,α − 1, 2α respectively.
Hence there is a larger moduli of metrics for this dif-
ferential calculus; we just have to make sure that the
coefficients are homogeneous of the appropriate degree.

If we look among spherically symmetric quantum met-
rics, which seems natural from the form of the algebra
(1), then we have

g = δ−1r−2
�

i

ωi ⊗ ωi + ar−2dr ⊗ dr

+brα−1(dr ⊗ dt+ dt⊗ dr) + cr2αdt⊗ dt (5)

for δ, a, b, c ∈ R, which by the above is central. Here
δ > 0 could be normalised to δ = 1 but we have refrained
from this as it is dimensionful with dimensions of inverse
square length. The quantum metric is quantum sym-
metric and obeys the ‘reality’ condition (4) given that r
commutes with dxi, dt in this calculus.

B. Quantum metrics for the β-calculus

The β family (3) contains the standard calculus at β = 1
and we find basically the same result as for that in [1].
We will omit the details and the proof as the methods
are the same but the result is: For the β family calculi
in dimension n > 2 there are no central quantum metrics
among a reasonable class of coefficient functions.

One can, however, consider metrics that are spherically
symmetric and commute with functions of r, t. To do this
let us first note that the elements

u = rβ−1dr, v = rβ−1(rdt− βtdr), rβ−1ωi

commute with r, t. Also

u∗ = u, v∗ = λβ(β − 2)u+ v, ω∗
i = ωi

using the commutation relations. Looking in the 2D r−t
sector, the element

g2D = v∗⊗v+βλ(u⊗v−v∗⊗u)−γ1(u⊗v+v∗⊗u)+γ2u⊗u

then manifestly commutes with t, r and is ‘real’ in the
hermitian sense provided γ1, γ2 are real, and also man-
ifestly obeys ∧(g) = 0. Now let t� = t + γ1

β , so dt� =

dt, v� = rβ−1(rdt� − βt�dr) = v − γ1u, thus

g2D = v�∗ ⊗ v� + βλ(u⊗ v� − v�∗ ⊗ u) + γu⊗ u,

where γ = γ2 − γ12 is a real parameter. Therefore we
can assume that the time variable has been shifted to
eliminate the γ1 term as the expense of the γ2 term. We
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g = δ−1dΩ2 + ar−2dr⊗dr + brα−1(dr⊗dt + dt⊗dr) + cr2αdt⊗dt

add spherical symmetry => 
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now combine this information with the angular part of
the metric, so

g = r2β−2
�

i

ωi⊗ωi+au⊗u+bv∗⊗v+βbλ(u⊗v−v∗⊗u),

(6)
for a, b ∈ R, a, b �= 0, commutes with r, t. One could
insert an overall normalisation to fix the dimensions of g.
The additional angular term commutes, has zero wedge
product and obeys the reality condition, so these features
all still hold for g. This metric generalises the one in [1]
from the case β = 1. Using the same methods as in [1]
we can show that up to a shift in the t variable, this is
the most general form of spherically symmetric metric
that commutes with r, t and involves a reasonable class
of functions.

IV. CLASSICAL LIMITS AND MATCHING TO
A PERFECT FLUID

We now look at the classical limit of the restricted moduli
of quantum metrics found in Section III. In each case we
ask for which parameter values the Einstein tensor G
obeys

G = 8πGNT, T = pg + (p+ ρ)u⊗ u, u2 = −1

for a timelike 1-form u. Here T is the stress energy tensor
of a perfect fluid of density ρ and pressure p. We use
GN for Newton’s gravitational constant. We will write
Gµ

ν = gµαGαν , Uµ = gµαuα and dΩ2 for the standard
metric of the unit sphere Sn−2 when we are working in
spacetime dimension n.

A. Emergence of de Sitter-like metric from the α
family

Here we look at the classical limit of the metric in Sec-
tion IIIA, namely

g = δ−1dΩ2 + ar−2dr ⊗ dr

+brα−1(dr ⊗ dt+ dt⊗ dr) + cr2αdt⊗ dt (7)

where a, b, c ∈ R, δ > 0 and we need b2 − ac > 0 for a
Minkowski signature. The first thing we do is define the
combination

δ =
cα2

b2 − ac

and we study the three cases.

(i) If δ > 0 then this implies c, a+ α2

δ
> 0 and we define

a change of variables

t� =
α√
δ
ln r, r� =

√
ct−

�
a+ α2

δ

αrα

when b > 0 and the opposite sign in the 2nd term of r�

when b < 0. Then our metric becomes

g = δ−1dΩ2 + e2t
�
√

δdr�2 − dt�2. (8)

From this we see that up to coordinate transforma-
tions we have a 2-parameter moduli of metrics in di-
mensions n > 2 that are spatially rotationally invariant
and the classical limit of a quantum metric on our quan-
tum spacetime differential algebra, governed by a pair
of inverse-square length scales δ, δ. Our metric in this
canonical form can be compared to de Sitter in the flat
slicing

gdS = e2t
√
δ(r2dΩ2 + dr2)− dt2

but is not equal to it because de Sitter spacetime is con-
formally flat whereas for n > 3 our metric does not have
vanishing Weyl tensor while for n = 3 we will prove also
that it is not de Sitter. Its scaler curvature is

S = (n− 2)(n− 3)δ + 2δ. (9)

For n = 2 we do not have the δ term and our metric
is indeed 2D de Sitter with inverse square-length scale
δ, so this is forced out of nothing but our quantisability
assumption in 2D as the only possibility, for some scale
δ which is not determined by our arguments.

For n ≥ 3 we now compute the Einstein tensor as

G = − (n− 2)(n− 3)

2
δg + ((n− 3)δ − δ)dΩ2 (10)

so that G is diagonal in our coordinate basis with eigen-
values

− (n− 2)(n− 3)

2
δ, −δ − (n− 3)(n− 4)

2
δ (11)

where the first eigenspace is spanned by the t, r direc-
tions and the other eigenspace is spanned by the angular
directions. Now if the two eigenvalues of such a G are
distinct then it cannot match a perfect fluid. That is be-
cause G = 8πGN(p id + U ⊗ u) would require u to have
only one non-zero entry (since otherwise U ⊗ u would
have off-diagonals) and in that case it could only change
the eigenvalue in a 1-dimensional subspace, contradicting
the equality of the eigenvalues in the r, t subspace given
that u is timelike. Hence we can only match a perfect
fluid if the eigenvalues coincide, which means

(n− 3)δ = δ, G = − (n− 2)(n− 3)

2
δg,

S = n(n− 3)δ, Ricci = (n− 3)δg

which indeed is the obvious solution from (10), i.e. this is
the only solution. We conclude for n ≥ 3 that our mod-
uli of spherically symmetric classical limits of quantum

This is the Bertotti-Robinson metric. We are forced to it!

solves Einst Eqn with Maxwell field and cosmological constant
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β family’ and which generalises the standard one. In our case we come to these

same differential calculi out of a systematic classification theory[7] based on pre-Lie

algebras. Remarkably we then find for the α family, in Section 3, that this time

there is a moduli of quantum metrics and in Section 4 we consider their classical

limits and show that in the spherically symmetric case they are all locally of the

form Sn−2×dS2 or Sn−2×AdS2 depending on the sign of one of the two curvature-

scale parameters δ, δ̄. This means that they are the Levi-Bertotti-Robinson metric

[8, 9, 10, 11], which has been of interest in a number of contexts in GR and is known

to solve Einstein’s equation with cosmological constant and Maxwell field. We can

write the value of the cosmological constant here as

Λ =
(n− 2)(n− 3)

2
δ − q2GN , q2GN =

1

2

�
(n− 3)δ − δ̄

�

where q is the Maxwell field coupling in suitable units. In our context δ > 0 so that

for small q we are forced to Λ > 0. Moreover, the arguments that force us to this

form of metric depend on the structure of the differential algebra when spacetime

is noncommutative, which is believed to be a quantum gravity effect. In 2D there

is no Sn−2 factor and being the limit of a quantum metric in the α family in 2D

forces the metric to be de Sitter or anti-de Sitter for some scale δ̄.

The further noncommutative Riemannian geometry for our quantum metrics in the

α family is obtained by the same methods as in [1] and a brief outline of this is

included in the final Section 5 for completeness. We work in this paper with one

particular algebra (1) assumed to be some local model of quantum spacetime. The

general analysis at lowest order in λ, i.e. at the level of a general Poisson structure

on spacetime and the constraints on the classical metric metric arising from being

quantisable along with it, can be found in [2].

An earlier model where vacuum energy was speculated to arise from noncommuta-

tive geometry of the quantum spacetime (1) was the non-relativistic gravity model

in [12]. A cosmological constant is also needed for quantum Born reciprocity in 3D

quantum gravity[13], which paper also shows how the 3D version of (1) can arise

there.

2. Choice of differential structure

Differential structure on an algebra means for us a specification of the exterior

algebra of ‘differential forms’ or in practice the commutation relations between

differentials dxi, dt and quantum spacetime coordinates. The exterior derivative d

on arbitrary noncommutative functions in the coordinates is then defined by the

Leibniz rule. We look for differential structures that are (i) connected, meaning

only constant functions are killed by d and (ii) translation-invariant with respect

to the additive coproduct on (1). The latter says that as a differential space this is

much like Rn in the same way that a classical manifold has local coordinates where

the differentials dxi, dt are related to the standard translation-invariant Lebesgue

measure.

Our starting point is a recent theorem [7] that connected translation invariant

differential structures of the correct classical dimension on the enveloping algebra

of a Lie algebra g are in 1-1 correspondence with pre-Lie algebra structures on g.

F = q
√

b2 − ac rα−1
dt ∧ dr



Quantum algebra [t′, r′] = λ′ [r′,dr′] = λ′

√

δdr′

[r′,dt′] = [t′,dr′] = [t′,dt′] = 0

∇dr
′ = −

√

δ(dr
′ ⊗dt

′ + dt
′ ⊗dr

′)

is a bimodule connectionis a bimodule connection
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now combine this information with the angular part of
the metric, so

g = r2β−2
�

i

ωi⊗ωi+au⊗u+bv∗⊗v+βbλ(u⊗v−v∗⊗u),

(6)
for a, b ∈ R, a, b �= 0, commutes with r, t. One could
insert an overall normalisation to fix the dimensions of g.
The additional angular term commutes, has zero wedge
product and obeys the reality condition, so these features
all still hold for g. This metric generalises the one in [1]
from the case β = 1. Using the same methods as in [1]
we can show that up to a shift in the t variable, this is
the most general form of spherically symmetric metric
that commutes with r, t and involves a reasonable class
of functions.

IV. CLASSICAL LIMITS AND MATCHING TO
A PERFECT FLUID

We now look at the classical limit of the restricted moduli
of quantum metrics found in Section III. In each case we
ask for which parameter values the Einstein tensor G
obeys

G = 8πGNT, T = pg + (p+ ρ)u⊗ u, u2 = −1

for a timelike 1-form u. Here T is the stress energy tensor
of a perfect fluid of density ρ and pressure p. We use
GN for Newton’s gravitational constant. We will write
Gµ

ν = gµαGαν , Uµ = gµαuα and dΩ2 for the standard
metric of the unit sphere Sn−2 when we are working in
spacetime dimension n.

A. Emergence of de Sitter-like metric from the α
family

Here we look at the classical limit of the metric in Sec-
tion IIIA, namely

g = δ−1dΩ2 + ar−2dr ⊗ dr

+brα−1(dr ⊗ dt+ dt⊗ dr) + cr2αdt⊗ dt (7)

where a, b, c ∈ R, δ > 0 and we need b2 − ac > 0 for a
Minkowski signature. The first thing we do is define the
combination

δ =
cα2

b2 − ac

and we study the three cases.

(i) If δ > 0 then this implies c, a+ α2

δ
> 0 and we define

a change of variables

t� =
α√
δ
ln r, r� =

√
ct−

�
a+ α2

δ

αrα

when b > 0 and the opposite sign in the 2nd term of r�

when b < 0. Then our metric becomes

g = δ−1dΩ2 + e2t
�
√

δdr�2 − dt�2. (8)

From this we see that up to coordinate transforma-
tions we have a 2-parameter moduli of metrics in di-
mensions n > 2 that are spatially rotationally invariant
and the classical limit of a quantum metric on our quan-
tum spacetime differential algebra, governed by a pair
of inverse-square length scales δ, δ. Our metric in this
canonical form can be compared to de Sitter in the flat
slicing

gdS = e2t
√
δ(r2dΩ2 + dr2)− dt2

but is not equal to it because de Sitter spacetime is con-
formally flat whereas for n > 3 our metric does not have
vanishing Weyl tensor while for n = 3 we will prove also
that it is not de Sitter. Its scaler curvature is

S = (n− 2)(n− 3)δ + 2δ. (9)

For n = 2 we do not have the δ term and our metric
is indeed 2D de Sitter with inverse square-length scale
δ, so this is forced out of nothing but our quantisability
assumption in 2D as the only possibility, for some scale
δ which is not determined by our arguments.

For n ≥ 3 we now compute the Einstein tensor as

G = − (n− 2)(n− 3)

2
δg + ((n− 3)δ − δ)dΩ2 (10)

so that G is diagonal in our coordinate basis with eigen-
values

− (n− 2)(n− 3)

2
δ, −δ − (n− 3)(n− 4)

2
δ (11)

where the first eigenspace is spanned by the t, r direc-
tions and the other eigenspace is spanned by the angular
directions. Now if the two eigenvalues of such a G are
distinct then it cannot match a perfect fluid. That is be-
cause G = 8πGN(p id + U ⊗ u) would require u to have
only one non-zero entry (since otherwise U ⊗ u would
have off-diagonals) and in that case it could only change
the eigenvalue in a 1-dimensional subspace, contradicting
the equality of the eigenvalues in the r, t subspace given
that u is timelike. Hence we can only match a perfect
fluid if the eigenvalues coincide, which means

(n− 3)δ = δ, G = − (n− 2)(n− 3)

2
δg,

S = n(n− 3)δ, Ricci = (n− 3)δg

which indeed is the obvious solution from (10), i.e. this is
the only solution. We conclude for n ≥ 3 that our mod-
uli of spherically symmetric classical limits of quantum
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now combine this information with the angular part of
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�

i

ωi⊗ωi+au⊗u+bv∗⊗v+βbλ(u⊗v−v∗⊗u),

(6)
for a, b ∈ R, a, b �= 0, commutes with r, t. One could
insert an overall normalisation to fix the dimensions of g.
The additional angular term commutes, has zero wedge
product and obeys the reality condition, so these features
all still hold for g. This metric generalises the one in [1]
from the case β = 1. Using the same methods as in [1]
we can show that up to a shift in the t variable, this is
the most general form of spherically symmetric metric
that commutes with r, t and involves a reasonable class
of functions.

IV. CLASSICAL LIMITS AND MATCHING TO
A PERFECT FLUID

We now look at the classical limit of the restricted moduli
of quantum metrics found in Section III. In each case we
ask for which parameter values the Einstein tensor G
obeys

G = 8πGNT, T = pg + (p+ ρ)u⊗ u, u2 = −1

for a timelike 1-form u. Here T is the stress energy tensor
of a perfect fluid of density ρ and pressure p. We use
GN for Newton’s gravitational constant. We will write
Gµ

ν = gµαGαν , Uµ = gµαuα and dΩ2 for the standard
metric of the unit sphere Sn−2 when we are working in
spacetime dimension n.

A. Emergence of de Sitter-like metric from the α
family

Here we look at the classical limit of the metric in Sec-
tion IIIA, namely

g = δ−1dΩ2 + ar−2dr ⊗ dr

+brα−1(dr ⊗ dt+ dt⊗ dr) + cr2αdt⊗ dt (7)

where a, b, c ∈ R, δ > 0 and we need b2 − ac > 0 for a
Minkowski signature. The first thing we do is define the
combination

δ =
cα2
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and we study the three cases.

(i) If δ > 0 then this implies c, a+ α2

δ
> 0 and we define

a change of variables

t� =
α√
δ
ln r, r� =

√
ct−
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a+ α2

δ
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when b > 0 and the opposite sign in the 2nd term of r�

when b < 0. Then our metric becomes

g = δ−1dΩ2 + e2t
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√

δdr�2 − dt�2. (8)

From this we see that up to coordinate transforma-
tions we have a 2-parameter moduli of metrics in di-
mensions n > 2 that are spatially rotationally invariant
and the classical limit of a quantum metric on our quan-
tum spacetime differential algebra, governed by a pair
of inverse-square length scales δ, δ. Our metric in this
canonical form can be compared to de Sitter in the flat
slicing

gdS = e2t
√
δ(r2dΩ2 + dr2)− dt2

but is not equal to it because de Sitter spacetime is con-
formally flat whereas for n > 3 our metric does not have
vanishing Weyl tensor while for n = 3 we will prove also
that it is not de Sitter. Its scaler curvature is

S = (n− 2)(n− 3)δ + 2δ. (9)

For n = 2 we do not have the δ term and our metric
is indeed 2D de Sitter with inverse square-length scale
δ, so this is forced out of nothing but our quantisability
assumption in 2D as the only possibility, for some scale
δ which is not determined by our arguments.

For n ≥ 3 we now compute the Einstein tensor as

G = − (n− 2)(n− 3)

2
δg + ((n− 3)δ − δ)dΩ2 (10)

so that G is diagonal in our coordinate basis with eigen-
values

− (n− 2)(n− 3)

2
δ, −δ − (n− 3)(n− 4)

2
δ (11)

where the first eigenspace is spanned by the t, r direc-
tions and the other eigenspace is spanned by the angular
directions. Now if the two eigenvalues of such a G are
distinct then it cannot match a perfect fluid. That is be-
cause G = 8πGN(p id + U ⊗ u) would require u to have
only one non-zero entry (since otherwise U ⊗ u would
have off-diagonals) and in that case it could only change
the eigenvalue in a 1-dimensional subspace, contradicting
the equality of the eigenvalues in the r, t subspace given
that u is timelike. Hence we can only match a perfect
fluid if the eigenvalues coincide, which means

(n− 3)δ = δ, G = − (n− 2)(n− 3)

2
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S = n(n− 3)δ, Ricci = (n− 3)δg

which indeed is the obvious solution from (10), i.e. this is
the only solution. We conclude for n ≥ 3 that our mod-
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(6)
for a, b ∈ R, a, b �= 0, commutes with r, t. One could
insert an overall normalisation to fix the dimensions of g.
The additional angular term commutes, has zero wedge
product and obeys the reality condition, so these features
all still hold for g. This metric generalises the one in [1]
from the case β = 1. Using the same methods as in [1]
we can show that up to a shift in the t variable, this is
the most general form of spherically symmetric metric
that commutes with r, t and involves a reasonable class
of functions.
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of quantum metrics found in Section III. In each case we
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for a timelike 1-form u. Here T is the stress energy tensor
of a perfect fluid of density ρ and pressure p. We use
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ν = gµαGαν , Uµ = gµαuα and dΩ2 for the standard
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when b > 0 and the opposite sign in the 2nd term of r�

when b < 0. Then our metric becomes
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From this we see that up to coordinate transforma-
tions we have a 2-parameter moduli of metrics in di-
mensions n > 2 that are spatially rotationally invariant
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but is not equal to it because de Sitter spacetime is con-
formally flat whereas for n > 3 our metric does not have
vanishing Weyl tensor while for n = 3 we will prove also
that it is not de Sitter. Its scaler curvature is

S = (n− 2)(n− 3)δ + 2δ. (9)

For n = 2 we do not have the δ term and our metric
is indeed 2D de Sitter with inverse square-length scale
δ, so this is forced out of nothing but our quantisability
assumption in 2D as the only possibility, for some scale
δ which is not determined by our arguments.

For n ≥ 3 we now compute the Einstein tensor as
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where the first eigenspace is spanned by the t, r direc-
tions and the other eigenspace is spanned by the angular
directions. Now if the two eigenvalues of such a G are
distinct then it cannot match a perfect fluid. That is be-
cause G = 8πGN(p id + U ⊗ u) would require u to have
only one non-zero entry (since otherwise U ⊗ u would
have off-diagonals) and in that case it could only change
the eigenvalue in a 1-dimensional subspace, contradicting
the equality of the eigenvalues in the r, t subspace given
that u is timelike. Hence we can only match a perfect
fluid if the eigenvalues coincide, which means

(n− 3)δ = δ, G = − (n− 2)(n− 3)

2
δg,

S = n(n− 3)δ, Ricci = (n− 3)δg

which indeed is the obvious solution from (10), i.e. this is
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Change of coordinates

=> S
n−2

× dS2

S
n−2

× AdS2

δ̄ > 0

δ̄ < 0

= λ

√

b2
− ac

∇dt
′ = −

√

δ e
2t

′

√
δ(dr

′ ⊗dt
′ + dt

′ ⊗dr
′)

similarly: 

quantum 
Levi-Civita

Same change of variables that diagonalised metric also gives 
canonical commutation relations



Semiquantisation

a.b − b.a = λ{a, b} + O(λ2) ω
ij Poisson tensor

C
∞(M)A0 =

Similarly, quantization of              at order    requires   Ω1(M)

{ , } ↔

quantisation at order    means a Poisson bracketλ

λ

a.db − (db).a = λ∇âdb + O(λ2)
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Meanwhile, however, there has been much progress in noncommutative differential
geometry – doing differential geometry on a noncommutative algebra – and for

this one needs at some point not only an algebra Aλ (specifying the algebra is like

specifying a topological space) but a ‘differential graded algebra’ (DGA)

Ω(Aλ) = ⊕nΩ
n
, d ∶ Ωn → Ωn+1

obeying d
2 = 0 and the graded-Leibniz rule. This plays the role of the algebra of

differential forms (and is like specifying a differential structure on a space). In the

constructive ‘quantum groups’ approach this is indeed the next later of geometry

in the role classically of choosing the differentiable structure on a topological space,

typically using quantum symmetry to narrow down and help select the differential
structure. This contrasts to other approaches such as that of Connes[6] where the

starting point for the differential geometry is a hilbert space and operator in the

role of Dirac operator on spinor. The data for the differential structure at the

semiclassical level was properly analysed in [1] by looking at

a ●λ db − (db) ●λ a = λ∇âdb +O(λ2).
The assumption of an associative Ω(Aλ) and the Leibniz rule for d requires at order

λ that ∇â(bdc) = {a, b}dc + b∇âdc

(1.1) d{a, b} = ∇âdb −∇b̂da

(these follow easily from [a, bdc] = [a, b]dc + b[a,dc] and d[a, b] = [da, b] + [a,db]).
The first requirement says that ∇ is a covariant derivative along Hamiltonian vector

fields â and the second is a Poisson-compatibility. For simplicity we will speak of a

connection ∇i in our coordinate basis but if the Poisson tensor in these coordinates

is ωij
then we are only really making use of the combination ωis∇s in all that

follows, which is to say a partial connection in the case where ω is degenerate. At

order λ2
the associativity of Ω(Aλ) requires

(∇â∇b̂ −∇b̂∇â −∇ ˆ{a,b})dc = 0
(just consider [a, [b,dc]] + [b, [dc, a]] + [dc, [a, b]] = 0) which is to say that our

(partial) connection has to be flat if we are concerned about this order.

This brings us to the following two quantisation problems given a manifold M

equipped with data (ω,∇) as above:
Problem 1: can we quantise the data to an associative DGA

Ω(Aλ) such that the above hold?

Problem 2: can we similarly quantise other classical geometrical

structures?

Recently in [5] we have answered both questions in the affirmative, but only at

order λ. Working only to this order is a process that we call ‘semiquantisation’

but one could as well call it ‘semiclassicalisation’ depending on one’s point of view.

Formally, instead of working over the ring C[[λ]] we work over the ring C[λ]�(λ2)
where we formally set λ2 = 0. Both rings are mathematical tricks: in physical

applications one wants λ to be an actual (imaginary) number meaning on the one

hand for powerseries to converge and on the other hand, in our case, for O(λ2)
terms to be physically neglectable. This should be reasonable when λ is the Planck

At order      the bimodule associativity is   
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fields â and the second is a Poisson-compatibility. For simplicity we will speak of a

connection ∇i in our coordinate basis but if the Poisson tensor in these coordinates

is ωij
then we are only really making use of the combination ωis∇s in all that

follows, which is to say a partial connection in the case where ω is degenerate. At

order λ2
the associativity of Ω(Aλ) requires
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fields â and the second is a Poisson-compatibility. For simplicity we will speak of a

connection ∇i in our coordinate basis but if the Poisson tensor in these coordinates

is ωij
then we are only really making use of the combination ωis∇s in all that

follows, which is to say a partial connection in the case where ω is degenerate. At

order λ2
the associativity of Ω(Aλ) requires
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gijω
is(T j

nm;s − 2Rj
nms)dxm

∧ dxnR =

`generalised Ricci form’

Thm: Exists best possible quantum Levi-Civita     : torsion free and 
symmetric part of              .        ∇1g1 = 0
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for all η ∈ Ω1(M) and ξ ∈ E.

2.2. Quantizing the metric and Levi-Civita connection. We can similarly
apply our functor, with corrections, to quantise the metric. Here we suppose that(M,ω,∇) above has additional structure (g, ∇̂) where g is a RIemannian (or pseudo-
RIemannian) metric and ∇̂ is the Levi-Civita connection.

Before constructing the quantum metric g1 ∈ Ω1(Aλ)⊗1 Ω
1(Aλ) note first that the

existence of a bimodule map inverse quantum metric ( , ) ∶ Ω1(Aλ)⊗1Ω
1(Aλ)→ Aλ

requires that g1 is central[4]. Assuming the quantum metric is a deformation of g,
this comes down at order λ to

(2.6) ∇g = 0
So this is our 2nd condition after (2.1) and we assume we are in this case.

The functorial choice for the quantised metric is given by regarding the classical
metric as the value at 1 of g̃ ∶ C∞(M)→ Ω1(M)⊗0 Ω

1(M) a morphism in D0(M),
where we take ∇. Applying the functor then gives

(2.7) gQ = q−1Ω1,Ω1(g) = gijdxi ⊗1 dx
j + λ

2
ωijgpmΓp

iqΓ
q
jndx

m ⊗1 dx
n

in our quantum-central case. One has ∇QgQ = 0 so this is metric compatible. But
on the other hand, ∧1gQ = λR; R =Hijgij
One can therefore either live with this or define

g1 = gQ − λ

4
gijω

is(T j
nm;s −Rj

nms −Rj
mns)dxm ⊗1 dx

n

which now has ∧1(g1) = 0. In this case ∇Q(g1) = 0 iff ∇R = 0 [5].

More generally, write the classical Levi-Civita connection as ∇̂ = ∇ + S where

Sa
bc = 1

2
gad(Tdbc − Tbcd − Tcbd)

and quantise the two parts separately as ∇QS = ∇Q+SQ as a first approximation to
the quantum Levi-Civita connection on the same quantum DGA as above (which
was quantised via ∇).
Theorem 2.3. [5] There is a unique quantum connection of the form ∇1 = ∇QS +
λK which is quantum torsion free and for which the symmetric part in the last two
factors of ∇1g1 = 0. This is fully metric compatible iff

∇̂R + ωij grs S
s
jn(Rr

mki + Sr
km;i)dxk ⊗ dxm ∧ dxn = 0

However, these exist examples, such as the Schwarzschild black hole[5] where this
equation cannot hold (indeed, the left hand side there is independent of the choice of∇ within the class considered, so in some sense topologically) and we must therefore
live with the antisymmetric part (id⊗∧)∇1g1 = O(λ) as a new feature of quantum
geometry. In classical geometry there cannot be any such antisymmetric part, i.e.
this is a purely quantum effect.

In what follows we will be interested only in the S = T = 0 case of the above, where
the ∇ = ∇̂. In this case

R = −1
2
gijω

isRj
nmsdx

m ∧ dxn ∈ Ω2(M)

∇1

∇̂ = ∇ + S∇g = 0 <=>              
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5.2. Relating general ∇ and the Levi-Civita ∇̂. In general the quantising

connection ∇ may not be the same as the classical Levi-Civita connection ∇̂ for

our chosen metric on M . In this section we write the latter in the general form∇S = ∇ + S for some S ∶ Ω1(M) → Ω1(M) ⊗0 Ω1(M) and we assume that the

quantising connection ∇ obeys ∇g = 0. The quantising connection has torsion T
and we lower its indices by the Riemannian metric Tabc = gad T d

bc. It is well-known

(see [18]) that given an arbitrary torsion T , there is a unique metric compatible

covariant derivative ∇ with that torsion, given by

Γa
bc = Γ̂a

bc + 1

2
gad(Tdbc − Tbcd − Tcbd) .(5.6)

Here Γa
bc in our case is the Christoffel symbols for the quantising connection and

Γ̂a
bc is the Christoffel symbols for the Levi-Civita connection so that ∇S(dxa) =−Γ̂a
bc dx

b ⊗ dxc
. Hence

(5.7) Sa
bc = 1

2
gad(Tdbc − Tbcd − Tcbd).

As a quick check of conventions, note that this formula is consistent with (4.3).

Throughout this section T is arbitrary which fixes ∇ such that this is metric com-

patible, and S is the above function of T so that ∇S = ∇̂, the Levi-Civita connection.
Lemma 5.4. The curvatures are related by

R̂l
ijk =Rl

ijk − Sl
ki;j + Sl

ji;k − Tm
jk S

l
mi + Sm

ki S
l
jm − Sm

ji S
l
km ,

where semicolon is derivative with respect to ∇.
Proof. This is elementary: Γ̂m

ji = Γm
ji − Sm

ji so that

R̂l
ijk = Γ̂l

ki,j − Γ̂l
ji,k + Γ̂m

ki Γ̂
l
jm − Γ̂m

ji Γ̂
l
km=Rl

ijk − Sl
ki,j + Sl

ji,k − Γm
ki S

l
jm + Γm

ji S
l
km − Sm

ki Γ
l
jm + Sm

ji Γ
l
km+Sm

ki S
l
jm − Sm

ji S
l
km=Rl

ijk − Sl
ki;j + Sl

ji;k − Tm
jk S

l
mi + Sm

ki S
l
jm − Sm

ji S
l
km . �

This gives a different point of view on some of the formulae below, if we wish to

rewrite expressions in terms of the Levi-Civita connection. In the same vein:

Proposition 5.5. Suppose that a connection ∇ is metric-compatible. Then (∇,ω)
are Poisson-compatible if and only if

(∇̂kω)ij + ωir Sj
rk − ωjrSi

rk = 0
or equivalently

ωjmSi
mk = 1

2
�(∇̂kω)ij − (∇̂rω)mj gri gmk + (∇̂rω)im grj gmk � .

Proof. The compatibility condition gives

0 = (∇̂mω)ij + ωik (T j
km + 1

2
gjd(Tdmk − Tmkd − Tkmd))+ωkj (T i

km + 1

2
gid(Tdmk − Tmkd − Tkmd))= (∇̂mω)ij + ωik 1

2
gjd(Tdkm − Tmkd − Tkmd)+ωkj 1

2
gid(Tdkm − Tmkd − Tkmd)= (∇̂mω)ij + ωik 1

2
gjd(Tdkm + Tmdk − Tkmd)+ωkj 1

2
gid(Tdkm + Tmdk − Tkmd)

(ω,∇) compat <=>              
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`quant metric’

Thm:  suppose          Poisson compat and metric   , Levi-Civita conn.  
Exists quantum metric at order       <=>              

g1 := q−1(g −
λ

4
gijω

is(T j
nm;s − Rj

nms + Rj
mns)dxm

⊗0dxn)

(ω,∇) g

λ

∇̂

∇g = 0

 Conditions on Riemann curvature for integrability             

fully quantum Levi-Civita iff ∇1



E.g. Schwarzschild black hole 

Rotationally invariant t-indept Poisson bivector =>

T rotationally invariant & Poisson-compatibility => 
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7.2. Semiquantisation of the Schwarzschild black hole. We take polar coor-
dinates plus t for 4-dimensional space, where φ is the angle of rotation about the
z-axis and θ is the angle to the z-axis. We take any static isotropic form of metric
(including the Schwarzschild case)

g = −eN(r)dt⊗ dt + eP (r)dr ⊗ dr + r2(dθ ⊗ dθ + sin2(θ)dφ⊗ dφ)(7.3)

The Levi-Civita Christoffel symbols are zero except for

Γ̂0

01 = Γ̂0

10 = 1

2
N ′, Γ̂1

11 = 1

2
P ′, Γ̂1

00 = 1

2
N ′ eN−P

Γ̂1

22 = −r e−P , Γ̂1

33 = −r e−P sin2(θ), Γ̂2

12 = Γ̂2

21 = Γ̂3

13 = Γ̂3

31 = r−1
Γ̂2

33 = − sin(θ) cos(θ), Γ̂3

23 = Γ̂3

32 = cot(θ) .(7.4)

We shall only consider rotationally invariant Poisson tensors ω. Consider a bivector
and rotation invariance in the spherical polar coordinate system. To generate the
Lie algebra of the rotation group, we only need two infinitesimal rotations, about the
z axis and about the y axis. For the first, denoting change under the infinitesimal
rotation by δ, we get δ(θ) = 0, δ(φ) = 1, and δ(dθ) = δA(dφ) = 0. The infinitesimal
rotation about the y axis is rather more complicated in polar coordinates:

δ(θ) = cosφ , δ(φ) = − cot θ sinφ , δ(dθ) = − sinφdφ ,
δ(dφ) = − cot θ cosφdφ + csc2 θ sinφdθ .

It is now easily checked that a rotation invariant 2-form on the sphere is, up to a
multiple, sin θ dθ ∧ dφ. It follows that a rotation invariant bivector on the sphere
is, up to a multiple, given in polars by ω23 = csc θ.
Proposition 7.2. If ω is rotationally invariant and independent of x0, then only
ω01 = −ω10 = k(r) and ω23 = −ω32 = f(r)� sin θ are non-zero. The condition to be a
poisson tensor is that ω01 ω23

,1 = 0, i.e. k(r)f ′(r) = 0.
Proof. We now suppose that ω is rotationally invariant as a bivector field. To
analyse this is it useful to use our Minkowski-polar coordinates to view Ei = ω0i

as a spatial vector in polar coordinates and to view ωij where i, j ≠ 0 as a spatial
2-form which we view as another vector, B. Now consider their values at the north
pole of a sphere of radius r. Under rotation about the z-axis the north pole does
not move so there is no orbital angular momentum. There is, however, rotation
of the vector indices unless both E,B point along the z-axis. This applies equally
at any point of the sphere, i.e. E,B must point radially. Equation (3.3) gives the
Poisson result. �

We now write the Christoffel symbols Γa
bc for the quantising connection ∇ in terms

of its torsion T and use Mathematica to get the following result:

Proposition 7.3. Assume time independence and axial symmetry (i.e. that the
torsions Tijk are independent of the coordinates t and φ). Then the general solution
for the Poisson-compatibility and metric-compatiblity conditions for (∇,ω) is given
by ω23 = 1� sin θ (up to a constant multiple set to one), ω01 = 0, and the following
restrictions on Tijk, apart from the obvious Tijk = −Tikj:
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Γ̂0

01 = Γ̂0
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N ′ eN−P
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T012 = T201 + T102 T013 = T301 + T103 T023 = 0
T123 = 0 T202 = 0 T203 = −T302

T212 = r T213 = −T312 T223 = 0
T303 = 0 T313 = r sin2(θ) T323 = 0

As T313 and T212 are non-zero, we cannot take for ∇ the Levi-Civita connection.
We get the following value of Hij , independently of any choice in the torsions:

H
ij =

���������
− 1

2
sin θ dθ ∧ dφ i = j = 2

1

2
csc θ dθ ∧ dφ i = j = 3

0 otherwise
.

From this R = gij Hij = 0, so the correction to the metric is zero, g1 = gQ.
Moreover, we find in Theorem 5.7 that (with semicolons WRT the quantising con-
nection) that antisymmetric part of ∇1g1 is proportional to

ωij
grs S

s
jn(Rr

mki + Sr
km;i) − ωij

grs S
s
jm(Rr

nki + Sr
kn;i)

=
���������
−r sin θ (k,m,n) = (2,3,1) & (k,m,n) = (3,2,1)
r sin θ (k,m,n) = (2,1,3) & (k,m,n) = (3,1,2)

0 otherwise

independently of ∇. Thus there is an obstruction and no adjustment ∇1 exactly
preserves the metric.

We now specialise to the case where the Tijk are rotationally symmetric, which gives
the following as the only non-zero torsions, apart from the obvious Tijk = −Tikj :

T001 = f1(r) T101 = f2(r) T203 = −T302 = −f3(r) sin θ
T212 = r T313 = r sin2(θ) T213 = −T312 = −f4(r) sin θ

where f1(r), f2(r), f3(r), f4(r) are arbitrary functions of r only.

Finallly, we specialise further to the Schwarzschild case, where e
N = c2 (1 − rs�r)

and e
P = (1 − rs�r)−1, where rs is the Schwarzschild radius. A short calculation

with Mathematica then gives

Lemma 7.4. For the Schwarzschild metric the non-zero R
i
jkl, up to the obvious

R
i
jkl = −Ri

jlk are

R
1
010 = R0

110 = − f ′1(r) + c2 rs r−3
c2 (1 − rs�r) R

2
310 = sin θ (2 f3(r) − r f ′3(r)) r−3

R
3
210 = − csc θ (2 f3(r) − r f ′3(r)) r−3 R

3
223 = −1 R

2
323 = sin2 θ.

In particular, the curvature cannot vanish entirely.

We also have (using row i column j notation)

S
0

ij =
�����
0 −e−Nf1(r) 0 0
0 −e−Nf2(r) 0 0
0 0 0 0
0 0 0 0

�����
, S

1

ij =
�����
−e−P f1(r) 0 0 0−e−P f2(r) 0 0 0

0 0 e−P r 0
0 0 0 e

−P
r sin2(θ)

�����
,

S
2

ij =
������

0 0 0 − f3(r) sin(θ)
r2

0 0 0 − f4(r) sin(θ)
r2

0 −1

r 0 0
0 0 0 0

������
, S

3

ij =
������

0 0 f3(r) csc(θ)
r2 0

0 0 csc(θ)f4(r)
r2 0

0 0 0 0
0 −1

r 0 0

������
,

Our obstruction to full                is ∇1g1 = 0
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=> antisymmetic 
obstruction to qua. LC

=> any quantization will have to be nonassociative. 
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,



Defn:  a central extension of a DGA          means

Ωθ′ = C ⊕ Cθ, θ′2 = 0, dθ′ = 0 DGA of a `point’

Ω(A)

Ωθ′ ↪→ Ω̃(A) ! Ω(A)

as vector space,       graded-commutesθ
′

 - cleft if the projection is a left A-module map. 
 - flat if equivalent to a central extension where d is undeformed

Ω̃(A) = Ω(A)⊗Ωθ′

Extn <=>
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where �
2|Λ| ≈ 5 × 10−33ev

if we put in the observed vacuum density of around 10−29g/cm3. As the observed value appears to
be positive, this would seem to imply a tachyonic mass, but this could be a matter of reviewing the
sign and signature conventions. In any event we provide a point of view which puts the puzzle of the
cosmological constant on the same footing as the lack of explanation of other small masses in physics,
such as neutrino or other elementary particle masses, which are all far below the Planck mass. For a
possible explanation of that, there are at least some situations, eg[9], where quantum spacetime prefers
masses to be zero. These then might may appear as quantum corrections when viewed classically.

3 Extension theory for differential graded algebras

Let’s now see[14] how Riemannian geometry in the form above emerges out of nothing but noncom-
mutative differential calculus, basically the Leibniz rule. The idea is to assume only that the differ-
ential structure on classical spacetime is the projection of some quantum differential graded algebra
(Ω̃(M), d̃). Thus Ω̃(M) = ⊕nΩ̃

n(M) plays the role of differential forms of different degrees and we sup-
pose that Ω̃0(M) = C∞(M) as a vector space and that d̃ increases degree by 1, is a graded-derivation
and d̃2 = 0. This is a minimal requirement. We also suppose:

Ω̃(M)� Ω(M)

is an extension of differential graded algebras by a single additional 1-form θ� with θ�2 = 0, dθ� = 0
and θ� ∧ ω = (−1)|ω|ω ∧ θ� for all ω ∈ Ω(M). So we are supposing just that the noncommutative
geometry has a single extra cotangent direction, setting which to zero takes us back to the classical
Ω(M). Finally, we add one key requirement, namely that the product by functions from the left is the
same as classical. This is a kind of ‘normal ordering’ assumption and such an extension is called cleft
in [14]. This also entails that the product of C∞(M) itself is not deformed, only the differentials are
‘quantum’. So these are only mildly noncommutative extensions of the classical manifold.

Now the general form of (Ω̃(M), d̃) by degree counting is [14]

d̃ω = dω − λ
2
θ�∆ω, ω∧̃η = ω ∧ η − λ

2
θ�[[ω, η]]

for a degree 0 map ∆ and a degree -1 (i.e. degree lowering) map [[ , ]]. The constant λ is physically
dimensionful but could otherwise be absorbed in the normalisation of θ�. Such maps (∆, [[ , ]]) define
an extension iff [∆, d] = 0 and the ‘cocycle conditions’ [14]

[[ωη, ζ]] + [[ω, η]]ζ = [[ω, ηζ]] + (−1)|ω|ω[[η, ζ]] (3.1)

L∆(ω, η) = d[[ω, η]] + [[dω, η]] + (−1)|ω|[[ω, dη]] (3.2)

hold for all ω, η, ζ ∈ Ω(M). For any operator B of degree b on a graded algebra, we use the Leibnizator

LB(ω, η) := B(ωη) − (Bω)η − (−1)b|ω|ωBη.

The cleft case has the further requirement [[a, ]] = 0 for all a ∈ C∞(M).

Theorem 3.1 [14] Associated to any cleft-extension (Ω̃(M), d̃) of (Ω(M), d) is a classical possibly-
degenerate metric and covariant derivative

(ω, da) =
1
2

[[ω, a]], ∇ωη =
1
2

[[ω, η]], ∀a ∈ C∞(M), ω, η ∈ Ω1(M)
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geometry has a single extra cotangent direction, setting which to zero takes us back to the classical
Ω(M). Finally, we add one key requirement, namely that the product by functions from the left is the
same as classical. This is a kind of ‘normal ordering’ assumption and such an extension is called cleft
in [14]. This also entails that the product of C∞(M) itself is not deformed, only the differentials are
‘quantum’. So these are only mildly noncommutative extensions of the classical manifold.

Now the general form of (Ω̃(M), d̃) by degree counting is [14]

d̃ω = dω − λ
2
θ�∆ω, ω∧̃η = ω ∧ η − λ

2
θ�[[ω, η]]

for a degree 0 map ∆ and a degree -1 (i.e. degree lowering) map [[ , ]]. The constant λ is physically
dimensionful but could otherwise be absorbed in the normalisation of θ�. Such maps (∆, [[ , ]]) define
an extension iff [∆, d] = 0 and the ‘cocycle conditions’ [14]

[[ωη, ζ]] + [[ω, η]]ζ = [[ω, ηζ]] + (−1)|ω|ω[[η, ζ]] (3.1)

L∆(ω, η) = d[[ω, η]] + [[dω, η]] + (−1)|ω|[[ω, dη]] (3.2)

hold for all ω, η, ζ ∈ Ω(M). For any operator B of degree b on a graded algebra, we use the Leibnizator

LB(ω, η) := B(ωη) − (Bω)η − (−1)b|ω|ωBη.

The cleft case has the further requirement [[a, ]] = 0 for all a ∈ C∞(M).

Theorem 3.1 [14] Associated to any cleft-extension (Ω̃(M), d̃) of (Ω(M), d) is a classical possibly-
degenerate metric and covariant derivative

(ω, da) =
1
2

[[ω, a]], ∇ωη =
1
2

[[ω, η]], ∀a ∈ C∞(M), ω, η ∈ Ω1(M)

call               a `2-cocycle’ (cf group central extensions). Here
`leibnizator’
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3.1.4 Wave equation

The fourth important lesson at the moment is that the Riemannian geometry comes associated with a

Laplacian ∆ : Ω→ Ω as a byproduct of the quantum differential calculus. It obeys (3.2) as

[∆, d] = 0,
1

2
L∆(ω, η) = (d∇ω + (−1)

|ω|∇ωd)η + ∇dωη, ∀ω, η, ζ ∈ Ω(M) (3.7)

and ‘emerges’ at the same time as the Riemannian geometry, perhaps explaining the ubiquitous role

of the wave equation in physics. Thus a zero mass eigenfunction of the wave operator, i.e. ω ∈ Ω(M)

such that ∆ω = 0, is the same thing as an element of the exterior algebra such that

d̃ω = dω,

in other words fields on which d is not deformed in the noncommutative extension. This is the meaning
of the ‘wave equation’ in our new point of view.

4 Emergence of quantum metrics and bimodule covariant derivatives

If the above is the right way to think about classical Riemannian geometry then it should also be the

right way to think about the axioms of quantum or noncommutative Riemannian geometry where A is

not necessarily given by a classical manifold, indeed it need not even be commutative.

Recall that A will play a role like a coordinate algebra. We suppose it extends to a differential

graded algebra Ω(A) = ⊕iΩ
i

playing the role of forms of different degrees and equipped with d, the

‘exterior derivative’, obeying d
2 = 0 and the graded-Leibniz rule. We already met this idea when

talking about the central extension of the classical exterior algebra in Section 3, but now it will be

our starting point. The other basic idea from noncommutative geometry that we will need is that of

a bimodule, meaning that A acts from both the left and the right and these actions commute. For

example, each Ωi
is a bimodule meaning (aω)b = a(ωb) for all a, b ∈ A,ω ∈ Ωi

, at least in a

conventional associative setting. Now look at 1-1 tensors like the metric g ∈ Ω1 ⊗A Ω
1
. The subscript

A in the tensor product means that we can associate any ‘functional dependence’ either with the left

copy or the right copy of Ω1
, in the sense ω⊗A aη = ωa⊗A η for all a ∈ A. Finally, when we talk about

tensorial maps in geometry we mean that they commute with multiplication by functions on the space,

which we can now do on either side when we have a bimodule. Such bimodule maps which commute

with multiplication from either side are the right notion then of ‘tensoriality’ in noncommutative

geometry in the approach being taken here. One could also have left-tensoriality and right-tensoriality

separately.

Now suppose some initial (Ω(A), d) of standard type generated by A, d as a differential graded

algebra but possibly non-graded-commutative, and we consider similar extensions

Ω̃(A)� Ω(A)

where (Ω̃(A), d̃) has an extra generator θ� as before. We have the same notions as before and a cleft

extension is governed by [[a,ω]] = 0 and obeys (3.1)-(3.2) as before, just this time with a ∈ A and

ω, η ∈ Ω. We then follow the line of Theorem 3.1 by setting

jω(adb) =
1

2
[[ωa, b]], ∀ω ∈ Ω, a, b ∈ A

which we suppose gives a well-defined map j : Ω ⊗A Ω
1 → Ω as a kind of ‘regularity’ assumption.

In this case (3.1) means that the map j or ‘interior product’ is a bimodule map, i.e ‘tensorial’ as

II Why is there Riemannian Structure? SM arXiv:
1307.2778 
(math.QA)
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where �
2|Λ| ≈ 5 × 10−33ev

if we put in the observed vacuum density of around 10−29g/cm3. As the observed value appears to
be positive, this would seem to imply a tachyonic mass, but this could be a matter of reviewing the
sign and signature conventions. In any event we provide a point of view which puts the puzzle of the
cosmological constant on the same footing as the lack of explanation of other small masses in physics,
such as neutrino or other elementary particle masses, which are all far below the Planck mass. For a
possible explanation of that, there are at least some situations, eg[9], where quantum spacetime prefers
masses to be zero. These then might may appear as quantum corrections when viewed classically.

3 Extension theory for differential graded algebras

Let’s now see[14] how Riemannian geometry in the form above emerges out of nothing but noncom-
mutative differential calculus, basically the Leibniz rule. The idea is to assume only that the differ-
ential structure on classical spacetime is the projection of some quantum differential graded algebra
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hold for all ω, η, ζ ∈ Ω(M). For any operator B of degree b on a graded algebra, we use the Leibnizator

LB(ω, η) := B(ωη) − (Bω)η − (−1)b|ω|ωBη.

The cleft case has the further requirement [[a, ]] = 0 for all a ∈ C∞(M).

Theorem 3.1 [14] Associated to any cleft-extension (Ω̃(M), d̃) of (Ω(M), d) is a classical possibly-
degenerate metric and covariant derivative
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LB(ω, η) := B(ωη) − (Bω)η − (−1)b|ω|ωBη.

The cleft case has the further requirement [[a, ]] = 0 for all a ∈ C∞(M).

Theorem 3.1 [14] Associated to any cleft-extension (Ω̃(M), d̃) of (Ω(M), d) is a classical possibly-
degenerate metric and covariant derivative

(ω, da) =
1
2

[[ω, a]], ∇ωη =
1
2

[[ω, η]], ∀a ∈ C∞(M), ω, η ∈ Ω1(M)

2 E.J. BEGGS & SHAHN MAJID

of the connection entails nonassociativity of the bimodule product (so a breakdown
of (adb)c = a((db)c) for elements a, b, c of the noncommutative algebra) at O�λ2�.
We extend these ideas now to the similar quantization of bundles and connections
on M , which we achieve without further conditions or data. More precisely, we
assume a Poisson manifold with tensor ω and for convenience an actual connection∇ with torsion. Our main result, implicit in [4] is that Poission-compatibility in
terms of torsion amounts to the condition for (ω,∇),
(1.1) ωij

;m = ωki
T

j
km + ωjk

T
i
km

where we use a tensor calculus notation. This is Lemma 3.1. The startling conclu-
sion in Sections 3,4 of the paper is that with this assumption we have canonically
a functor that quantises to lowest order all classical bundles over M and also the
structure of the exterior algebra (Ω(M),d), i.e. the wedge product (and tensor
products more generally).

A longer term motivation for the paper is that the abstract theory of noncommu-
ative Riemannian geometry has certain gaps where we do not now fully how to
proceed. Thus in Section 5 and further in a sequel, we apply the theory to the case
where (M,g) is Riemannian. We identify natural conditions on (ω,∇, g) for the
metric to quantise and to have a quantum Levi-Civita connection at least at O�λ�.
The construction of the quantum Ricci tensor in this context is deferred, as is more
generally the problem of extending our results to all orders, probably to a future
order-by-order or A∞-algebra approach.

Section 6 concludes with some basic examples where we can see the content of our
construction. One them, the bicrossproduct model quantum spacetime, is as a check
and our results are in agreement with the all-order results in this model already
known. The new examples, which we do only at order λ, are the Schwarzschild black
hole where we find a generous moduli space of quantisation data, and RIemann
surfaces. Our approach also covers all Kahler manifolds as an example.

Interestingly, the equation (1.1) has a striking similarity to a weak-metric-compatibility
[?]

g
ij
;m = gkiT j

km + gjkT i
km.

which applies to metric-connection pairs arising from cleft central extensions of the
classical exterior algebra. Here the context is extension as a differential graded
algebra by a 1-form θ′ with θ′2 = 0 and θ′ graded-commutative, whereas in our
present paper we extend by λ a central scaler with λ2 = 0 as explained above. It
would seem that these two different ideas could be unified into a single ‘super’
construction with bosonic and fermionic parts.

2. Preliminaries

2.1. Classical differential geometry. We assume that the reader is comfortable
with classical differential geometry and recall its noncommutative algebraic gen-
eralisation in a bimodule approach. For classical geometry suffice it to say that
we assume M is a smooth manifold with further smooth structures notably the
exterior algebra (Ω(M),d) but more generally we could start with any graded-
commutative classical differential graded algebra with further structure (i.e. the

M

origin of metric, connection and weak metric compatibility. 

∇

Thm 2:  The cleft extension is flat if                       for some 
degree -1 map    , which holds iff T=0. 

∆ = dδ + δd

δ

origin of torsion-freeness and form of the Hodge laplacian

If      `symmetric’ get a new formula for Levi-Civita and metric:
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Another observation will be that it is not particularly natural from the algebraic point of view for
the metric that emerges to be non-degenerate, which could be useful. More radically:

Proposition The metric is really part of a covariant derivative ∇ω acting on all degrees of
the exterior algebra Ω(M), namely the part acting on degree 0.

The covariant derivative, metric and interior product will be further unified into a single universal
covariant derivative acting on all degrees and along all degrees of ω. Our approach to Riemannian
geometry also links up with BRST quantisation[2] in that there is a natural Batalin-Vilkovisky (BV)
algebra structure on the algebra of differential forms. Essentially, we find that a BV algebra equipped
with a differential d and where the BRST operator is symmetric in a certain sense (which we will
explain), more or less is a Riemannian manifold. This seems to me a remarkable confluence of a
structure in quantum field theory (for the quantisation of ghosts) with gravity.

Finally, while lessons for classical GR are our main concern, our new way of thinking about Rie-
mannian geometry also applies in the quantum case whereΩ(M) is replaced by some general differen-
tial graded algebra (DGA), which we denoteΩ(A), not necessarily graded-commutative. Then cocycle
central extensions of such objects similarly induce (bimodule) quantum connections and ‘quantum in-
terior products’ giving a new approach to the latter. This new approach provides for the first time a
somewhat general definition of the quantum Ricci tensor, see Section 4.

2 Reconstructing a Riemannian geometry from its divergence operator
Our claims depend on the following results taken from our recent paper [14]. Let M be a smooth
manifold and let (Ω(M), d) be the exterior algebra of differential forms. Here d increases degree by 1
and obeys the graded Leibniz rule and d2 = 0.

We define a possibly-degenerate metric as a symmetric tensor viewed as an ‘inner product’ ( , )
on 1-forms. We define a covariant derivative ∇ω : Ω1(M)→ Ω1(M) along 1-forms ω by the property

∇ω(aη) = (ω, da)η + a∇ωη, ∀a ∈ C∞(M), η ∈ Ω1(M).

Similarly we will define interior product by a 1-form η ∈ Ω1(M) to be iη(ω) = (ω, η) if ω is a 1-
form and then extended by the graded-Leibniz rule. When ( , ) is nondegenerate then these are just
covariant derivative and interior product along the vector field ω∗ = (ω, ). There is a notion of metric-
compatibility, torsion and curvature in the generalised case[14] reducing to the usual notions in the
nondegenerate case. This generalisation is similar to the generalisation from symplectic to Poisson
geometry and could be relevant to physics in some degenerate situations.

Theorem 2.1 [14] Let δ : Ω(M) → Ω(M) be a linear map that lowers degree by 1, has δ2 = 0 and
obeys the 6-term relation

δ(aωη) − (δ(aω))η − aδ(ωη) − (−1)|ω|ωδ(aη) + a(δω)η + (−1)|ω|aωδη = 0

for all a ∈ C∞(M), ω, η ∈ Ω(M), and the ‘symmetry condition’

δ(adb) − aδdb = δ(bda) − bδda, ∀a, b ∈ C∞(M).

Then
(ω, da) = δ(aω) − aδω

∇ωη =
1
2

�
δ(ωη) − (δω)η + ωδη + iωdη + iηdω + d(ω, η)

�

for all a ∈ C∞(M), ω, η ∈ Ω1(M), define a possibly-degenerate metric and metric-compatible torsion-
free covariant derivative. (ω, da) = δ(aω) − aδ(ω)

δ



If  ( , ) also nondegenerate, get BV identity

δ
2

= 0
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The proof is in [14] but to explain a little, specialising the 6-term identity to η = b a function we find

δ(aωb) − a(δ(ωb)) = (δ(aω) − aδω)b, ∀a, b ∈ C
∞

(M), ω ∈ Ω1
(M)

which we can read both as (ωb)
∗
(a) = ω∗(a)b and as ω∗(ab) = ω∗(a)b + aω∗(b) where ω∗(a) =

δ(aω) − aδω. This means that ω∗ is a vector field and depends tensorially on ω. Hence it corresponds

to a bivector ( , ) which moreover is symmetric under the symmetry condition on δ. In the case

where ( , ) is nondegenerate we obtain a Riemannian metric and a new formula for its Levi-Civita

connection on M. In the converse direction it is shown in [14] that we can take δ to be the divergence

or codifferential, so any Riemannian structure can be obtained by this theorem.

Corollary 2.2 [14] A manifold has the structure of a Riemannian manifold iff its exterior algebra has

the structure of a BV algebra with δ symmetric and with the associated bilinear nondegenerate. In

this case δ can be taken to be the divergence or codifferential.

Indeed, in Theorem 2.1 and when the metric is non-degenerate, one finds[14] the 7-term identity

δ(ωηζ) = (δ(ωη))ζ + (−1)
|ω|ωδ(ηζ) + (−1)

(|ω|−1)|η|ηδ(ωζ)

−(δω)ηζ − (−1)
|ω|ω(δη)ζ − (−1)

|ω|+|η|ωηδζ

for all ω, η, ζ ∈ Ω(M) as an extension of the assumed 6-term identity. A BV algebra is a degree

-1 operator δ (usually denoted differently) on a graded-commutative algebra with δ2 = 0 and this

7-term identity, so this explains one direction. In the symmetric case and where the algebra is the

exterior algebra on a manifold, we apply Theorem 2.1. Whenever a graded-commutative algebra has

a differential d we can think if it as the exterior algebra on a ‘manifold’ in some algebraic sense.

So this is a generic interpretation of BV algebras with differential and with δ symmetric and non-

degenerate in the manner that we have stated. The theory in [14] is more general and only needs δ2

tensorial.

2.1 Massive graviton

A second mathematical result in [14] in the setting of Theorem 2.1 concerns the Hodge Laplacian

∆ = dδ + δd.

This is a degree 0 operator on Ω(M) but it is shown that it extends to tensor products in a canonical

way, in particular to a canonical action of ∆ on 1-1 forms wherein lives the metric g inverse to ( , ).

Theorem 2.3 [14] The Hodge Laplacian extended to 1-1-forms obeys

−1

2
∆g = Ricci

We define S = ( , )Ricci in the usual way as the Ricci scalar. Then

Einstein = −1

2
(∆ + S )g, S = −1

2
( , )∆g.

The Hodge Laplacian provides a natural wave operator with the correction to ∆ attributable to the

nonlinear nature of the problem. In this case Einstein’s vacuum equation with cosmological Λ term

has the form

((∆ + S ) − 2Λ)g = 0

If            get usual codifferential/divergence and Riemannian 
structure becomes equiv to a type of Batalin-Vilkovisky algebra 

Ricci = −

1

2
∆g

Classical Riemannian geometry starts to make sense!

Thank You

Einstein’s eqn becomes something like a 
wave equation for    and       a `mass‘       g Λ 10

−33
ev


