CロSMロLロGICAL CロNSTANT FRロM QபANTUM

SPACETIME

Shahn Majid（QMUL）；some joint w．E．Beggs（Swansea），W－Q．Tao（QMUL）
Quantum spacetime hypothesis：
Quantum
Gravity？？？

Quantum Riemannian geometry（NCRG）

This is not surjective，not every classical geometry is｀quantisable’！
Bertotti－Robinson
（1）Illustrate this on Majid－$\left[x^{i}, t\right]=\imath \lambda_{P} x^{i} \longrightarrow$ exact soln w／ Ruegg quantum spacetime cosmological const
（2）Analyse in general at semiclassical level \longrightarrow

Poisson－Riemannian geometry

$$
m:\left[x_{i}, t\right]=\imath \lambda_{P} x_{i} \quad U(m) \text { noncommutative coordinate algebra }
$$

O Quantum Born reciprocity SM Class. Quant. Gravity 5 (1988)

	Position	Momentum
Gravity	Curved	Noncommutative
Cogravity	Noncommutative	Curved
Quantum Gravity	Both	Both

Qua. Fou.Trans.

Quantum spacetime hypothesis
Curved momentum space hypothesis

```
C(M)\bowtieU(s\mp@subsup{o}{3,1}{})\mathrm{ acting on }U(m) semidual'n U(s\mp@subsup{o}{3,1}{}\bowtiem) acting on C(M)
C(S\mp@subsup{U}{2}{})>>U(s\mp@subsup{u}{2}{})\mathrm{ acting on }U(s\mp@subsup{u}{2}{})
U(s\mp@subsup{u}{2}{}\opluss\mp@subsup{u}{2}{})\mathrm{ acting on C(SU}
```

bicrossproduct quantum group
factorising (quantum) group
See this in 3D QG SM \& B. Schroers J. Phys A 42 (2009) 425402

O quantum Poincare group relation
$\left[p^{i}, N_{j}\right]=-\frac{l}{2} \delta_{j}^{i}\left(\frac{1-e^{-2 \lambda p^{0}}}{\lambda}+\lambda \vec{p}^{2}\right)+\iota \lambda p^{i} p_{j}, \quad \Longrightarrow\|p\|_{\lambda}^{2}=\vec{p}^{2} e^{-\lambda p^{0}}-\frac{2}{\lambda^{2}}\left(\cosh \left(\lambda p^{0}\right)-1\right)$
Wave operator on nc plane waves $e^{i \vec{x} \cdot \vec{p}} e^{i t p_{0}} \Longrightarrow\left|\frac{\partial p^{0}}{\partial p^{i}}\right|=e^{-\lambda p^{0}}$
G.Amelino-Camelia \& S. M, Int. J. Mod. Phys. A I5 (2000)

VSL prediction
Gamma-ray bursts

- Freedom in extended differential structure $=$ newtonian gravity

O BH potential + minimal coupling => quantum Schw. black hole wave operator => FT of ∂_{t}^{2} obeys

O Continuum $\Rightarrow \infty$ zero point energy. Planck scale cut off still $10122 x$ obs.
Non-zero cosmological constant may be forced by quantum spacetime which would explain why its small compared to Planck scale

Quantum differentials on an algebra A

O space of 1-forms, i.e. `differentials dx’
Ω^{1}
$\mathrm{d}: A \rightarrow \Omega^{1}$
$\left\{\sum a \mathrm{~d} b\right\}=\Omega^{1}$

$$
\begin{aligned}
& \mathrm{a}((\mathrm{db}) \mathrm{c})=(\mathrm{a}(\mathrm{db})) \mathrm{c} \\
& \mathrm{~d}(\mathrm{ab})=(\mathrm{da}) \mathrm{b}+\mathrm{a}(\mathrm{db})
\end{aligned}
$$

$\operatorname{kerd}=k .1$

'bimodule’

'Leibniz rule’
`surjectivity’
('connected')
O require this to extend to a DGA $\Omega=T_{A} \Omega^{1} / \mathcal{I}=\oplus_{n} \Omega^{n}, \quad \mathrm{~d}^{2}=0$
Thm. (SM+W.Tao) Let $A=U(\mathfrak{g})=T \mathfrak{g} /\langle x y-y x-[x, y]\rangle$
O bicovariant $\Omega^{1}(U(\mathfrak{g})) \quad \leftrightarrow \quad$ surjective $\zeta \in Z^{1}\left(\mathfrak{g}, \Lambda^{1}\right)$

$$
\mathrm{d} x=1 \otimes \zeta(x), \Omega^{1}=U(\mathfrak{g}) \otimes \Lambda^{1}
$$

O connected and of classical dim \leftrightarrow pre-Lie algebra for \mathfrak{g}

$$
\begin{aligned}
& \circ: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g} \quad[x, y]=x \circ y-y \circ x \\
& \quad(x \circ y) \circ z-(y \circ x) \circ z=x \circ(y \circ z)-y \circ(x \circ z) \quad \Lambda^{1} \cong \mathfrak{g} \quad[x, \mathrm{~d} y]=\lambda \mathrm{d}(x \circ y) \\
& \quad \quad \Rightarrow \Omega(U(\mathfrak{g}))
\end{aligned}
$$

Classification in 2D

$$
\begin{aligned}
& \mathfrak{g}:[r, t]=r \quad A=U_{\lambda}(\mathfrak{g}) \\
& i) \quad t \circ r=-r, \quad t \circ t=\alpha t \\
& i i) \quad r \circ t=\beta r, \quad t \circ r=(\beta-1) r, \quad t \circ t=\beta t \\
& i i i) \quad t \circ r=-r, \quad t \circ t=r-t \\
& i v) \quad r \circ r=t, \quad t \circ r=-r, \quad t \circ t=-2 t \\
& v) \quad r \circ t=r, \quad t \circ t=r+t
\end{aligned}
$$

$=>$ Calculi in n-D on $\quad\left[x^{i}, t\right]=\lambda x^{i}$ that are rotationally inv:
O (i) $\left[t, \mathrm{~d} x^{i}\right]=-\lambda \mathrm{d} x^{i}, \quad[t, \mathrm{~d} t]=\lambda \alpha \mathrm{d} t$ α-calculus
$\mathrm{O}(i i)\left[x^{i}, \mathrm{~d} t\right]=\lambda \beta \mathrm{d} x^{i}, \quad\left[t, \mathrm{~d} x^{i}\right]=\lambda(\beta-1) \mathrm{d} x^{i}, \quad[t, \mathrm{~d} t]=\lambda \beta \mathrm{d} t$

Quantum metric tensor

$$
g \in \Omega^{1} \underset{A}{\otimes} \Omega^{1}
$$

$$
\wedge(g)=0
$$

`quantum symmetric'
invertible in the sense exists inverse: $():, \Omega^{1} \otimes_{A} \Omega^{1} \rightarrow A$

$$
((,) \otimes \mathrm{id})(\omega \otimes g)=\omega=(\mathrm{id} \otimes(,))(g \otimes \omega), \quad \forall \omega \in \Omega^{1}
$$

$$
a(\omega, \eta)=(a \omega, \eta), \quad(\omega, \eta) a=(\omega, \eta a) \quad \text { 'bimodule map (tensorial)’ }
$$

need this to be able to contract/ ‘raise/lower' via metric, eg to have well defined contraction:

$$
(,) \otimes \mathrm{id}: \quad \Omega^{1} \underset{A}{\otimes} \Omega^{1} \underset{A}{\otimes} \Omega^{1} \rightarrow \Omega^{1} \quad \text { " } T_{\mu \nu \rho} \mapsto g^{\mu \nu} T_{\mu \nu \rho} \text { " }
$$

but

$$
\left(\omega, g^{1}\right) g^{2}=\omega \quad g=g^{1} \underset{A}{\otimes} g^{2}
$$

$$
\Rightarrow\left(\omega, g^{1}\right) g^{2} a=\omega a=\left(\omega a, g^{1}\right) g^{2}=\left(\omega, a g^{1}\right) g^{2}
$$

$$
\Rightarrow \quad a g=g a, \quad \forall a \in A \quad \text { need metric to be central }
$$

Work over \mathbb{C} but specify real differential geometry via
O $*: A \rightarrow A$ antilinear involution '*-algebra’
O extends to graded-anti-algebra hom on $\Omega(A),[*, \mathrm{~d}]=0$
O metric hermitian in sense $(* \otimes *)(g)=\operatorname{flip}(g)$
O Our case: $x^{i *}=x^{i}, \quad t^{*}=t, \quad \lambda^{*}=-\lambda, \quad r^{*}=r$

$$
\beta=1 \text { Calculus }
$$

Propn.: In 2D the quantum metric has the unique form

$$
\begin{array}{ll}
g=\mathrm{d} r \otimes \mathrm{~d} r+b\left(v^{*} \otimes v+\lambda\left(\mathrm{d} r \otimes v-v^{*} \otimes \mathrm{~d} r\right)\right) & \\
v=r \in \mathbb{R} \\
v=r \mathrm{~d} t-t \mathrm{~d} r . & v^{*}=(\mathrm{d} t) r-t \mathrm{~d} r
\end{array}
$$

\Rightarrow in classical limit only
$g=\mathrm{d} r \otimes \mathrm{~d} r+b v \otimes v=\left(1+b t^{2}\right) \mathrm{d} r^{2}+b r^{2} \mathrm{~d} t^{2}-2 b r t \mathrm{~d} r \mathrm{~d} t$
can emerge (i.e. be quantised)
=> strong gravitational source/expanding universe
(a) $b<0$ All geodesics pass through $P_{ \pm}=\left(0, \pm \frac{1}{\sqrt{-b}}\right)$

(b) $b>0:$ use new FRW-like coordinates
$\tilde{t}=r, \quad \tilde{r}=\frac{t}{r}$

$$
g=-\mathrm{d} \tilde{t}^{2}+R(\tilde{t})^{2} \mathrm{~d} \tilde{r}^{2}, \quad R(\tilde{t})=\sqrt{b} \tilde{t}^{2}
$$

All geodesics start/end on

ricci
singularity

$$
\tilde{t}=0
$$

Thm: no central metrics exist for the β calculus for $\mathrm{n}>2$

2D Ex: Moduli of quantum metric-compat ∇ form a line + conic

- black parts have classical limit as $\lambda \rightarrow 0$

O red parts blow up as $\lambda \rightarrow 0$ so not visible classically
O in each case a unique 'Levi-Civita point' where torsion $\mathrm{T}=0$

α Calculus

$$
\begin{aligned}
& g=\sum_{i, j}^{n-1} a_{i j} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}+\sum_{i}^{n-1} b_{i}\left(\mathrm{~d} x^{i} \otimes \mathrm{~d} t+\mathrm{d} t \otimes \mathrm{~d} x^{i}\right)+c \mathrm{~d} t \otimes \mathrm{~d} t \\
& \quad[f, g]=0, \forall f \quad \Rightarrow a_{i j}, b_{i}, c \quad \text { of degree }-2, \alpha-1,2 \alpha
\end{aligned}
$$

add spherical symmetry =>

$$
\begin{aligned}
& g=\delta^{-1} \mathrm{~d} \Omega^{2}+a r^{-2} \mathrm{~d} r \otimes \mathrm{~d} r+b r^{\alpha-1}(\mathrm{~d} r \otimes \mathrm{~d} t+\mathrm{d} t \otimes \mathrm{~d} r)+c r^{2 \alpha} \mathrm{~d} t \otimes \mathrm{~d} t \\
& \bar{\delta}=\frac{c \alpha^{2}}{b^{2}-a c} \quad a, b, c \in \mathbb{R}, \delta>0 \quad b^{2}-a c>0
\end{aligned}
$$

$$
G=-\frac{(n-2)(n-3)}{2} \delta g+((n-3) \delta-\bar{\delta}) \mathrm{d} \Omega^{2}
$$

O solves Einst Eqn with Maxwell field and cosmological constant
$F=q \sqrt{b^{2}-a c} r^{\alpha-1} \mathrm{~d} t \wedge \mathrm{~d} r \quad \Lambda=\frac{(n-2)(n-3)}{2} \delta-q^{2} G_{N}, \quad q^{2} G_{N}=\frac{1}{2}((n-3) \delta-\bar{\delta})$
O This is the Bertotti-Robinson metric. We are forced to it!

Change of coordinates

$$
\begin{aligned}
& \text { If } \bar{\delta}>0 \\
& t^{\prime}=\frac{\alpha}{\sqrt{\delta}} \ln r, \quad r^{\prime}=\sqrt{c} t-\frac{\sqrt{a+\frac{\alpha^{2}}{\bar{\delta}}}}{\alpha r^{\alpha}} \\
& g=\delta^{-1} \mathrm{~d} \Omega^{2}+e^{2 t^{\prime} \sqrt{\bar{\delta}}} \mathrm{d} r^{\prime 2}-\mathrm{d} t^{\prime 2} . \quad \Rightarrow \quad S^{n-2} \times d S_{2} \quad \bar{\delta}>0 \\
& \text { similarly: } \quad S^{n-2} \times A d S_{2} \quad \bar{\delta}<0
\end{aligned}
$$

Quantum algebra $\quad\left[t^{\prime}, r^{\prime}\right]=\lambda^{\prime}=\lambda \sqrt{b^{2}-a c} \quad\left[r^{\prime}, \mathrm{d} r^{\prime}\right]=\lambda^{\prime} \sqrt{\bar{\delta}} \mathrm{d} r^{\prime}$
$\left[r^{\prime}, \mathrm{d} t^{\prime}\right]=\left[t^{\prime}, \mathrm{d} r^{\prime}\right]=\left[t^{\prime}, \mathrm{d} t^{\prime}\right]=0$
$\nabla \mathrm{d} r^{\prime}=-\sqrt{\bar{\delta}}\left(\mathrm{d} r^{\prime} \otimes \mathrm{d} t^{\prime}+\mathrm{d} t^{\prime} \otimes \mathrm{d} r^{\prime}\right)$
$\nabla \mathrm{d} t^{\prime}=-\sqrt{\bar{\delta}} e^{2 t^{\prime} \sqrt{\bar{\delta}}}\left(\mathrm{d} r^{\prime} \otimes \mathrm{d} t^{\prime}+\mathrm{d} t^{\prime} \otimes \mathrm{d} r^{\prime}\right)$
$A_{0}=C^{\infty}(M)$ quantisation at order λ means a Poisson bracket $a . b-b . a=\lambda\{a, b\}+O\left(\lambda^{2}\right)$
$\{,\} \leftrightarrow \omega^{i j}$ Poisson tensor

Similarly, quantization of $\Omega^{1}(M)$ at order λ requires

$$
a \cdot \mathrm{~d} b-(\mathrm{d} b) \cdot a=\lambda \nabla_{\hat{a}} \mathrm{~d} b+O\left(\lambda^{2}\right)
$$

$\Rightarrow \nabla$ a Poisson pre-connection along Hamiltonian vec. fields $\hat{a}=\{a$,
I) $\nabla_{\hat{a}}(b \mathrm{~d} c)=\{a, b\} \mathrm{d} c+b \nabla_{\hat{a}} \mathrm{~d} c$
2) $\mathrm{d}\{a, b\}=\nabla_{\hat{a}} \mathrm{~d} b-\nabla_{\hat{b}} \mathrm{~d} a$

At order λ^{2} the bimodule associativity is $\left(\nabla_{\hat{a}} \nabla_{\hat{b}}-\nabla_{\hat{b}} \nabla_{\hat{a}}-\nabla_{\{\hat{a}, b\}}\right) \mathrm{d} c=0$
(just consider $[a,[b, \mathrm{~d} c]]+[b,[\mathrm{~d} c, a]]+[\mathrm{d} c,[a, b]]=0$)
O non-flat connection => nonassociativity at $\quad O\left(\lambda^{2}\right)$

Thm: suppose (ω, ∇) Poisson compat and metric g, Levi-Civita conn. $\widehat{\nabla}$ Exists quantum metric at order $\lambda<=>\nabla g=0$
`quant metric' $g_{1}:=q^{-1}\left(g-\frac{\lambda}{4} g_{i j} \omega^{i s}\left(T_{n m ; s}^{j}-R^{j}{ }_{n m s}+R^{j}{ }_{m n s}\right) \mathrm{d} x^{m} \otimes_{0} \mathrm{~d} x^{n}\right)$

$$
\nabla g=0 \quad \Leftrightarrow \quad \widehat{\nabla}=\nabla+S \quad S_{b c}^{a}=\frac{1}{2} g^{a d}\left(T_{d b c}-T_{b c d}-T_{c b d}\right)
$$

(ω, ∇) compat $<=>\left(\widehat{\nabla}_{k} \omega\right)^{i j}+\omega^{i r} S_{r k}^{j}-\omega^{j r} S_{r k}^{i}=0$
O Conditions on Riemann curvature for integrability
Thm: Exists best possible quantum Levi-Civita ∇_{1} : torsion free and symmetric part of $\nabla_{1} g_{1}=0$.

○ ∇_{1} fully quantum Levi-Civita iff

$$
\widehat{\nabla} \mathcal{R}+\omega^{i j} g_{r s} S_{j n}^{s}\left(R_{m k i}^{r}+S_{k m ; i}^{r}\right) \mathrm{d} x^{k} \otimes \mathrm{~d} x^{m} \wedge \mathrm{~d} x^{n}=0
$$

'generalised Ricci form'

$$
\mathcal{R}=g_{i j} \omega^{i s}\left(T_{n m ; s}^{j}-2 R^{j}{ }_{n m s}\right) \mathrm{d} x^{m} \wedge \mathrm{~d} x^{n}
$$

E.g. Schwarzschild black hole

Rotationally invariant t-indept Poisson bivector $=>$

$$
\begin{aligned}
& \omega^{01}=-\omega^{10}=k(r) \text { and } \omega^{23}=-\omega^{32}=f(r) / \sin \theta \\
& k(r) f^{\prime}(r)=0
\end{aligned}
$$

T rotationally invariant \& Poisson-compatibility => $k(r)=0, f(r)=1$

$$
\begin{array}{ccc}
T_{001}=f_{1}(r) & T_{101}=f_{2}(r) & T_{203}=-T_{302}=-f_{3}(r) \sin \theta \\
T_{212}=r & T_{313}=r \sin ^{2}(\theta) & T_{213}=-T_{312}=-f_{4}(r) \sin \theta
\end{array}
$$

Our obstruction to full $\nabla_{1} g_{1}=0$ is

$$
=\left\{\begin{array}{cc}
-r \sin \theta & (k, m, n)=(2,3,1) \&(k, m, n)=(3,2,1) \quad \text { a } \\
r \sin \theta & (k, m, n)=(2,1,3) \&(k, m, n)=(3,1,2) \\
0 & \text { otherwise }
\end{array}\right. \text { obstruction to qua. LC }
$$

$$
R_{010}^{1}=R_{110}^{0}=-\frac{f_{1}^{\prime}(r)+\mathrm{c}^{2} r_{s} r^{-3}}{\mathrm{c}^{2}\left(1-r_{s} / r\right)} \quad R_{310}^{2}=\sin \theta\left(2 f_{3}(r)-r f_{3}^{\prime}(r)\right) r^{-3}
$$

$$
R^{3}{ }_{210}=-\csc \theta\left(2 f_{3}(r)-r f_{3}^{\prime}(r)\right) r^{-3} \quad R^{3}{ }_{223}=-1 \quad R^{2}{ }_{323}=\sin ^{2} \theta .
$$

=> any quantization will have to be nonassociative.
$\Omega_{\theta^{\prime}}=\mathbb{C} \oplus \mathbb{C} \theta, \quad \theta^{\prime 2}=0, \quad \mathrm{~d} \theta^{\prime}=0 \quad$ DGA of a 'point'
Defn: a central extension of a DGA $\Omega(A)$ means

$$
\Omega_{\theta^{\prime}} \hookrightarrow \tilde{\Omega}(A) \rightarrow \Omega(A)
$$

$\tilde{\Omega}(A)=\Omega(A) \otimes \Omega_{\theta^{\prime}} \quad$ as vector space, $\quad \theta^{\prime}$ graded-commutes

- cleft if the projection is a left A-module map.
- flat if equivalent to a central extension where d is undeformed

Extn $<=>\tilde{\mathrm{d}} \omega=\mathrm{d} \omega-\frac{\lambda}{2} \theta^{\prime} \Delta \omega, \quad \omega \tilde{\wedge} \eta=\omega \wedge \eta-\frac{\lambda}{2} \theta^{\prime} \llbracket \omega, \eta \rrbracket$

$$
\begin{aligned}
& \llbracket \omega \eta, \zeta \rrbracket+\llbracket \omega, \eta \rrbracket \zeta=\llbracket \omega, \eta \zeta \rrbracket+(-1)^{|\omega|} \omega \llbracket \eta, \zeta \rrbracket \\
& L_{\Delta}(\omega, \eta)=\mathrm{d} \llbracket \omega, \eta \rrbracket+\llbracket \mathrm{d} \omega, \eta \rrbracket+(-1)^{|\omega|} \llbracket \omega, \mathrm{d} \eta \rrbracket \\
& {[\Delta, \mathrm{~d}]=0}
\end{aligned}
$$

call $(\Delta, \mathbb{I}, \mathbb{l})$ a `2-cocycle’ (cf group central extensions). Here

$$
L_{B}(\omega, \eta):=B(\omega \eta)-(B \omega) \eta-(-1)^{b|\omega|} \omega B \eta \quad \text { `leibnizator’ }
$$

Thm I: Let M be a classical manifold. Associated to a cleft central extension $(\tilde{\Omega}(M), \tilde{\mathrm{d}})$ is a possibly degenerate metric and covariant derivative
$(\omega, \mathrm{d} a)=\frac{1}{2} \llbracket \omega, a \rrbracket, \quad \nabla_{\omega} \eta=\frac{1}{2} \llbracket \omega, \eta \rrbracket, \quad \forall a \in C^{\infty}(M), \omega, \eta \in \Omega^{1}(M)$
obeying $\quad g_{; m}^{i j}=g^{k i} T_{k m}^{j}+g^{j k} T_{k m}^{i} \quad$ (T the torsion of
origin of metric, connection and weak metric compatibility.
Thm 2: The cleft extension is flat if $\Delta=\mathrm{d} \delta+\delta \mathrm{d}$ for some degree - I map δ, which holds iff $\mathrm{T}=0$.

O origin of torsion-freeness and form of the Hodge laplacian
O If δ `symmetric' get a new formula for Levi-Civita and metric:

$$
\begin{gathered}
\nabla_{\omega} \eta=\frac{1}{2}\left(\delta(\omega \eta)-(\delta \omega) \eta+\omega \delta \eta+\mathrm{i}_{\omega} \mathrm{d} \eta+\mathrm{i}_{\eta} \mathrm{d} \omega+\mathrm{d}(\omega, \eta)\right) \\
(\omega, \mathrm{d} a)=\delta(a \omega)-a \delta(\omega)
\end{gathered}
$$

O If (,) also nondegenerate, get BV identity

$$
\begin{aligned}
\delta(\omega \eta \zeta)= & (\delta(\omega \eta)) \zeta+(-1)^{|\omega|} \omega \delta(\eta \zeta)+(-1)^{||\omega|-1)|\eta|} \eta \delta(\omega \zeta) \\
& -(\delta \omega) \eta \zeta-(-1)^{|\omega|} \omega(\delta \eta) \zeta-(-1)^{|\omega|+|\eta|} \omega \eta \delta \zeta
\end{aligned}
$$

If $\delta^{2}=0$ get usual codifferential/divergence and Riemannian structure becomes equiv to a type of Batalin-Vilkovisky algebra

O Ricci $=-\frac{1}{2} \Delta g$
Einstein's eqn becomes something like a wave equation for g and Λ a 'mass' $10^{-33} \mathrm{ev}$

Classical Riemannian geometry starts to make sense!

Thank You

