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accessible in accelerator-based experiments

● Contains two kinds of particles
● Matter: Quarks, leptons
● Force particles: Photon, gluon, 

W- and Z-boson
● The Higgs is a bit of both, but more like matter

● Description with perturbation theory very successful
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The standard model

● The standard model (until now) describes the physics 
accessible in accelerator-based experiments

● Contains two kinds of particles
● Matter: Quarks, leptons
● Force particles: Photon, gluon, 

W- and Z-boson
● The Higgs is a bit of both, but more like matter

● Description with perturbation theory very successful
● But...
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Beyond perturbation theory

● Bound states – hadrons, nucleons, and nuclei

● Important in intermediate states – see muon g-2
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● Important in intermediate states – see muon g-2
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● Dynamical generation of masses
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● Dynamical generation of masses
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● Important in intermediate states – see muon g-2
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What is required?

● A unified framework covering all aspects
● Must include perturbation theory for systematic control

● Construct it step-by-step

✔Basic entities: Force particles (gluons,...)

✔ Yang-Mills theory as a prototype – somewhat technical
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● Prototypes: QED, Yang-Mills theory, QCD, the standard model
● Gauge fields are not uniquely defined

● Gauge transformation can change them without changing 
observables
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Configuration space (artist's view)

● Each point a complete space-time 
history (or configuration) of the 
gauge-fields

● But gauge fields are not unique

● Gauge transformation change 
them

● Each configuration related by a 
gauge transformation provides 
the same observables

● Gauge orbit
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Gauge fields
● Gauge theories describe force particles as gauge fields

● Prototypes: QED, Yang-Mills theory, QCD, the standard model
● Gauge fields are not uniquely defined

● Gauge transformation can change them without changing 
observables

● This also applies to matter charged under the gauge group
● Even the charges are not gauge-invariant

● Except for electric charges
● No concept 0f a local gauge-invariant charge distribution

● Similar to energy density in general relativity
● Only bound states can be gauge-invariant, and thus physical
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Prototype: Yang-Mills Theory

● Lagrangian:

● Degrees of freedom:

  Gluons:

●    is the coupling constant, giving the strength of coupling

●       are numbers, depending on the gauge group, SU(3) for QCD: 
gluons are organized in multiplets, just as with spin

L=−
1
4
F 

a F a


F 

a =∂ A

a−∂ A

agf bc
a A

b A

c

A

a

g

f abc
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Gauge-fixing

● Yang-Mills theory is a gauge theory
● Gauge transformations

   with arbitrary         change the gauge fields, but leave physics 
invariant

A
a
 A

a
b

a
∂−g f bc

a A

c


b
x 


a
 x 
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Gauge-fixing

● Yang-Mills theory is a gauge theory
● Gauge transformations

   with arbitrary         change the gauge fields, but leave physics 
invariant

● Choice to select an arbitrary element of the gauge orbit
● Gluons (and elementary particles) depend on the choice
● Requires a prescription to make comparisons or obtain properties

● Example: Landau gauge condition

● Here only Landau gauge results
● Many other gauges have been studied

A
a
 A

a
b

a
∂−g f bc

a A

c


b
x 

∂
 A

a
=0


a
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Configuration space (artist's view)

● Impose Landau gauge condition

● Reduces configuration space to a 
hypersurface
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Describing Gluons/Axel Maas

Unambiguous gauge-fixing [For an introduction: Sobreiro & Sorella, 2005]

● Local gauge condition
● Landau gauge:

● Can be implemented using auxiliary fields, the so-called 
ghost fields
● No physical objects: Pure mathematical convenience 

∂ A
a
=0
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(Perturbative) Landau gauge

● Lagrangian:

● Degrees of freedom:

  Gluons:

  Ghosts:           

● Ghosts interact with gluons: They have to be included

● Here: Euclidean version

A

a

c
a , ca
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Unambiguous gauge-fixing [For an introduction: Sobreiro & Sorella, 2005]

● Local gauge condition
● Landau gauge:

● Sufficient for perturbation theory

∂ A
a
=0
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Proceeding

● Once the gauge is fixed, all kind of (perturbative) 
calculations can be done

● Use correlation functions as basic entities
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Correlation functions [Alkofer & von Smekal 2000]

● Correlation functions, describe a theory completely
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Correlation functions [Alkofer & von Smekal 2000]

● Correlation functions, describe a theory completely

● Expectation values of a product of field operators

● Build from the fields, here gluons and ghost

● E.g.: 

● Full correlation functions contain all information

● There are an infinite number of them

c c
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● Expectation values of a product of field operators

● Build from the fields, here gluons and ghost

● E.g.: 

● Full correlation functions contain all information

● There are an infinite number of them

● If having a non-vanishing color charge they change under gauge 
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Correlation functions [Alkofer & von Smekal 2000]

● Correlation functions, describe a theory completely

● Expectation values of a product of field operators

● Build from the fields, here gluons and ghost

● E.g.: 

● Full correlation functions contain all information

● There are an infinite number of them

● If having a non-vanishing color charge they change under gauge 
transformation

● Simplest non-zero correlation functions: 2-point functions or propagators

● Expectation values of products of two field operators

● 1-point functions vanish

c c
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Propagators

● In Landau gauge: Gluon and one auxiliary field: Ghost

● Gluon:

D

ab
 x− y= A

a
 x A

b
 y

D p=−
p p
p2


Z  p

p2
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Propagators

● In Landau gauge: Gluon and one auxiliary field: Ghost

● Gluon:

● Ghost:

D

ab
 x− y= A

a
 x A

b
 y

DG
ab
 x− y = c

a
x cb y

D p=−
p p
p2


Z  p

p2

DG  p=
−G  p

p2
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Propagators

● In Landau gauge: Gluon and one auxiliary field: Ghost

● Gluon:

● Ghost:

● Ghost propagator can be expressed as a gluon operator, the inverse 
Faddeev-Popov operator

D

ab
 x− y= A

a
 x  A

b
 y

DG
ab
 x− y = c

a
x cb y

D p=−
p p
p2


Z  p

p2

DG  p=
−G  p

p2

DG
ab
 x− y  ~ ∂D

ab

−1
 = ∂

ab
∂−g f

abc A
c

−1

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Describing Gluons/Axel Maas

Proceeding

● Once the gauge is fixed, all kind of (perturbative) 
calculations can be done

● Use correlation functions as basic entities
● Combination of gauge-variant correlation functions 

yield gauge-invariant results
● E.g. scattering cross-sections
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Describing Gluons/Axel Maas

Proceeding

● Once the gauge is fixed, all kind of (perturbative) 
calculations can be done

● Use correlation functions as basic entities
● Combination of gauge-variant correlation functions 

yield gauge-invariant results
● E.g. scattering cross-sections

● Almost all perturbative calculations proceed via 
gauge-variant correlation functions
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Describing Gluons/Axel Maas

Also non-perturbatively?
Would be nice: 

Same entities and concepts as in perturbation theory
Direct connection to perturbation theory
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Describing Gluons/Axel Maas

Configuration space (artist's view)

Perturbation theory

● Perturbation theory is applicable close 
to the origin

Introduction – Gauge fixing – Methods – Gluons – Matter – Outlook

Slides left: 44 (in this section: 7)



Describing Gluons/Axel Maas

Configuration space (artist's view)

Perturbation theory

● Perturbation theory is applicable close 
to the origin

● Non-perturbative physics probes the 
complete hypersurface
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Describing Gluons/Axel Maas

Unambiguous gauge-fixing [For an introduction: Sobreiro & Sorella, 2005]

● Local gauge condition
● Landau gauge:

● Sufficient for perturbation theory

● Insufficient beyond perturbation theory
● There are gauge-equivalent configurations which obey the same 

local gauge-condition: Gribov copies [Gribov 1978]

∂ A
a
=0
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Describing Gluons/Axel Maas

Unambiguous gauge-fixing [For an introduction: Sobreiro & Sorella, 2005]

● Local gauge condition
● Landau gauge:

● Sufficient for perturbation theory

● Insufficient beyond perturbation theory
● There are gauge-equivalent configurations which obey the same 

local gauge-condition: Gribov copies [Gribov 1978]

● There are no local gauge conditions known, which select a 
unique gauge field configuration [Singer  1978]

● Non-local conditions possible

∂ A
a
=0
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Describing Gluons/Axel Maas

Example: Instanton [Maas, 2005]

● Instanton field configuration is A
a
r ,=2r

a
/g r 22
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Describing Gluons/Axel Maas

Example: Instanton [Maas, 2005]

● Instanton field configuration is
● It is a Landau-gauge configuration, satisfying

A
a
r ,=2r

a
/g r 22

∂ A
a
=0
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Describing Gluons/Axel Maas

Example: Instanton [Maas, 2005]

● Gauge transformation to A
a
r ,=−2r

a

2
/gr2r 22
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Describing Gluons/Axel Maas

Example: Instanton [Maas, 2005]

● Gauge transformation to
● It is still a Landau gauge configuration!

A
a
r ,=−2r

a

2
/gr2r 22
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Describing Gluons/Axel Maas

Example: Instanton [Maas, 2005]

● Gauge transformation to
● It is still a Landau gauge configuration!
● Gribov copy
● Non-perturbative: Depends on 

A
a
r ,=−2r

a

2
/gr2r 22

1/g
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Describing Gluons/Axel Maas

Residual freedom
● Impose Landau gauge condition

● Reduces configuration space to a hypersurface
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Describing Gluons/Axel Maas

Residual freedom
● Impose Landau gauge condition

● Reduces configuration space to a hypersurface

● Leaves the non-perturbative gauge freedom to choose between gauge-
equivalent Gribov copies

● Residual gauge orbit

● Set of Gribov copies, in general not continous
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Describing Gluons/Axel Maas

Residual freedom
● Impose Landau gauge condition

● Reduces configuration space to a hypersurface

● Leaves the non-perturbative gauge freedom to choose between gauge-
equivalent Gribov copies

● Residual gauge orbit

● Set of Gribov copies, in general not continous

● A definite prescription is required for an unambiguous result

● There is no unique prescription how to complete Landau gauge non-
perturbatively

● There is no possibility using a local condition
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Describing Gluons/Axel Maas

Residual freedom
● Impose Landau gauge condition

● Reduces configuration space to a hypersurface

● Leaves the non-perturbative gauge freedom to choose between gauge-
equivalent Gribov copies

● Residual gauge orbit

● Set of Gribov copies, in general not continous

● A definite prescription is required for an unambiguous result

● There is no unique prescription how to complete Landau gauge non-
perturbatively

● There is no possibility using a local condition

● Construct a non-local condition instead to solve the problem

Introduction – Gauge fixing – Methods – Gluons – Matter – Outlook
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Describing Gluons/Axel Maas

Configuration space (artist's view) [Gribov NPA 1978, Zwanziger 1993...2003]
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Describing Gluons/Axel Maas

Configuration space (artist's view) [Gribov NPA 1978, Zwanziger 1993...2003]

Gribov horizon● Gribov horizon encloses all field 
configurations with positive 
Faddeev-Popov operator −∂D
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Describing Gluons/Axel Maas

Configuration space (artist's view) [Gribov NPA 1978, Zwanziger 1993...2003]

Gribov horizon● Gribov horizon encloses all field 
configurations with positive 
Faddeev-Popov operator

● All gauge orbits pass through 
this region

● Bounded (and convex))

● Many Gribov copies for each

−∂D
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Describing Gluons/Axel Maas

Configuration space (artist's view) [Gribov NPA 1978, Zwanziger 1993...2003]

Gribov horizon

Fundamental modular region

● Gribov horizon encloses all field 
configurations with positive 
Faddeev-Popov operator

● All gauge orbits pass through 
this region

● Bounded (and convex))

● Many Gribov copies for each

● Includes the fundamental modular 
region

● One and only one Gribov copy

● Also bounded (and convex)

−∂D
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Describing Gluons/Axel Maas

Configuration space (artist's view) [Gribov NPA 1978, Zwanziger 1993...2003]

Gribov horizon

Fundamental modular region

● Gribov horizon encloses all field 
configurations with positive 
Faddeev-Popov operator

● All gauge orbits pass through 
this region

● Bounded (and convex))

● Many Gribov copies for each

● Includes the fundamental modular 
region

● One and only one Gribov copy

● Also bounded (and convex)

● Complicated definition

−∂D
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Describing Gluons/Axel Maas

Constructing a global gauge condition
● At the boundary of the first Gribov horizon the Faddeev-Popov 

operator develops zero eigenmodes
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Constructing a global gauge condition
● At the boundary of the first Gribov horizon the Faddeev-Popov 

operator develops zero eigenmodes

● Lowest eigenvalue of the Faddeev-Popov operator varies along the 
gauge orbits
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Constructing a global gauge condition
● At the boundary of the first Gribov horizon the Faddeev-Popov 

operator develops zero eigenmodes

● Lowest eigenvalue of the Faddeev-Popov operator varies along the 
gauge orbits

● Finite quantity, but very hard to determine in general
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Constructing a global gauge condition
● At the boundary of the first Gribov horizon the Faddeev-Popov 

operator develops zero eigenmodes

● Lowest eigenvalue of the Faddeev-Popov operator varies along the 
gauge orbits

● Finite quantity, but very hard to determine in general

● Is there also an expression in terms of a correlation function?
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Describing Gluons/Axel Maas

Constructing a global gauge condition
● At the boundary of the first Gribov horizon the Faddeev-Popov 

operator develops zero eigenmodes

● Lowest eigenvalue of the Faddeev-Popov operator varies along the 
gauge orbits

● Finite quantity, but very hard to determine in general

● Is there also an expression in terms of a correlation function?

● Not directly. But the ghost propagator is influenced by the 
eigenspectrum:

−G  p

p2
=DG

ab  p ~ ∂D

ab−1 ~ ∑i

1
i
∣i

2∣
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Describing Gluons/Axel Maas

Constructing a global gauge condition
● At the boundary of the first Gribov horizon the Faddeev-Popov 

operator develops zero eigenmodes

● Lowest eigenvalue of the Faddeev-Popov operator varies along the 
gauge orbits

● Finite quantity, but very hard to determine in general

● Is there also an expression in terms of a correlation function?

● Not directly. But the ghost propagator is influenced by the 
eigenspectrum:

● G(p) candidate for a characterization of a copy

−G  p

p2
=DG

ab  p ~ ∂D

ab−1 ~ ∑i

1
i
∣i

2∣
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Describing Gluons/Axel Maas

Constructing a global gauge condition [Maas, unpublished, Maas, 2008/9, Fischer et al. 2008]

● Effects will be strongest at the most non-perturbative 
momenta: The infrared

● Choose the renormalization-group invariant B=G(0)/G(P) 
with P large fixed as a second gauge parameter
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Constructing a global gauge condition [Maas, unpublished, Maas, 2008/9, Fischer et al. 2008]

● Effects will be strongest at the most non-perturbative 
momenta: The infrared

● Choose the renormalization-group invariant B=G(0)/G(P) 
with P large fixed as a second gauge parameter
● Fourier-transform at low momentum: Highly non-local
● Appears to be also working in the continuum and infinite volume
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Constructing a global gauge condition [Maas, unpublished, Maas, 2008/9, Fischer et al. 2008]

● Effects will be strongest at the most non-perturbative 
momenta: The infrared

● Choose the renormalization-group invariant B=G(0)/G(P) 
with P large fixed as a second gauge parameter
● Fourier-transform at low momentum: Highly non-local
● Appears to be also working in the continuum and infinite volume

● More studies required and underway for final confirmation
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Describing Gluons/Axel Maas

Constructing a global gauge condition [Maas, unpublished, Maas, 2008/9, Fischer et al. 2008]

● Effects will be strongest at the most non-perturbative 
momenta: The infrared

● Choose the renormalization-group invariant B=G(0)/G(P) 
with P large fixed as a second gauge parameter
● Fourier-transform at low momentum: Highly non-local
● Appears to be also working in the continuum and infinite volume

● More studies required and underway for final confirmation
● Similar to define perturbatively the Landau gauge by p pD

=0
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Describing Gluons/Axel Maas

Constructing a global gauge condition [Maas, unpublished, Maas, 2008/9, Fischer et al. 2008]

● Effects will be strongest at the most non-perturbative 
momenta: The infrared

● Choose the renormalization-group invariant B=G(0)/G(P) 
with P large fixed as a second gauge parameter
● Fourier-transform at low momentum: Highly non-local
● Appears to be also working in the continuum and infinite volume

● More studies required and underway for final confirmation
● Similar to define perturbatively the Landau gauge by 

● Would provide an unambiguous definition of the gauge

● Resolves the Gribov ambiguity

p pD
=0
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Slides left: 38 (in this section: 1)



Describing Gluons/Axel Maas

Summary of technicalities

● Unambiguous description of elementary particles 
requires gauge-fixing
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● Unambiguous description of elementary particles 
requires gauge-fixing

● Non-perturbatively this requires additional non-local 
conditions

Introduction – Gauge fixing – Methods – Gluons – Matter – Outlook

Slides left: 37 (in this section: 0)



Describing Gluons/Axel Maas

Summary of technicalities

● Unambiguous description of elementary particles 
requires gauge-fixing

● Non-perturbatively this requires additional non-local 
conditions

● It appears that additional conditions on one 
correlation function is sufficient
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Describing Gluons/Axel Maas

Summary of technicalities

● Unambiguous description of elementary particles 
requires gauge-fixing

● Non-perturbatively this requires additional non-local 
conditions

● It appears that additional conditions on one 
correlation function is sufficient

● Provides the basis to calculate non-perturbatively 
correlation functions

Introduction – Gauge fixing – Methods – Gluons – Matter – Outlook
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Describing Gluons/Axel Maas

Methods
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Methods

● Lattice
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Lattice calculations

● Take a finite volume – usually a hypercube
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● Take a finite volume – usually a hypercube
● Discretize it, and get a finite, hypercubic lattice
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Describing Gluons/Axel Maas

Lattice calculations

● Take a finite volume – usually a hypercube
● Discretize it, and get a finite, hypercubic lattice
● Calculate observables using path integration

●

● Can be done numerically
● Uses Monte-Carlo methods

c c =∫dAd c dcc c exp−∫d d x L
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Lattice calculations

● Take a finite volume – usually a hypercube
● Discretize it, and get a finite, hypercubic lattice
● Calculate observables using path integration

●

● Can be done numerically
● Uses Monte-Carlo methods

● Artifacts
● Finite volume/discretization

c c =∫dAd c dcc c exp −∫d d x L
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Describing Gluons/Axel Maas

Lattice calculations

● Take a finite volume – usually a hypercube
● Discretize it, and get a finite, hypercubic lattice
● Calculate observables using path integration

●

● Can be done numerically
● Uses Monte-Carlo methods

● Artifacts
● Finite volume/discretization
● Masses vs. wave-lengths

c c =∫dAd c dcc c exp −∫d d x L
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Describing Gluons/Axel Maas

Methods

● Lattice
● Discretize space-time in a box and calculate the path-integral and 

expectation values explicitly
● Full non-perturbative dynamics correctly implemented
● Finite volume artifacts, disparate scales most severe obstacles
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Methods

● Lattice
● Discretize space-time in a box and calculate the path-integral and 

expectation values explicitly
● Full non-perturbative dynamics correctly implemented
● Finite volume artifacts, disparate scales most severe obstacles

● Functional methods (DSE, RGE...)
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Describing Gluons/Axel Maas

(Truncated) Dyson-Schwinger Equations (DSEs)

1
c c p

=p2∫ dq pc cqA A p−qAc c p ,q

Introduction – Gauge fixing – Methods – Gluons – Matter – Outlook

Slides left: 32 (in this section: 2)



Describing Gluons/Axel Maas
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● Infinite set of coupled non-linear integral equations
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Describing Gluons/Axel Maas

(Truncated) Dyson-Schwinger Equations (DSEs)

● Infinite set of coupled non-linear integral equations
● Generate also perturbation theory

1
c c p

= p2∫dq pc cqA A p−qAc c p ,q
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Describing Gluons/Axel Maas

(Truncated) Dyson-Schwinger Equations (DSEs)

● Infinite set of coupled non-linear integral equations
● Generate also perturbation theory
● Similar: Renormalization group equations (RGEs)
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Describing Gluons/Axel Maas

Truncations [Fischer et al., 2008]

● Solving the equations at all momenta requires input from the higher vertex 
equations
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Truncations [Fischer et al., 2008]

● Solving the equations at all momenta requires input from the higher vertex 
equations

● Requires truncations, in particular dropping of equations for many-legged 
correlation functions [Fischer et al., 2008]
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● Solving the equations at all momenta requires input from the higher vertex 
equations
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correlation functions [Fischer et al., 2008]

● Consistent and self-consistent truncation schemes can be developed
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● Solving the equations at all momenta requires input from the higher vertex 
equations

● Requires truncations, in particular dropping of equations for many-legged 
correlation functions [Fischer et al., 2008]

● Consistent and self-consistent truncation schemes can be developed

● Preserve renormalization and perturbation theory
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Truncations [Fischer et al., 2008]

● Solving the equations at all momenta requires input from the higher vertex 
equations

● Requires truncations, in particular dropping of equations for many-legged 
correlation functions [Fischer et al., 2008]

● Consistent and self-consistent truncation schemes can be developed

● Preserve renormalization and perturbation theory

● Introduces artifacts due to the violation of Slavnov-Taylor identities

● Cannot be avoided, at best these can be closed self-consistenly
● Not worse than in perturbation theory

● Landau gauge is very advantageous, as such violations do not couple back

● Only transverse contributions are coupled
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Describing Gluons/Axel Maas

Truncations [Fischer et al., 2008]

● Solving the equations at all momenta requires input from the higher vertex 
equations

● Requires truncations, in particular dropping of equations for many-legged 
correlation functions [Fischer et al., 2008]

● Consistent and self-consistent truncation schemes can be developed

● Preserve renormalization and perturbation theory

● Introduces artifacts due to the violation of Slavnov-Taylor identities

● Cannot be avoided, at best these can be closed self-consistenly
● Not worse than in perturbation theory

● Landau gauge is very advantageous, as such violations do not couple back

● Only transverse contributions are coupled
● Still other artifacts remain
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Describing Gluons/Axel Maas

Summary of methods

● Lattice

● Discretize space-time in a box and calculate the path-integral and 
expectation values explicitly

● Full non-perturbative dynamics correctly implemented

● Finite volume artifacts, disparate scales most severe obstacles

● Functional methods (DSE, RGE...)

● Coupled non-linear integral equations must be solved

● Requires (often completely uncontrolled) approximations

● Continuum, partly analytical in the far infrared
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Summary of methods

● Lattice

● Discretize space-time in a box and calculate the path-integral and 
expectation values explicitly
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● Functional methods (DSE, RGE...)
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Summary of methods

● Lattice

● Discretize space-time in a box and calculate the path-integral and 
expectation values explicitly

● Full non-perturbative dynamics correctly implemented

● Finite volume artifacts, disparate scales most severe obstacles

● Functional methods (DSE, RGE...)

● Coupled non-linear integral equations must be solved

● Requires (often completely uncontrolled) approximations

● Continuum, partly analytical in the far infrared

● Perturbation theory included as limiting case at high energies

● Combination of all methods most successful!
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Describing Gluons/Axel Maas

Properties of gluons

Nb: The results depend little on the number of dimensions
but the lattice can reach larger volumes in lower dimensions
Results shown are therefore mixed from 
3 and 4 dimensions, but are qualitatively very similar in both
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Describing Gluons/Axel Maas

Ghost propagator from the lattice [Maas, 2009]

● Results from lattice calculations

● Different gauge choices yield different propagators

● Lattice artifacts still to be studied
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Ghost dressing function in the continuum [Fischer, et al.i, 2008]

● Corresponding results from functional methods (Dyson-Schwinger 
equations (DSEs))

● One-to-one-correspondence of lattice and continuum methods

● Scaling: Divergent, Decoupling: Finite dressing function
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Gluon dressing function in the continuum [Fischer et al., 2008]

● Decoupling gauges yield a decoupling (infrared massive) 
gluon propagator

● The scaling gauge yields an infrared vanishing gluon 
propagator
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Method comparison [Maas et al. 2004, Maas 2008]

● Perturbation theory recovered

● Combination confirm assumption for functional equations

● Extrapolation of lattice results by functional methods

● Disadvantage cancellation
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Absence of the gluon from the physical spectrum [Zwanziger, 1994-2009]

● Gluon propagator violates positivity
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Absence of the gluon from the physical spectrum [Zwanziger, 1994-2009]

● Gluon propagator violates positivity
● Propagator determines spectral function

Propagator=One particle part∫dq2
spectral function q2

p2q2
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Absence of the gluon from the physical spectrum [Zwanziger, 1994-2009]

● Gluon propagator violates positivity
● Propagator determines spectral function

● Gluon propagator vanishes at zero momentum in scaling gauge
● Gluon not part of the physical sub-space!
● Also shown in decoupling gauges [Fischer et al., 2008, Cucchieri et al. 2004]
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● Gluon propagator violates positivity
● Propagator determines spectral function

● Gluon propagator vanishes at zero momentum in scaling gauge
● Gluon not part of the physical sub-space!
● Also shown in decoupling gauges [Fischer et al., 2008, Cucchieri et al. 2004]

● Can be extended to Wilson criteria for quark [Braun et al., 2007]
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Absence of the gluon from the physical spectrum [Zwanziger, 1994-2009]

● Gluon propagator violates positivity
● Propagator determines spectral function

● Gluon propagator vanishes at zero momentum in scaling gauge
● Gluon not part of the physical sub-space!
● Also shown in decoupling gauges [Fischer et al., 2008, Cucchieri et al. 2004]

● Can be extended to Wilson criteria for quark [Braun et al., 2007]

● (Possibly) to all colored states using Kugo-Ojima construction
● Uses the Neuberger-von Smekal BRST construction 

[Neuberger 1986, von Smekal 2006-2009, Pawlowski et al., 2008]

Propagator=One particle part∫dq2
spectral function q2

p2q2

Introduction – Gauge fixing – Methods – Gluons – Matter – Outlook

Slides left: 24 (in this section: 7)



Describing Gluons/Axel Maas

Analytic structure

● Vanishing D(0): Gluons do not propagate on the light-cone
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Analytic structure [Alkofer et al. 2003, Fischer et al. 2008]

● Vanishing D(0): Gluons do not propagate on the light-cone

● Schwinger function shows no pole mass for the gluon
● Even when a screening mass exists
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Describing Gluons/Axel Maas

Analytic structure [Alkofer et al. 2003, Fischer et al. 2008]

● Vanishing D(0): Gluons do not propagate on the light-cone

● Schwinger function shows no pole mass for the gluon
● Even when a screening mass exists

● Analytic structure: Cut along the time-like axis from 0

Introduction – Gauge fixing – Methods – Gluons – Matter – Outlook

Slides left: 23 (in this section: 6)
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Interactions of gluons

● Example: Three-gluon vertex
● Other: Ghost-gluon vertex, 

4-gluon vertex, scattering kernels...
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Interactions of gluons

● Example: Three-gluon vertex
● Other: Ghost-gluon vertex, 

4-gluon vertex, scattering kernels...
● Correlation function
● Related to the vertex

● Relevant for
● Bound states

● Splitting functions

A
a A

b A

c
 = D

ad D

be D

cf
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Contractions

● There are d3 x (Nc
2-1)3 tensor components
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Contractions

● There are d3 x (Nc
2-1)3 tensor components

● Landau gauge: All longitudinal ones irrelevant

● Contractions useful
● Three-gluon vertex
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Describing Gluons/Axel Maas

Contractions

● There are d3 x (Nc
2-1)3 tensor components

● Landau gauge: All longitudinal ones irrelevant

● Contractions useful
● Three-gluon vertex

● Measures the deviation from the tree-level vertex

● Appears in the gluon one-loop self-energy

A
a A

b A

c
 = D

ad D

be D

cf


d e f
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Describing Gluons/Axel Maas

Three-gluon vertex [Cucchieri et al. 2008]

● No emission around hadronic energy scales!

● Infrared enhanced: Strong emission of (non-propagating) 
gluons on the light-cone
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Running coupling [Alkofer et al. 1997, Fischer et al. 2008]

● Possible to extract a running coupling
● IR fixed point for scaling gauge
● IR vanishing for decoupling gauge
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Running coupling [Alkofer et al. 1997, Fischer et al. 2008]

● Possible to extract a running coupling
● IR fixed point for scaling gauge
● IR vanishing for decoupling gauge

● Known in the perturbative domain up to four loops 

[Sternbeck et al. 2008]
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Infrared properties in the scaling gauge
● DSEs and RGEs deliver a qualitative asymptotic infrared solution for all 

correlation functions and all dimensions [Alkofer et al., 2005, Fischer et al. 2007/9]
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Infrared properties in the scaling gauge
● DSEs and RGEs deliver a qualitative asymptotic infrared solution for all 

correlation functions and all dimensions [Alkofer et al., 2005, Fischer et al. 2007/9]

● Power-laws. Simplest case: All momenta equal and m gluon and n 
ghost legs in d dimensions:

●                     [Alkofer et al. 2006, Huber at al. 2008]

● Analytic solution without truncation

● It is the only power-law-like solution [Fischer et al. 2007/9]
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Infrared properties in the scaling gauge
● DSEs and RGEs deliver a qualitative asymptotic infrared solution for all 

correlation functions and all dimensions [Alkofer et al., 2005, Fischer et al. 2007/9]

● Power-laws. Simplest case: All momenta equal and m gluon and n 
ghost legs in d dimensions:

●                     [Alkofer et al. 2006, Huber at al. 2008]

● Analytic solution without truncation

● It is the only power-law-like solution [Fischer et al. 2007/9]

● Truncated DSEs give quantitative predictions for the exponent    
[Zwanziger, 2002, Lerche et al. 2002]
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● DSEs and RGEs deliver a qualitative asymptotic infrared solution for all 

correlation functions and all dimensions [Alkofer et al., 2005, Fischer et al. 2007/9]

● Power-laws. Simplest case: All momenta equal and m gluon and n 
ghost legs in d dimensions:

●                     [Alkofer et al. 2006, Huber at al. 2008]

● Analytic solution without truncation

● It is the only power-law-like solution [Fischer et al. 2007/9]

● Truncated DSEs give quantitative predictions for the exponent    
[Zwanziger, 2002, Lerche et al. 2002]

● In particular: IR-vanishing gluon propagator, IR-enhanced ghost 
propagator
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Infrared properties in the scaling gauge
● DSEs and RGEs deliver a qualitative asymptotic infrared solution for all 

correlation functions and all dimensions [Alkofer et al., 2005, Fischer et al. 2007/9]

● Power-laws. Simplest case: All momenta equal and m gluon and n 
ghost legs in d dimensions:

●                     [Alkofer et al. 2006, Huber at al. 2008]

● Analytic solution without truncation

● It is the only power-law-like solution [Fischer et al. 2007/9]

● Truncated DSEs give quantitative predictions for the exponent    
[Zwanziger, 2002, Lerche et al. 2002]

● In particular: IR-vanishing gluon propagator, IR-enhanced ghost 
propagator

● Can be expanded to the case with matter fields [Alkofer et al., 2007/8]
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Summary of gluon properties

● Gluonic correlation functions can be determined with 
the combination of methods

● Gluon correlation functions depend on the gauge 
choice
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● There is no pole mass for the gluon
● Non-trivial analytic structure
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Describing Gluons/Axel Maas

Summary of gluon properties

● Gluonic correlation functions can be determined with 
the combination of methods

● Gluon correlation functions depend on the gauge 
choice

● There is no pole mass for the gluon
● Non-trivial analytic structure

● Gluon splitting and propagation together suppress 
gluon emission at low energies

● Confinement of gluons is manifest
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Describing Gluons/Axel Maas

What is required?

● A unified framework covering all aspects
● Must include perturbation theory for systematic control

● Construct it step-by-step

✔Basic entities: Force particles (gluons,...)

✔ Yang-Mills theory as a prototype – very technical

➔Simple matter particles – scalar

g

u g
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Describing Gluons/Axel Maas

Matter fields

● Scalar matter

● R denotes the representation
● Fundamental: Like quarks - Adjoint: Like gluons
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● Simpelst case: Scalar matter
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● Consider scalar in the confinement phase (quenched)

● Here: Fundamental (like Higgs) charged

Introduction – Gauge fixing – Methods – Gluons – Matter – Outlook

Slides left: 13 (in this section: 3)



Describing Gluons/Axel Maas

Scalar matter

● Simpelst case: Scalar matter
● Consider scalar in the confinement phase (quenched)

● Here: Fundamental (like Higgs) charged

● Propagator H ij  x− y = i

 x  j  y
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Describing Gluons/Axel Maas

Scalar matter

● Simpelst case: Scalar matter
● Consider scalar in the confinement phase (quenched)

● Here: Fundamental (like Higgs) charged

● Propagator
● (Simplest) Vertex

H ij  x− y = i

 x  j  y

G A
=tlA  / tlDHH  tl
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Scalar proagator [Maas, unpublished]

● 1 GeV tree-level mass – effective mass is 1.6 GeV
● Dynamical mass generation, independent of tree-level mass

● Analytic structure requires more data
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Scalar-gluon vertex [Maas, unpublished]

● Almost no difference to tree-level
● Low-momentum behavior mass-dependent

● Suppression for small masses
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Summary of matter

● Matter fields can also be accessed
● More complicated than the gauge fields
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Describing Gluons/Axel Maas

Summary of matter

● Matter fields can also be accessed
● More complicated than the gauge fields
● More affected by than affecting the dynamics
● Dynamical generation of mass observed
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Outlook
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Describing Gluons/Axel Maas

What is required?

● A unified framework covering all aspects
● Must include perturbation theory for systematic control

● Construct it step-by-step

✔Basic entities: Force particles (gluons,...)

✔ Yang-Mills theory as a prototype – very technical

➔Simple matter particles – fermions, scalar

g

u g
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Describing Gluons/Axel Maas

Matter fields

● Scalar matter

● R denotes the representation
● Fundamental: Like quarks - Adjoint: Like gluons

● Fermionic matter
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Fermionic matter

● Quark propagator
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Fermionic matter

● Quark propagator
● M mass function
● A-1 wave function renormalization
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Fermionic matter

● Quark propagator
● M mass function
● A-1 wave function renormalization
● Zero mass: mass function zero perturbatively
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Describing Gluons/Axel Maas

Fermionic matter

● Quark propagator
● M mass function
● A-1 wave function renormalization
● Zero mass: mass function zero perturbatively

● Non-zero for generated mass (by QCD and the Higgs)
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Describing Gluons/Axel Maas

Fermionic matter

● Quark propagator
● M mass function
● A-1 wave function renormalization
● Zero mass: mass function zero perturbatively

● Non-zero for generated mass (by QCD and the Higgs)

● Measure: trS
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Quarks
Quark mass function

[DSE: Fischer et al., 2003
 Lattice: Overlap: Bonnet et al 2003, Asqtad: Bowman et al., 2005]

●Dynamical mass generation observed
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Quarks
Quark mass function Quark wave function renormalization

[DSE: Fischer et al., 2003
 Lattice: Overlap: Bonnet et al 2003, Asqtad: Bowman et al., 2005]
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Quarks
Quark mass function Quark wave function renormalization

[DSE: Fischer et al., 2003
 Lattice: Overlap: Bonnet et al 2003, Asqtad: Bowman et al., 2005]

●Dynamical mass generation observed
●Yang-Mills Sector (almost) unaffected (for not too many light quarks)
●Analytical structure and vertices very complicated
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Describing Gluons/Axel Maas

What is required?

● A unified framework covering all aspects
● Must include perturbation theory for systematic control

● Construct it step-by-step

✔Basic entities: Force particles (gluons,...)

✔ Yang-Mills theory as a prototype – very technical

➔Simple matter particles – fermions, scalar

➔Bound states

g

u g
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Describing Gluons/Axel Maas

Bound states

● Can be extended to bound-state calculations
● Lattice calculations – hard to reach physical mass
● Functional equations – requires assumptions

[Eichmann et al., 2009, PDG 
2009, Aoki et al . 2009]
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Describing Gluons/Axel Maas

What is required?

● A unified framework covering all aspects
● Must include perturbation theory for systematic control

● Construct it step-by-step

✔Basic entities: Force particles (gluons,...)

✔ Yang-Mills theory as a prototype – very technical

➔Simple matter particles – fermions, scalar

➔Bound states and the phase diagram

g

u g
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Describing Gluons/Axel Maas

Finite temperature

● QCD Phase transition can be observed in some of the 
gluon propagator tensor components

[Maas, 2009]
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Describing Gluons/Axel Maas

Finite temperature

● QCD Phase transition can be observed in some of the 
gluon propagator tensor components

● Reflected in trS of the quark propagator

[Left: Maas, 2009
 Right: Fischer et al., 2009]
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Summary

● Correlation functions contain all information
● Masses, widths, couplings, interactions, bound states,...
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Describing Gluons/Axel Maas

Summary

● Correlation functions contain all information
● Masses, widths, couplings, interactions, bound states,...

● Determination in the non-perturbative domain hard
● Requires a combination of methods for systematic control

● Successful applications in QCD
● Confinement, QCD phase diagram, hadrons

● Going to the standard model...and beyond
● Applicable to any field theory
● Applications eg to supersymmetry lWipf et al., 2009]
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