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 Contains two Kinds of particles 00000

e Matter: Quarks, \eptons QGQQ
Q000
0000

 The Higgs is a bit of both, but more like matter

o Force particles: Photon, gluon,
W- and Z-boson

 Description with perturbation theory very successful

e But...
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What is required?

o A unified framework covering all aspects
e Must include perturbation theory for systematic control

e Construct it step-by-step
v Basic entities: Force particles (gluons,..) €)

v Yang-Mills theory as a prototype - somewhat technical
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Configuration space (artist's view)

o Each point a complete space-time
history (or configuration) of the
gauge -fields

e But gauge fields are not unique

. (zauge transformation change
them >

« Each configuration related by a
gauge transformation provides

the same observab\es/'

o (auge orbit
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(rauge fields

o (rauge theories describe force particles as gauge fields

 Prototypes: QED, Yang-Mills theory, QCD, the standard model

o (rauge fields are not uniquely defined

o (rauge transformation can change them without changing
observables

o This also applies to matter charged under the gauge group

 Even the charges are not gauge -invariant
o Except for electric charges
* No concept 0f a local gauge-invariant charge distribution

o dimilar to energy density in general relativity

 Only bound states can be gauge-invariant, and thus physical
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Gauge fixing

Prototype: Yang-Mills Theory

° Lagrangian:

. 1 a [18Y
L==F,F,

a a a A 4+b 4cC
F[JV_aIJAV avAu_ngbCAuAv
» Degrees of freedom:

Gluons: AZ

« gis the coupling constant, giving the strength of coupling
o« £ are numbers, depending on the gauge group, SU(3) for QLD:

gluons are organized in multiplets, just as with spin
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[ (rauge - firing

 Yang-Mills theory is a gauge theory
o (rauge transformations A — A +(5, 8u—gf§,’cAZ)cl>b(x)

with arbitrary ¢"(x) change the gauge fields, but leave physics
invariant

 Choice to select an arbitrary element of the gauge orbit
o (luons (and elementary particles) depend on the choice

e Requires a prescription to make comparisons or obtain properties
 Example: Landau gauge condition 6" A%=0
* Here only Landau gauge results

e Many other gauges have been studied
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Configuration space (artist's view)

 Impose Landau gauge condition

e Reduces configuration space to a
hypersurface




Gauge fixing

U nam bi gu ous ga u g& - ﬁ*i n g [For an introduction: Sobreiro & Sorella, 2005]

e Local gauge condition
e Landau gauge: 8HAZ:O

e Can be implemented using auviliary fields, the so-called
ghost fields

e No physical objects: Pure mathematical convenience




Gauge fixing

(Perturbative) Landau gauge

. Lagrangian:
1

. a Uy  —a u b
L__ZFqua —C 0,D,¢

ab __ cab . ab 4 c
D,/ =6 8“—zgfc A,
» Degrees of freedom:

Gluons: AZ

Ghosts: ¢, c°
* Ghosts interact with gluons: They have to be included

e Here: Euclidean version
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Correlation functions v« sw zom

o Correlation functions, describe a theory completely

o Expectation values of a product of field operators
 Build from the fields, here gluons and ghost
e £4g:. <cc>

e Full correlation functions contain all information

e There are an infinite number of them

o If having a non-vanishing color charge they change under gauge
transformation

o Dimplest non-zero correlation functions: 2-point functions or propagators

« Expectation values of products of two field operators

e I-point functions vanish
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Gauge fixing

Propagators

e In Landau gauge: Gluon and one auviliary field: Ghost

e Gluon:
D (x—y)= <A'(x)Al(y)>
D, (p)=(5,,~LePr)Z(P)
. Ghost: L
DY (x—y)= <¢"(x)c’(y)>
D,(p)=—¢P)

Gihost propagator can be expressed as a gluon operator, the inverse
Faddeev-Popov operator

Dy (x—y) ~ <(8,DY) "> = <(0,(6"0,—g f"™A)) ">
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Gauge fixing

Proceeding

 Once the gauge is fixed, all kind of (perturbative)
calculations can be done

e Use correlation functions as basic entities

» Combination of gauge-variant correlation functions
yield gauge -invariant results

. E.g. scaﬁering cross - sections

e Almost all perturbative calculations proceed via
gauge-variant correlation functions




Gauge fixing

Also non-perturbatively?

Would be nice:
Dame entities and concepts as in perturbation theory
Direct connection to perturbation theory
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Gauge fixing

Configuration space (artist's view)

A
o Perturbation theory is applicable close
to the origin
e Non-perturbative physics probes the
complete hypersurface
> -

Perturbation theory
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U nam bi gu ous ga u g& - ﬁ*i n g [For an introduction: Sobreiro & Sorella, 2005]

e Local gauge condition
e Landau gauge: 0 A’ =0
o Sufficient for perturbation theory
e Insufficient beyond perturbation theory

« There are gauge-equivalent configurations which obey the same
local gauge -condition: Grribov copies ive s

 There are no local gauge conditions Known, which select a
unique gauge field configuration c..

e Non-local conditions possible
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Example: Instanton.... ...,

| Instanton field |

o
e

L VANX1,1,E0)
<

S o
o

-5
-10-10 th

e Instanton field configuration is Al(r,A)=2r ni /(g(r’+1%)

» It is a Landau-gauge configuration, satisfyingo A7=0
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Example: Instanton.... ...,

\ Instanton field | \ Instanton field |

0.05 ™

o
N

gh?Al(x,1,1,4)
<

L VANX1,1,E0)
Qo

e
a N

0.05~
5
Z Z

-10.10 -5 U -10.10 -5 TN

o (rauge transformation to A (r,A)=—2r,n; A"/(gr’(r’+21%))
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Example: Instanton.... ...,

\ Instanton field | \ Instanton field |

0.05 7= -

o
N

gh?Al(x,1,1,4)
<

L VANX1,1,E0)
Qo

e
a N

N
Q
N
<

-10.10 -5 U -10.10 -5 TN

o (rauge transformation to A (r,A)=—2r,n; A"/(gr’(r’+21%))

o It is still 2 Landau gauge configuration!

o (aribov copy

e Non-perturbative: Depends on 1/g
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[llesidua\ freedom

 Impose Landau gauge condition

» Reduces configuration space to a hypersurface

 Leaves the non-perturbative gauge freedom to choose between gauge -
equivalent Grribov copies

« Residual gauge orbit
o Set of Gribov copies, in general not continous

o A definite prescription is required for an unambiquous result

« There is no unique prescription how to complete Landau gauge non-
perturbatively

» There is no possibility using a local condition

e Construct a non-local condition instead to solve the problem
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CO nﬁgura’(iOﬂ 5‘)360 (3\"“51'5 Vie\ﬂ) [Gribov NPA 1918, Zwanziger wqa...zo&z]

e (Gribov horizon encloses all field Gribov “°‘”‘Z°"\
configurations with positive
Faddeev-Popov operator (—0 D)

 All gauge orbits pass through
this region

* Bounded (and convex))

e Many Grribov copies for each

e Includes the fundamental modular
region

e One and only one Grribov copy

Fundamental modular region

e Also bounded (and convex)

o Complicated definition
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Constructing a global gauge condition

At the boundary of the first Gribov horizon the Faddeev-Popov
operator develops zero eigenmodes

Lowest eigenvalue of the Faddeev-Popov operator varies along the
gauge orbits

Finite quantity, but very hard to determine in general
Is there also an expression in terms of a correlation function?

Not directly. But the ghost propagator is influenced by the
eigenspectrum:

G(p) candidate for a characterization of a copy
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Gauge fixing

Construc‘ti ng a g‘Oba‘ ga uge Condiﬁon [Maas, unpublished, Maas, 2008/9, Fischer et al. 2008)

o Effects will be strongest at the most non-perturbative
momenta: The infrared

 Choose the renormalization-group invariant ©=G(0)/G(P)
with P large fired as a second gauge parameter

 Fourier-transform at low momentum: Highly non-local
« Appears to be also working in the continuum and infinite volume

* More studies required and underway for final confirmation

o Similar to define perturbatively the Landau gauge by p,p, D" =0

» Would provide an unambiguous definition of the gauge

o Resolves the Gribov ambiqguity
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Gauge fixing

Summary of technicalities

 Unambiguous description of elementary particles
requires gauge - fixing

e Non-perturbatively this requires additional non-local
conditions

o It appears that additional conditions on one
correlation function is sufficient

 Provides the basis to calculate non-perturbatively
correlation functions
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[ Lattice calculations

e Take a finite volume - usually a hypercube
o Discretize it, and get a finite, hypercubic lattice

o Calculate observables using path integration

e <Cc> zf dAdEchcexp(—f d’xL)

e Lan be done numerically

e Uses Monte-Carlo methods

e Artifacts

e Finite volume/discretization

e Masses vs. wave-lengths
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[ Methods

o Lattice

o Discretize space-time in a box and calculate the path-integral and
expectation values explicitly

e Full non-perturbative dynamics correctly implemented

o Finite volume artifacts, disparate scales most severe obstacles

e Functional methods (DSE, RGE..)
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(Truncated) Dyson-Schwinger Equations (DSEs)

e Infinite set of coupled non-linear integral equations
o (xenerate also perturbation theory
e Dimilar: Renormalization group equations (RGEs)
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Truncations ... .om

Dolving the equations at all momenta requires input from the higher vertex
equations

Requires truncations, in particular dropping of equations for many-legged
correlation functions i o a1 2000

Consistent and self-consistent truncation schemes can be developed

e Preserve renormalization and perturbation theory
e Introduces artifacts due to the violation of Slavnov-Taylor identities

 Cannot be avoided, at best these can be closed self-consistenly
e Not worse than in perturbation theory

 Landau gauge is very advantageous, as such violations do not couple back
e Only transverse contributions are coupled

o Still other artifacts remain
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Summary of methods

o | attice

o Discretize space-time in a box and calculate the path-integral and
expectation values explicitly

 Full non-perturbative dynamics correctly implemented

o Finite volume artifacts, disparate scales most severe obstacles

Functional methods (DSE, RGE..) 1 ﬂ

 Coupled non-linear integral equations must be solved

o Requires (often completely uncontrolled) approximations

 Continuum, partly analytical in the far infrared

Perturbation theory incdluded as limiting case at high energies

Combination of all methods most successfull




Properties of gluons

ND: The results depend little on the number of dimensions
but the lattice can reach larger volumes in lower dimensions

Zesults shown are therefore mixed from
3 and 4 dimensions, but are qualitatively very similar in both




Ghost propagator from the lattice ... ..

Ghost propagator

Ghost dressing function

Dy(p) [GeV"]
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o Results from lattice calculations

1

] 1 ]
1.2 1.4 1.6 1.8 2
P [GeV]

o Different gauge choices yield different propagators

o Lattice artifacts still to be studied




Ghost dressing function in the continuum s v 2o

10° K E p ifﬂ.qﬁék_
- . ¢ = ¢

— scaling
—— decoupling

10 10 10 10 10 10 10
p2B3€Vﬁ

 Corresponding results from functional methods (Dyson-Schwinger
equations (DSEs))

e One-to-one-correspondence of lattice and continuum methods

e dcaling: Divergent, Decoupling: Finite dressing function




Gluon dressing function in the continuum o v 2o

_I ||I| 1 1 1
10°E q —e—""- m
107 F 3
S :
N > scaling
10 " F — — - decoupling 3
107F E
B i
1o <ot . Ll Ll |
10 107 107 10" 10° 10" 10°

 Decoupling gauges yield a decoupling (infrared massive)
gluon propagator

 The scaling gauge yields an infrared vanishing gluon
propagator




Me-‘hOd Compariso n [Maas et al. 2004, Maas 2009)

o N
Gluon propagator * = ¢

- 10 = ]
a —
N —
=
: Functional methods
107 =
- ¢ Lattice gauge theory
: ------- Perturbation theory
102 =
: | | | | | | | | 11 | | | | | | | 11 |
1
10 . 1 10 p [GeV]
 Perturbation theory recovered
]

Combination confirm assumption for functional equations

Extrapolation of \attice results by functional methods

e Disadvantage cancellation
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Absence of the gluon from the physical spectrum . i

o Gluon propagator violates positivity

 Propagator determines speciral function ,
, spectral function(q”)

2 2
. P g
 Gluon propagator vanishes at zero momentum in scaling gauge

Propagator =One particle part + f dg

Gluon not part of the physical sub-space!

1 P\\SO ShO\Nn iﬂ dBCO up“ﬂg gaug&s [Fischer et al., 2008, Cucchieri et al. 2004]

Can be extended to Wilson criteria for quark o . 2o

(Possibly) to all colored states using Kugo-0Ojima construction

e Uses the Neuberger-von dmekal BRDIT construction

[Neuberger 19806, von Smekal 200L-2009, Pawlowski et al., 2008)




[ Analytic structure

* Vanishing D(0): Gluons do not propagate on the light-cone




Ana‘YﬁC 51"“61“"6 [Alkofer et al. 2003, Fischer et al. 2008)
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10 E | | T TS 0'1=m

scaling
——— decoupling

10°F
B 107 F
g

107°F

107 F E

-4 | | |
10 1 2 3 4

t [fm]

* Vanishing D(0): Gluons do not propagate on the light-cone

o dchwinger function shows no pole mass for the gluon

e Even when a screening mass exists




Ana‘YﬁC 51"“61“"6 [Alkofer et al. 2003, Fischer et al. 2008)

1_

10_ [ [ I

scaling

——— decoupling

A(t)]

t [fm]

* Vanishing D(0): Gluons do not propagate on the light-cone

o dchwinger function shows no pole mass for the gluon

e Even when a screening mass exists

o Analytic structure: Cut along the time-like axis from 0

UNI
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[ Interactions of gluons

Al(p)
o Example: Three-gluon vertex
o Other: Ghost-gluon vertex, A%(q) AS(p+a)
4-gluon vertex, scattering kKernels... [(p,q)

e Correlation function <A"A”AC>

o Related to the vertex <A’ A’ Al> = D“d D’fB Dcf rdes

xBy
e Relevant for

000000 00000000000000000000000Q00Q00000000Q0 -

e Bound states

000QQQQQ
00000000

\02000006G00000000000000000000Q000000000000Q

o Splitting functions mﬁ:
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Contractions

e There are d” x (N *-1)* tensor components

 Landau gauge: All longitudinal ones irrelevant

e Contractions useful

e Three- g\uon vertex

<A’ A’ AS> = D“d Dbe Dcf ree/

xBy
G =T"< AAA> /(FﬂDDDFﬂ)
e Measures the deviation from the tree-level vertex

o Appears in the gluon one-loop self-energy




Three- g\uon VEETER Lo ot ot 2000

Three-gluon vertex, symmetric point Three-gluon vertex, orthogonal momenta
2

1

3

G* (p.p.n/3)

i."‘iﬂﬁ?;i ¢

IIII|IIII|IIII|IIII|IIII|IIII|IIII
-

0.5 1 1.5 2
p [GeV]

* No emission around hadronic energy scales!

=

* Infrared enhanced: Strong emission of (non-propagating)
gluons on the light-cone




Running coupling

o Possible to exiract a running coupling
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Running coupling e o un e son

1

10 5'
10°F
-
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- / —— scaling
-7 — — decoupling
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10 = =
N | ||||| 1 1 ||||||| 1 1 ||||||| 1 1 ||||||I 1 1 ||||||| 1 1 L 11
107 107 1072 10t 10° 10" 10>
p [GeV’]

o Possible to exiract a running coupling
o I fixed point for scaling gauge
o |2 vanishing for decoupling gauge

e Known in the perturbative domain up to four loops

[Sternbeck et al. 2008]
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Infrared properties in the scaling gauge

o DOEs and RGEs deliver a qualitative asymptotic infrared solution for all

correlation functions and all dimensions o o a1, 2005, Fischer o at. 2007/4]

» Power-laws. Dimplest case: All momenta equal and m gluon and n

ghost legs in d dimensions:

n n d
ghost ghost
(——m )K+(1— ><_—
® p 2 gluon 2 2 [Alkofer et al. 2000, Huber at al. 2008)

o Analytic solution without truncation

o It is the only power-law-like solution e et at 2004

* Truncated DSEs give quantitative predictions for the exponent K

[Zwanziger, 2002, Lerche et al. 2002]

e In particular: [[Z-vanishing gluon propagator, Ii--enhanced ghost
propagator

e CLan be expanded to the case with matter fields pr oot 200vs)
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Summary of gluon properties

e (luonic correlation functions can be determined with
the combination of methods

o Gluon correlation functions depend on the gauge
choice

e There is no pole mass for the gluon
e Non-trivial analytic structure

o Gluon splitting and propagation together suppress
gluon emission at low energies

o Confinement of gluons is manifest
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Matter

What is required?

o A unified framework covering all aspects

e Must include perturbation theory for systematic control
o Construct it step-by-step
v Basic entities: Force particles (gluons,..) €)

v Yang-Mills theory as a prototype - very technical
=> Simple matter particles - scalar 00




Matter

‘Matter fields

e Dcalar matter

| , | ]
L:—ZFWF“ —¢' (5 D,D"+m’)¢p—cd"D,c

D =0 —ieA’ T,
H H H
e |2 denotes the representation

 Fundamental: Like quarks - Adjoint: Like gluons
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Matter

[%ca\ar matter

o dimpelst case: Scalar matter

e Consider scalar in the confinement phase (quenched)
e Here: Fundamental (like Higgs) charged

» Propagator H,(x—y)= <¢; (x)p,(y)>

o (Dimplest) Vertex

a +
A <A,qui ¢j>
q, . G P=T"<A¢p" ¢> /(I'"DHH T




Matter

%Ca‘ar Proagaior [Maas, unpublished]

Fundamental scalar propagator

e  Full propagator m (2 GeV)=1 GeV

Tree-level propagator, m:=1 GeV

0.4

0.2

III|IIIJIII|III|I

| | 1 | | 1 | | 1 | |
0
A
410 1 > [GeV] 2 3 4 5

o | (zeV tree-level mass - effective mass is 1.b GeV

 Dynamical mass generation, independent of tree-level mass

o Analytic structure requires more data




Matter

%Ca‘ar = g‘uon Verie)‘ [Maas, unpublished]

Scalar-gluon vertex, symmetric point Scalar-gluon vertex, orthogonal momenta
2

6" "*(q,q.1/3)

q [GeV]

e Almost no difference to tree-level

e Low-momentum behavior mass-dependent

o duppression for small masses
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Matter

Dummary of matter

 Matter fields can also be accessed
e More complicated than the gauge fields
 More affected by than affecting the dynamics

 Dynamical generation of mass observed
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Outlook

What is required?

o A unified framework covering all aspects

e Must include perturbation theory for systematic control
o Construct it step-by-step
v Basic entities: Force particles (gluons,..) €)

v Yang-Mills theory as a prototype - very technical
> Simple matter particles - fermions, scalar @) €)




Outlook

‘Matter fields

e Dcalar matter

| , | ]
L:—ZFWF“ —¢' (5 D,D"+m’)¢p—cd"D,c

D =0 —ieA T,
e [& denotes the representation
e Fundamental: Like quarks - Adjoint: Like gluons
e Fermionic matter
1

L=—7F, F"™+@(iD,y"—m)y—c'0" D¢’

~ UNI
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Fermionic matter

* QuarK propagator

i, Y. P, +M(p)
S(p)=A""(p)—£
o M mass function (p) (p) P +M’

e A1 wave function renormalization

e Zero mass: mass function zero perturbatively

* Non-zero for generated mass (by QCD and the Riggs)
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40% W Higgs
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Outlook

Fermionic matter

 Quark propagator B P+ MI
P s(p)=an (p) L 2

o M mass function P +M’

e A1 wave function renormalization

e Zero mass: mass function zero perturbatively

* Non-zero for generated mass (by QCD and the Riggs)

100%
80%
60%
M strong

40% M Higgs
20%
0%

u d S C b T

Leptons
e Measure: 7S

Mass
S

NN
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ua rks [DSE: Fischer et al., 2003
Lattice: Overlap: Bonnet et al 2003, Asqtad: Bowman et al., 2005]

Quark mass function
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[DSE: Fischer et al., 2003
Q uarks Lattice: Overlap: Bonn‘:(: et al 2003, Asqtad: Bowman et al., 2005)
Quark mass function Quark wave function renormalization
10 g“l I |||||||I I II|||||I I II|||||I LBBLBLILLLLL LILLILLLL LILLILLLLL LILBLLLLLL I IIIE ;HI |||||||| I |\|||\|‘ LI ||||||| LI II||||| 1 I|||||I| UL 1 IIIIIII| T 111
i 1 1 s
10" -
: 1 09F 3
S 107 T
o F R T - 08 :
-3 _ E
9‘ 0 : : ]
{4l lattice data (asqtad) 0.7¢ lattice data (asqtad)
5 10 ¢ lattice data (overlap) lattice data (overlap) 3
2 5[ — quenched 0.6F — quenched E
078 — N =3, chiral — N=3
10_5 [ - N]-=3a m=4.5 MeV 0-52_ oo Nf=3, m=4.5 MeV _
_? IIII 1 |||||||I 1 |||||||I 1 |||||||I 1 |||||||| 1 |||||||| 1 |||||||| 1 |||||||| | 0_4 -Ellll l III“”| I IH”“‘ L |I||”| L lllllll l lI““ll . II“”ll . III“”| 1 Ill;
00 102 100 1 100 1 100 10 10° 100 100 10" 100 100 100 10
9 /) 2 V2
p [GeV] p [GeV]

Dynamical mass generation observed
Yang-Mills Sector (almost) unaffected (for not too many light quarks)

~ UNI
| GRAZ




Outlook

[DSE: Fischer et al., 2003
Q uarks Lattice: Overlap: Bonn‘:(: et al 2003, Asqtad: Bowman et al., 2005)
Quark mass function Quark wave function renormalization
10 g“l I |||||||I I II|||||I I II|||||I LBBLBLILLLLL LILLILLLL LILLILLLLL LILBLLLLLL I IIIE ;HI |||||||| I |\|||\|‘ LI ||||||| LI II||||| 1 I|||||I| UL 1 IIIIIII| T 111
i 1 1 s
10" -
: 1 09F 3
S 107 T
o F R T - 08 :
-3 _ E
9‘ 0 : : ]
{4l lattice data (asqtad) 0.7¢ lattice data (asqtad)
5 10 ¢ lattice data (overlap) lattice data (overlap) 3
2 5[ — quenched 0.6F — quenched E
078 — N =3, chiral — N=3
10_5 [ - N]-=3a m=4.5 MeV 0-52_ oo Nf=3, m=4.5 MeV _
_? IIII 1 |||||||I 1 |||||||I 1 |||||||I 1 |||||||| 1 |||||||| 1 |||||||| 1 |||||||| | 0_4 -Ellll l III“”| I IH”“‘ L |I||”| L lllllll l lI““ll . II“”ll . III“”| 1 Ill;
00 102 100 1 100 1 100 10 10° 100 100 10" 100 100 100 10
9 /) 2 V2
p [GeV] p [GeV]

Dynamical mass generation observed
Yang-Mills Sector (almost) unaffected (for not too many light quarks)
eAnalytical structure and vertices very complicated
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What is required?

o A unified framework covering all aspects

e Must include perturbation theory for systematic control
o Construct it step-by-step
v Basic entities: Force particles (gluons,..) €)

v Yang-Mills theory as a prototype - very technical
> Simple matter particles - fermions, scalar @) €)

= Bound states @
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e Lattice calculations - hard to reach physical mass

 Functional equations - requires assumptions
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[Eichmann et al., 2009, PDG
BOUﬂd ‘51310‘5 2009, Poki et al . 2009) - . m
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What is required?

o A unified framework covering all aspects

e Must include perturbation theory for systematic control

e Construct it step-by-step
v Basic entities: Force particles (gluons,..) €)

v Yang-Mills theory as a prototype - very technical
> Simple matter particles - fermions, scalar @) €)
=» Bound states and the phase diagram @ |
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Finite temperature
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Finite temperature s, 2001

Longitudinal propagator for SU(3)
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e QCD Phase transition can be observed in some of the
gluon propagator tensor components
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Finite temperature e oot

Longitudinal propagator for SU(3)

Chiral condensate from trS |
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¢ QLD Phase transition can be observed in some of the
gluon propagator tensor components

o Reflected in 175 of the quark propagator
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dummary

o Correlation functions contain all information
» Masses, widths, couplings, interactions, bound states,...
e Determination in the non-perturbative domain hard
e Requires a combination of methods for systematic control
e Duccessful applications in QLD
o Confinement, QCD phase diagram, hadrons
e (w0ing to the standard model...and beyond
 Applicable to any field theory

o Applications eq to supersymmetry ..z




