What I talk about when I talk about Inflation

Eugene A. Lim w/ Josu Aurrekoetxea, Katy Clough and Raphael Flauger

arXiv: 1712.07352

arXiv: 1608.04408

arXiv: 190X.XXXX

Is Inflation Paradigmatic?

Inflationary paradigm in trouble after Planck2013

Anna Ijjas^{a,b}, Paul J. Steinhardt^{a,c,d,*}, Abraham Loeb^a

^aHarvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
^bUniversity Observatory Munich, 81679 Munich, Germany
^cDepartment of Physics, Princeton University, Princeton, NJ 08544, USA
^dPrinceton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 USA

"...serious difficulties that cut to the core..."

Inflation after Planck: Judgment Day

Debika Chowdhury* Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India[†]

Jérôme Martin[‡] Institut d'Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98 bis boulevard Arago, 75014 Paris, France

Christophe Ringeval[§] Cosmology, Universe and Relativity at Louvain, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve, Belgium

Vincent Vennin[¶] Laboratoire Astroparticule et Cosmologie, Université Denis Diderot Paris 7, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France (Dated: February 12, 2019)

"...strengthened by Planck data."

Inflationary Paradigm after Planck 2013

Alan H. Guth,¹ David I. Kaiser,¹ and Yasunori Nomura²

¹Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Phy Massachusetts Institute of Technology, Cambridge, MA 02139, USA ²Berkeley Center for Theoretical Physics, Department of Physics, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA (Dated: December 29, 2013, revised January 13, 2014)

"...on a stronger footing than ever."

SCIENTIFIC AMERICAN_e

SPACE

Cosmic Inflation Theory Faces Challenges

The latest astrophysical measurements, combined with theoretical problems, cast doubt on the long-cherished inflationary theory of the early cosmos and suggest we need new ideas

By Anna Ijjas, Paul J. Steinhardt, Abraham Loeb on February 1, 2017

A Cosmic Controversy

A *Scientific American* article about the theory of inflation prompted a reply from a group of 33 physicists, along with a response from the article's authors

Scientific American

Is Inflation Paradigmatic?

am not taking sides!

Inflationary paradigm in trouble after Planck2013

Anna Ijjas^{a,b}, Paul J. Steinhardt^{a,c,d,*}, Abraham Loeb^a

^aHarvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
^bUniversity Observatory Munich, 81679 Munich, Germany
^cDepartment of Physics, Princeton University, Princeton, NJ 08544, USA
^dPrinceton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 USA

"...serious difficulties that cut to the core..."

Inflation af

Department of Physics, Indian In

Jérôme Martin[‡] Institut d'Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98 bis boulevard Arago, 75014 Paris, France

Christophe Ringeval[§] Cosmology, Universe and Relativity at Louvain, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve, Belgium

Vincent Vennin[¶] Laboratoire Astroparticule et Cosmologie, Université Denis Diderot Paris 7, 10 mie Alice Demon et Léonie Duquet 75012 Barie, France

10 rue Alice Domon et Léonie Duquet, 75013 Paris, France (Dated: February 12, 2019)

"...strengthened by Planck data."

Inflationary Paradigm after Planck 2013

Alan H. Guth,¹ David I. Kaiser,¹ and Yasunori Nomura²

¹Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Phy Massachusetts Institute of Technology, Cambridge, MA 02139, USA ²Berkeley Center for Theoretical Physics, Department of Physics, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA (Dated: December 29, 2013, revised January 13, 2014)

"...on a stronger footing than ever."

Cosmic Inflation Theory Faces Challenges

The latest astrophysical measurements, combined with theoretical problems, cast doubt on the long-cherished inflationary theory of the early cosmos and suggest we need new ideas

By Anna Ijjas, Paul J. Steinhardt, Abraham Loeb on February 1, 2017

A Cosmic Controversy

A *Scientific American* article about the theory of inflation prompted a reply from a group of 33 physicists, along with a response from the article's authors

Scientific American

A story in 2 parts

Part I

Conceptual Issues with Inflation

Part II

Exploring the Theory Space of Successful Inflation

Part I Conceptual issues with Inflation

Usually framed as "Problems"

Usually framed as "Problems"

Horizon Problem

Usually framed as "Problems"

Flatness Problem

 $|\Omega_K| < 0.01$

Why are they "Problems"?

Why are they "Problems"?

A question of expectation.

We observed (realization) $|\Omega_K| < 0.01$ We expect $|\langle \Omega_K \rangle| \stackrel{?}{\gg} 0$

Why are they "Problems"?

A question of *expectation*.

We observed (realization) $|\Omega_K| < 0.01$ We expect $|\langle \Omega_K \rangle| \stackrel{?}{\gg} 0$

Actually, what do we really expect??

Expectation values need an ensemble to draw from.

We can't construct such an ensemble from observations (only one Universe).

No prior information -> all possible initial states are in play.

We can't construct such an ensemble from observations (only one Universe).

No prior information -> all possible initial states are in play.

Initial Conditions or Dynamics?

Initial Conditions or Dynamics?

Option 1 : We got (un)lucky — "Fine-tuned".

Option 1: We got (un)lucky

The "Phase Space of All Possible Initial Conditions"

FIGURE 10. The Creator locating the tiny region of phase-space—one part in $10^{10^{123}}$ —needed to produce a 10^{80} -baryon closed universe with a second law of thermodynamics in the form we know it.

Option 1: We got (un)lucky

The "Phase Space of All Possible Initial Conditions"

FIGURE 10. The Creator locating the tiny region of phase-space—one part in 10^{10¹²³}—needed to produce a 10⁸⁰-baryon closed universe with a second law of thermodynamics in the form we know it.

Option 3 : Some dynamical process makes the initial conditions irrelevant (Inflation).

Option 1: We got (un)lucky — "Fine-tuned".

Option 2 : There is some unknown "Theory of Initial Conditions" that defines the ensemble and/or choose the initial state (Penrose, Wald, et al.)

Option 3 : Some dynamical process makes the initial conditions irrelevant (Inflation).

Option 3 : Inflation is a great success

Connecting gravity with quantum field theory, and makes confirmed predictions.

Straightforward framework, easy to modify, rich in pheno -> 10000++ papers since 1980.

2500

Option 3 : Inflation is a great success

Connecting gravity with quantum field theory, and makes confirmed predictions.

Straightforward framework, easy to modify, rich in pheno -> 10000++ papers since 1980.

"So easy! I got a paper out in 3 weeks. Would write again. A+++++" a satisfied grad student

But does it work?

Option 3 : Some dynamical process makes the initial conditions irrelevant (Inflation).

There exist sick initial conditions which no model of inflation will inflate.

But does it work?

Option 3 : Some dynamical process makes the initial conditions irrelevant (Inflation).

There exist sick initial conditions which no model of inflation will inflate.

A Conceptual Retreat:

Option 3 : Inflation will begin for "generic" initial conditions.

What is "generic"? We have to deal with the ensemble again.

The Measure of all possible initial states

FIGURE 10. The Creator locating the tiny region of phase-space—one part in $10^{10^{123}}$ —needed to produce a 10^{80} -baryon closed universe with a second law of thermodynamics in the form we know it.

How to measure the "big-ness/generic-ness" of this "successful inflation initial conditions space".

The Measure of all possible initial states

To get from all possible initial (micro)states -> an expectation of a macrostate, need a **Measure.**

$$\langle \Omega_K \rangle = \int F(p_i, q_i) \hat{\Omega}$$

all initial state

Measure

space

The Measure of all possible initial states

To get from all possible initial (micro)states -> an expectation of a macrostate, need a **Measure.**

$$\langle \Omega_K \rangle = \int F(p_i, q_i) \hat{\Omega}$$

all initial state space

Measure

Liouville Measure :

$$\hat{D} = \frac{(-1)^{n(n-1)/2}}{n!}\omega$$

$$\omega = \sum_{i}^{n} dp_{i} \wedge dq^{i}$$

Conserved under time evolution: initial conditions space = trajectories space

An example : GHS Measure Gibbons, Hawking, Stewart(1987)

Ignore everything, and consider only scale factor a and inflaton ϕ as canonical variables ("mini-superspace").

 $\hat{\Omega} = (dp_a \wedge da + dp_\phi \wedge d\phi)_{\text{Hamiltonian constraint}=0}$

Q: what is the probability of Ω_K to result from inflation?

$$P(\Omega_K) = \frac{\hat{\Omega}(\Omega_k)}{\hat{\Omega}(\text{all states})}$$

Gibbons, Hawking, Stewart(1987)

$$\hat{\Omega}(\text{all states}) \propto \int \frac{1 - \Omega_V - \frac{2}{3}\Omega_K}{|\Omega_K|^{5/2}(1 - \Omega_V - \Omega_K)^{1/2}} d\Omega_K d\phi$$

Gibbons, Hawking, Stewart(1987)

$$\hat{\Omega}(\text{all states}) \propto \int \frac{1 - \Omega_V - \frac{2}{3}\Omega_K}{|\Omega_K|^{5/2}(1 - \Omega_V - \Omega_K)^{1/2}} d\Omega_K d\phi$$
$$\rightarrow \infty \quad \text{as} \quad \Omega_K \rightarrow 0$$

Gibbons, Hawking, Stewart(1987)

$$\hat{\Omega}(\text{all states}) \propto \int \frac{1 - \Omega_V - \frac{2}{3}\Omega_K}{|\Omega_K|^{5/2}(1 - \Omega_V - \Omega_K)^{1/2}} d\Omega_K d\phi$$
$$\rightarrow \infty \quad \text{as} \quad \Omega_K \rightarrow 0$$

Carroll + Tam (2010) : flatness is not a problem since measure dominated by flat trajectories! Gibbons + Turok (2008) : divergences are bad, regulate it! Schiffrin + Wald (2012) : It depends sensitively to regularization scheme.

Gibbons, Hawking, Stewart(1987)

$$\hat{\Omega}(\text{all states}) \propto \int \frac{1 - \Omega_V - \frac{2}{3}\Omega_K}{|\Omega_K|^{5/2}(1 - \Omega_V - \Omega_K)^{1/2}} d\Omega_K d\phi$$
$$\rightarrow \infty \quad \text{as} \quad \Omega_K \rightarrow 0$$

Carroll + Tam (2010) : flatness is not a problem since measure dominated by flat trajectories! Gibbons + Turok (2008) : divergences are bad, regulate it! Schiffrin + Wald (2012) : It depends sensitively to regularization scheme.

Measure on initial conditions is a critical open problem!!

Is Inflation a Theory?

"Can construct any theory/model to replicate any observations."

"Theory is not falsifiable."

Komatsu-Tesileanu Bayes Argument

from E. Komatsu's Facebook Post (liked 106 times).

We Want	P(Model Data)	"Can we pin down the exact model
		of inflation given data"
We have	P(Data Model)	"Inflation occurs, can we determine how likely the data is given a model?"
Theory	$P(\mathrm{Model})$	Prior distribution of models.
from E. Komatsu's Facebook Post (liked 106 times).

We WantP(Model|Data)"Can we pin down the exact model
of inflation given data"We haveP(Data|Model)"Inflation occurs, can we determine
how likely the data is given a model?"TheoryP(Model)Prior distribution of models.

Bayes' Theorem $P(Model|Data) = \frac{P(Data|Model)P(Model)}{P(Data)}$ Normalizability (Measure!) $\int d(Model)P(Model) = 1$

Bayes' Theorem $P(Model|Data) = \frac{P(Data|Model)P(Model)}{P(Data)}$

"Can construct any theory to replicate any observations." -> Model space is infinite, so $P(Model) \rightarrow 0$

So is *P*(Model) finite or zero?

"Can construct any theory to replicate any observations." -> Model space is infinite, so $P(Model) \rightarrow 0$ So is P(Model) finite or zero? Nobody knows how to compute P(Model)"What is the measure on the model space?"

Initial Conditions Space vs Model Space

Initial Conditions Space : initial values of the variables of the Theory Space

Initial Conditions Space vs Model Space

Initial Conditions Space : initial values of the variables of the Theory Space

Model Space : different models/dynamics of inflation

Initial Conditions Space vs Model Space

Initial Conditions Space : initial values of the variables of the Theory Space

Model Space : different models/dynamics of inflation

Model
Space"Successful
Inflation"I.C.SpaceInflation"Space

We need a joint measure on Initial conditions and Model space.

"Just need a small patch to inflate"

"Just need inflation to occur at a small patch, and the volume will exponentially increase and dominate all the non-inflated regions."

"Just need a small patch to inflate"

"Just need inflation to occur at a small patch, and the volume will exponentially increase and dominate all the non-inflated regions."

"Just need a small patch to inflate"

"Just need inflation to occur at a small patch, and the volume will exponentially increase and dominate all the non-inflated regions."

Pop Quiz!

If you find a box like this on the street...

Which of these is more likely its original initial condition?

Pop Quiz!

If you find a box like this on the street...

Which of these is more likely its original initial condition?

Microphysical laws are time-reversal invariant!

The Penrose Argument Penrose 1989

"The past is low entropy by assumption."

The Penrose Argument Penrose 1989

"The past is low entropy by assumption."

We need additional constraints/theory/assumptions regardless of Horizon/Flatness problems.

The Penrose Argument Penrose 1989

Penrose :

Our challenge is *not* to assume the initial conditions are random (and hence generically high entropy) then solve it by inflation, but to explain why it is low entropy *in the first place*.

Option 2 : There is some unknown "Theory of Initial Conditions" that defines the ensemble and/or choose the initial state.

Part II Exploring the space of Successful Inflation

Problems are Opportunities

My guess : something like inflation probably occurred, but it we still need to explain the initial conditions.

Problems are Opportunities

My guess : something like inflation probably occurred, but it we still need to explain the initial conditions.

Problems are Opportunities

My guess : something like inflation probably occurred, but it we still need to explain the initial conditions.

We should look for the existence of boundaries (and hence finiteness of measure).

Step 1 : Pick an inflationary model (dynamics)

Step 2 : Choose initial conditions for this model

Do calculations (numerics/analytics), do we get >60 folds of inflation?

Step 1 : Pick an inflationary model (dynamics)

Energy scale (high/low = "large field"/"small field") one field vs many fields exact shape and couplings of the potential many others....

Step 2 : Choose initial conditions for this model

Do calculations (numerics/analytics), do we get >60 folds of inflation?

Step 1 : Pick an inflationary model (dynamics)

Energy scale (high/low = "large field"/"small field") one field vs many fields exact shape and couplings of the potential many others....

Step 2 : Choose initial conditions for this model

Slow roll/fast roll? Initially expanding/contracting? Homogenous/Inhomogenous? many others...

Do calculations (numerics/analytics), do we get >60 folds of inflation?

Lots of work on *Homogenous* initial conditions.

(Assumed Friedman-Robertson-Walker.)

Very little work on *Inhomogenous* initial conditions.

Hard! Need to solve full General Relavity equations : Numerical Relativity

GRCHOMBO

www.grchombo.org

Open source (BSD-3)

GW from Cosmic Strings!

GW from collisions of Scalar Solitons!

Scalar/Matter Sector

Gravity Sector

3-metric

Extrinsic Curvature

 $\gamma_{ij}(\mathbf{x})$

 $K_{ij}(\mathbf{x}) \sim \dot{\gamma}_{ij}$

Scalar/Matter Sector

Gravity Sector

3-metric

 $\gamma_{ij}(\mathbf{x})$

Extrinsic Curvature

 $K_{ij}(\mathbf{x}) \sim \dot{\gamma}_{ij}$

Scalar/Matter Sector

 $\phi(\mathbf{x}) \qquad \dot{\phi}(\mathbf{x})$

Usually assumed conformal

 $\gamma_{ij} = \chi^{-2} \delta_{ij}$

Gravity Sector

3-metric

Scalar/Matter Sector

 $\phi(\mathbf{x}) \qquad \dot{\phi}(\mathbf{x})$

Usually assumed conformal

$$\gamma_{ij} = \chi^{-2} \delta_{ij}$$

Extrinsic Curvature

Tensor "GW"Expansion/ModesContraction

Gravity Sector

Freedom to specify $(\phi, \phi, \gamma_{ij}, K_{ij})$ subject to Hamiltonian and 3 Momentum constraints

Gravity Sector

3-metric

 $\gamma_{ij}(\mathbf{x})$

Scalar/Matter Sector

 $\phi(\mathbf{x}) = \dot{\phi}(\mathbf{x})$

Usually assumed conformal

 $\gamma_{ij} = \chi^{-2} \delta_{ij}$

Extrinsic Curvature

Tensor "GW"Expansion/ModesContraction

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Freedom to specify $(\phi, \phi, \gamma_{ij}, K_{ij})$ subject to Hamiltonian and 3 Momentum constraints

Model Space

Single Field models

Slow Roll Plateau End point ("reheating") Energy scale (High/low) Shape (e.g. Concave/Convex)

Model Space

Planck 2018

Model Space

Planck 2018
J. Aurrekoetxea, K. Clough, R. Flauger, E. Lim (WIP)

 $\frac{d^2V}{d\phi^2} > 0$

Inflationary Potentials

$$\frac{d^2V}{d\phi^2} < 0$$

Inhomogenous vs homogenous dynamics

 $\phi(x,t_0) = \phi_0$

Inhomogenous vs homogenous dynamics

 $\phi - \frac{dV}{d\phi} = 0 \Rightarrow \nabla^2 \phi_{max} \stackrel{?}{=} \frac{dV(\phi_{max})}{d\phi}$

Define $f(\phi) \equiv -\ddot{\phi} = -\nabla^2 \phi + \frac{dV}{d\phi} = k^2 \phi + \frac{dV}{d\phi}$

Define $f(\phi) \equiv -\ddot{\phi} = -\nabla^2 \phi + \frac{dV}{d\phi} = k^2 \phi + \frac{dV}{d\phi}$

Define $f(\phi) \equiv -\ddot{\phi} = -\nabla^2 \phi + \frac{dV}{d\phi} = k^2 \phi + \frac{dV}{d\phi}$

Unsuccessful

Unsuccessful

A neat proof :

$$f(\phi_0, \delta\phi) = k^2 \delta\phi + \frac{dV}{d\phi}$$

$$\phi = \phi_0 + \delta\phi$$

For $f(\phi_0, \delta \phi)$ to have a maxima,

$$\frac{\partial f}{\partial \delta \phi} = k^2 + \frac{d^2 V}{d\phi^2} = 0$$

A neat proof :

 $f(\phi_0, \delta\phi) = k^2 \delta\phi + \frac{dV}{d\phi}$

$$\phi = \phi_0 + \delta\phi$$

For $f(\phi_0, \delta \phi)$ to have a maxima,

$$\frac{\partial f}{\partial \delta \phi} = k^2 + \frac{d^2 V}{d\phi^2} = 0$$

solution may exists

no solution

Check with full Numerical Relativity simulations

Since $\phi = \phi_0 + \delta \phi$ and $\delta \phi$ is bounded by end of the inflation, there exists $\phi_0 < \phi_0^*$ such that inflation will not fail to *any* value of scalar inhomogeneities.

 $\phi_0^* \to N$ e-folds

Thus we can guarantee inflation is robust if $\phi_0 < \phi_0^*$

For Concave potentials, there exists a *model-dependent* initial condition ϕ_0 for successful inflation.

By probing the boundary, we can start to construct the distribution, and perhaps understand the measure of successful inflation.

Conclusions

- Inflation is designed to solve a question of expectations.
- We don't know what these "expectations" are "Measure Problem".
- The measure/distribution encompasses both theory model space and initial condition space.
- Convex models are more robust than Concave models (Tension with Planck?)
- Demonstrate an exemplar on how to begin to construct the boundary of such a distribution.