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Baryogenesis

Generating Baryon asymmetry requires:

C and CP violation
X present in SM quark sector
(needs enhancement... not a part of this talk though)

Baryon number violation
X SU(2) sphalerons present in SM

Departure from thermal equilibrium
I order phase transition→ BSM needed

A. D. Sakharov 67’



Baryon number violation

SU(2) sphalerons violate baryon number

Γsph∼T
4

Γsph∼T
4exp(-

v

T

)

0 50 100 150 200
-2.0×106

-1.5×106

-1.0×106

-500000

0

500000

1.0×106

ϕ [GeV]

V
[G
eV

]4

T=Tn

In thermal equilibrium SU(2) sphalerons wash out the
baryon asymmetry.
→They have to be decoupled after the phase transition

This leads to the famous bound:

v
T & 1

Shaposhnikov 85’ 86’ 87’



Simple example

Standard Model with an |H|6/Λ2 interaction

We consider the following potential

V (H) = −m2|H|2 + λ|H|4 +
1

Λ2
|H|6

the tree-level potential reads

V (h)tree = −m
2

2
h2 +

λ

4
h4 +

1

8

h6

Λ2

We use the observed mass of the Higgs boson and the
measured Higgs vev

v = 246 GeV, mh = 125 GeV

in the renormalisation conditions

V ′(h = v) = 0, V ′′(h = v) = m2
h



Collider probes

The triple Higgs coupling is modified

λ3 =
1

6

∂3V

∂h3

∣∣∣∣
h=v

=
m2
h

2v
+
v3

Λ2
= λSM

3 +
v3

Λ2



T=158.582>Tc
T=157.793=Tc
T=157.477<Tc
T=157.004<Tc
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SM with |H 6/(750 GeV)2 operator

If Mh < 85GeV in SM we would have a I order phase transition
Kajantie, Laine, Rummukainen, Shaposhnikov 97’



phase transition dynamics

Scalar sphaleron: static field configuration passing the barrier (excited
through thermal fluctuations)

decay rate

Γ(T ) ≈ T 4 exp

(
−
S3(T )

T

)
,

O(3) symmetric action

S3(T ) = 4π

∫
drr2

[
1

2

(
dφ

dr

)2

+ V (φ, T )

]
.

EOM → bubble profile

d2φ

dr2
+

2

r

dφ

dr
−
∂V (φ, T )

∂φ
= 0,

φ(r →∞) = 0 and φ̇(r = 0) = 0.

nucleation temperature

N(Tn) =
∫ tn
tc
dt Γ(t)

H(t)3
=
∫ Tc

Tn

dT
T

Γ(T )

H(T )4
= 1

Linde 81’ 83’

T=125.253=Tc
T=124.388>Tn
T=123.524=Tn

0 50 100 150 200

-1.5× 106

-1.0× 106

-500000

0

500000

ϕ [GeV]

V
[G
eV

]4

SM with |H 6/(750 GeV)2 operator



Electroweak phase transition

Morrissey 12’



Gravitational waves

Gravitational waves can be described by two parameters
characterising the phase transition

α ≈
∆V − T d∆V

dT

ρR

∣∣∣∣∣
T=T∗

, ∆V = Vf − Vt

Γ ∝ e−
S3(T )

T = e β (t−t0) =⇒ β

H
= T

d

dT

(
S3(T )

T

)∣∣∣∣
T=T∗

Signals are produced by three main mechanisms:

collisions of bubble walls: Ωcol ∝
(

α
α+1

)2 (
β
H

)−2
Kamionkowski ‘93, Huber ‘08, Hindmarsh ‘18,

sound waves: Ωsw ∝
(

α
α+1

)2 (
β
H

)−1
Hindmarsh ‘13 ‘15 ‘17

turbulence Ωturb ∝
(

α
α+1

) 3
2
(
β
H

)−1
Caprini ‘09

The frequency of the signal changes as f ∝ β
H



In presence of strong suprcooling vacuum energy cannot be
neglected

α ≈ ρV
ρR

& 1 =⇒ H2 =
1

3M2
p

(
π2

30
g∗T

4 + ∆V (T = 0)

)
Affects nucleation temperature∫ Tc

Tn

dT

T

Γ(T )

H(T )4
= 1

Finding the percolation temperature involves the
probability of remaining in the false vacuum

P (t) = e−I(t), I(t) =
4π

3

∫ t

tc

dt′ Γ(t′) a(t′)3 r(t, t′)3

P (tp) . 0.7 =⇒ I(tp) = 0.34



Bubble growth

comoving coordinate size of a bubble nucleated at t′ and
growing until t

a(t′)r(t, t′) = a(t′)

∫ t

t′

vw dt̃

a(t̃)



For successful percolation the physical volume of false
vacuum Vfalse ∝ a(t)3P (t) has to decrease

1

Vfalse

dVfalse

dt
= 3H(t)− dI(t)

dt
= H(T )

(
3 + T

dI(T )

dT

)
< 0

Turner ’1992



Percolation temperature



Strength of the transition



relevant length scale for GWs

The mean bubble separation R∗:

nB = (R∗)
−3 =

∫ tp

tc

dt′
a(t′)3

a(tp)3
Γ(t′)P (t′)

Size of bubbles carrying the most energy

1 The physical size at time t of bubbles nucleated time t′:

R(t, t′) = a(t) r(t, t′) .

2 The distribution of bubble sizes at temperature T :

dn

dR
(t, R) = − dt

′

dR

a(t′(R))3

a(t)3
Γ(t′(R))P (t′(R)) .

3 Dominant contribution to the GWs comes from the bubbles
that contain the largest fraction of the energy budget

EB(t, R) ≡ R3 dn

dR
(t, R) =⇒ RMAX



Relevant scale for GWs

To make contact with more standard terminology

β

H
=⇒ (8π)

1
3

HR



Root-mean-square four-velocity of the plasma reads

Ū2
f =

3

v3
w

∫ vw

cs

ξ2 v2

1− v2
dξ .

Espinosa ’10 Hindmarsh ’15 ’17
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The amplitude of the GW signal will probably be reduced
by a factor ∼ HR̄/Ūf
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Model 2: Neutral singlet

We add an additional singlet scalar to SM

V tree(H, s) = −µ2
h |H|

2
+ λh |H|4 +

λhs
2
|H|2 s2 +

µ2
s

2
s2 +

λs
4
s4

Singlets physical mass

ms
2 = µ2

s + λhs v
2/2
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Conclusions

For PTs with strong supercooling (α & 1) energy of the unstable
false vacuum has to be taken into account. It affects dynamics of
the transition and if vacuum domination lasts for a significant
amount of time can jeopardize the successful completion of the
phase transition.

Condition for GW production by sound waves to be long-lasting
(approximately a Hubble time) is generally not fulfilled. Because
of this the sound wave GW signal could be weakened, with
turbulence setting in earlier, resulting in a smaller overall GW
signal as compared to current literature predictions.

After supercooled PT the universe reheats to Tr ≈ TV which is
the temperature relevant for redshifting of GWs and which sets a
bounds the peak frequency of the GW signal from the phase
transition to be f & 10−4 Hz.


