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Ultraviolet Divergcnces N Gravit9
® Simple power counting 18 gravitg and suPergravitg
theories leads to a naive Aegree of clivergence

A= (D—2)L+2

in D sPacetime dimensions. So, for D=4, 1.3, one

exl:)ects A =8 . In dimensional regularization onlg

logarlthmlc Axvergences are seen ( 1 Poles e=D—4),

sO 8 powers O1C momentum Woulcl ]’wave to come out onto

the extemal lmes OF such cllagram.



o | ocal supersummetry implies that the pure curvature
Persy yimp P
part of such a D=4 §~loop clivergence candidate must
be built From the square cnc the BeLRobinson tensor

Deser, Kag & K.S5.5

/ vV —8 T,uvpcsT'UVpG ,  Lyvps = R,uav Roaop + *RyavB *Rpoccsﬁ

* Thisis clirectlg related to the of? corrections in the
5ul:>er5tri ng, ettective action, except that in the stri ng
context such contributions occur with finite coetficients.
The question remains whether such string theorg

contributions clevelop Poles in (o) as one takes the

zero—-slope limit o/ — 0 and how this bears on the

ultraviolet Properties of the corresponding field theorg.

Berkovits; Green, Russo & Vanhove
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° The consequences o1C sul:)ersgmmetrg For tl’)e ultraviolet
structure are not restricted to the requirement tlﬁat

counterterms be sul:)ersgmmetric invariants.

o There exist more Power?ul “non-renormalization

theorems,” the most famous of which excludes infinite

renormalization within D=4, N=i supersymmetry of chiral
invariants, given in N=| superspace by integrals over half

the superspace:

/dZGW((I)(x,O,é)) Do =0



Keg tools in Proving non-renormalization theorems are

superspace formulations and the Dackgrouncl field .

For examl:)le) the Wess-Zumino model in N=1, D=4

su Qersymmetrg s formulated in terms of a chiral
, N . Ae L R 0 g O
superfield 0(x,0,0) : DO6=0; D= 255 i0 o

In the backgrouncl field methocl, one splits the superﬁeld

into “backgrouncl” and “quantum” PartsJ

O=0+0

backgrouncl quan’cum

The chiral constraint on Q(x,8,0) can be solved bﬂ
introducinga “Prepotential”: 0=D*X (D’=0)



® Althoug‘q the Wess-Zumino action requires chiral
superspace integrals [ = L/ d*xd*090 + Re [ d*xd*0 ¢’

when written in terms of t

e total field ¢, the parts involving
the quantum field © aPPearing inside looP cliagrams can be
re-written as / d*xd*0 = / d*xd*04*0 full superspace
integrals using the “integration:c]hq:erentiation” property of

Berezin integrals.

> UPon exPanAing into background and quantum parts, one

finds that the chiral interaction terms can be rewritten as

full superspace intcgrals) e.g,
/ d*xd*00° ¢ = / d*xd*0XD*X ¢

o Thus all counterterms written using the bac Kgrouncl field (O

must be writable as Fu”—-superspace integra S. )



o The keg Points in the non-renormalization theorems are
the requirement that a”owecJ counterterms be written as

full / d*Mo superspace integrals for the Iinearlg realized

M-extended supersymmety, while integrancls must be
written using a clearlg defined set of basic objects and the
integratecl counterterms also have to satis?g all applicable

gauge sgmmetries ancl must also be loca”g constructed

(i.e. written without such oPerators as O ).

* S0, 1n D=4 N=] supersymmetry, full superspace integrals
like / d*xd*0f(9,0) (or “D terms”) are allowed for clivergence
structures, but chiral integrals like / d*xd*0g(¢) (or “F

terms”) are not.



o The strengtlﬁ of a gi\/en suPersgmmetric non-renormalization

theorem clepends on the extent of inearlg realizable, or

“off-shell” sul:)ersgmmetrg. This is the extent of
suPersgmmetrg for which the algebra can close without use

of the equations of motion.

* Knowing the extent of this off-shell supersymmetry IS trickg,

and may involve formulations (e.g. harmonic suPerSPace)

with infinite numbers of auxiliarg fields.
Galperin, lvanov, Kalitsin, Ogievetskg & Sokatchev

+ For maximal N=4 SuPer Yang—-Mi ls and maximal N=8

suPergravity, the |inearlg realizable supersymmetry has been
known since the 1980’s to be at least half the full
supersymmetry of the theorg.
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° The ‘Cu” extent 01[ at

160:’9’5 supersgmmetrgj even though it

may be non-linear, a

leading counterterms have to be invariant under the original

unrenormalized 5ul:>er59mmetr9 transrcormations.

TS Assuming that 1/2 supersgmmetrg IS linearlg realizable and

so restricts the infinities since the

requiring gauge and supersymmetry invariances, Preclictions

were derived for the first divergent looP orders in maximal

(N=4 & 16 suPercharge) SYM and (N=8 & 32 sc.) SUGRA.:

Howe, K.5.5 & Townsend

Max. SYM first divergencesj

Dimension D

10

8

7

6

D

4

assuming halt susy off-shell

1

(8 supercharges)

Max. SUGRA first clivergences)

assuming halt susy off-shell

Loop order L 1 2 3 4 00
Gen. form O°F* | F* | 9°F* | 9°F* | F* | finite
Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 2 | 3
Gen. form OPRY | O'RY | RY | O*R* | OR* | R* | R*

(16 supercharges)




» When written in terms of the full “on-shell”
supersgmmc:‘crgJ the F* super Yang-—Mi”s and the R*
supergravitg candidates have similar “1/2 BPS

structure”. In their D=4 incarnations, they are
Howe, K.5.5. & Townsend

Kallosh

Algyy = / (d*0d*0)105tr(0") 105 105 0;j [ 6ofsu®

AISG — /(d89d86)232848(w4)232848 232848 Vvijkl H 70 of SU(8)

* However, it now seems that such counterterm analgsis
in terms of BPS clcgree 1S incomplete. The
calculational front has rccentlg Progressecl

remarkably.
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Unitaritg—-—basecl calculations

Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower,

Perelstein, Roiban, Rozowskg et al.

o Within the last decade, there have been signiﬁcant

advances in the comPutation of loop corrections in

quantum field theorg.

+ These Aevelol:)ments include the organization of
amplitudes into a new kind of Perturbation theorg
starting with maximal helicitg Violating ampli‘cudes (MHV)

then next-to-MHV (NMHV), efc.

° Theg also incorPorate a sl:)eciﬁc use of dimensional
regularization togcther with a clever use of unitarit9

cutting rules.
g 11



* Norma”g, one thinks of unitarity relations, such as the
oPtical theorem, as gving information onlg about the
imagjnary parts of amplitudes. However, it one keeps all
orders in an exPansion ne=0D—4 then IOOP integrals

like [d4+9)p rc:c]uire integrancls to have an additional
momentum clepenclcnce f(s) — f(s)s™ /% wheresis a
momentum invariant. Then, since s=¢/2 = 1 — (¢/2)In(s) + . . .

and In(s) = In(|s|) + imO(s), one can learn about the real

Parts of an amp itude bﬂ retaining imaginarg terms at

OFCIC!” € .

o This gives rise to a Proceclure for the cut construction of

higher—-lool:) cliagrams.

12



o Another keg element in the unitarit9~basecl analgsis of

amplitucles is the Browmf:egnman~Passarino~\/eltman

Proceclure For the recluction 01C Feg nman-c iagram

Propagators, replacing numerator factors like 2k p
where p* =0 bg (k+ p)* — k*and then canceling

corresponcli ng denominators.

+ This Proceclure can gielcl a Varictg of irreducible

conﬁgurations in the reduced diagram, inclucling boxes,

triangles and bubbles. K SCX

TS lmPortant simpliﬁca‘cions occur if one can show there are
ultimatelg no bubbles or triangles in the reduced
amplitucﬂe.

b



* A keg link between maximal supergravitg and maximal SYM

s the Kawai- ewe”en»flye (KL relation between open-

and c!osecl-string amplitudes. These gi\/e rise to tree-level
relations between field-theoretic max. SUGRA and max.

SYM ﬁCICLt]’)COFH amplitucles, e.g.

M3™¢(1,2,3,4) = —is12AT(1,2,3,4) AY°¢(1,2, 4, 3)

* Combining this with the unitaritg»-basecl calculations, in

which all aml:)htucles are ultimatelg reduced to integra S

over Products of tree amplitucles, one has a way to obtain
higher—-loop sul:)ergravit9 amplitudes from SYM
amplitucles.
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o Another remarkable asl:)ect of the unitaritg~based

methods is the simpliﬁcation of vertices. The off-s!

hell 5~

graviton vertex has the form (Witl"l about 100 terms)

(—;rE,u-n 3Ty ( kl 3 ke 2 k.?) —

1 1 1
sym| — 5FP3(k1 - kanuanustoy) — 5FPe(kikisnpaney) + 5FPa(ky - ko
+ F 6(-;51 : kQT,}',u.a IF;'I.J“{TT;’;B’}’) + Q-P.'E(klv kl’“y‘ o T?_:’:?J) — -PS(-‘ECI;'J" ‘I(LTQ,LL.T,-I'M.

HNuvTlasT)a~ )

M)

+ RS ( "LCL:T -‘EJQ”}-' HuvTlas ) + B 6 ( k la ke Ly puvTas ) + 2P 6 ( "‘fl % ;{?2‘“_;-' Naputlao )

+ 2P 3(‘If1z.f-‘LCQ,u.'r};'j’JT;"ﬁrﬂ) — QRS(-‘LJI ’ !![S2T,-"ftI.flr:ll_-'ﬁ'{TIr?’fr’,u-)]
° Put’cing this vertex on-shell for tree cliagrams simPI
ik(Nuw (k1 — k2), + cyclic) X (nag(k1 — ko) + cyclic)

fies it to

which isjust the square of the colour~striPPecJ version of

the SYM aml:>|i‘tu<:l<:J
—gfabc(%y(k1 — kg)p + cyclic)
In agreement with KLT.

1



» More remarable still is the fact that on-shell tree

amplitucles can be built entire Yy using §~Point vertices:

contributions from the infinite numbers of highetupoint

vertices all cancel out: jjw M

o Thisis also a reflection of a siml:) fication in SYM, where

the 4~~|:>oint vertex does not contribute to on-shell tree

amplitucle calculations: %X

° Using these on-shell simplﬁca’cions inside general tree

cliagrams rec]uires also a technique of making complex
shifts of external momenta. p(z) =t — z¢* ., pi(z) = p" + 2¢"

2 __ Ly — M 2 _
=0, pqg=0, (p ? (Z )) =0 Britto, Cachazo, Feng & Witten; Baclger, Glover, Khoze & Svrcek
16



* An iml:)ortant clevelopment was the completion of the §~|ool:>

max. su Pergra\/it}j CalCU latiOﬂI Bern, Carrasco, Dixon, Johansson, Kosower & Roiban.

2 3 9 3 2 3
/ /
X\ X
1 4 A 4 A 4
Normal I:eynman (a) (b) ()
Cl/ l l , 2 3 2\ 3
lagram caicu ation 2. 3
/ /
of these would 1 /x X\4 L I
, 1 4 1 4
involve about 1020 (d) (e) 63)
2 3 2. 1, 14 ,3 3
terms KR z 2 /
L/ LY £6+15 Yh A
Ll l7V £4 | l;lov l8 /12“ l§ “ll
1 4 1 4 Y

(g) (h) ()

S Diagrams (a~g} can be evaluated using iterated two~l:>article

cuts, but diagrams (h) & (i) cannot. The result is finite at | =3
n D=4. A surPriSing result is that the finite Parts have an

r~

unexpec‘cecl SIX Powers O momentum that come out onto the

external lines, gving a d°R* leacling effective action correction.
%



Moreover, the 4—~|ool:> calculation has
also now been done (May 2009).

Bern, Carrasco, Dixon, Johansson & Roiban

1<::>If .; 01 3 + 46 more tol:)ologies

I I50

* Result: Mioop _ (g)wstu M S f:c,- 1. is also ultraviolet
Sq4 1=1

finite in D=4 and in 1= (rather unexpected).

+ Additional consequence: two bottles of wine have

been lost in a bet to Zvi Bern.

18



Bern, Carrasco, Dixon,

Current calculation status P

o The development of the unitaritg methods of calculation

have led to surl:)rising cancellations at the A~ and 4-

oop orclers, Hielding the gollowing (minimal)
anticipations for the super Yang»-!\/\i”s and 5uPergravit9

clivergence onsets:

Max. SYM first divergences, Dimension D | 10 | 8 | 7 0 ° !
Ol . N Loop order L | 1 1 2 3 67 00

current lowest possible BPS degree ! ! 1 L 1 L

orders. Gen. form O°F* | F* | O°F* | 0°F* | O°F" | finite

Max. supergravitg ﬁrst Dimension D 11 10 8 7 6 5 4

Cl’ l Loop order L 2 2 1 2 3 67 57
ivergences, current lowest BPS degree 0 0 ! ! ! 0 !

POSSiblC OI"CICFS. Gen. form 812R4 810R4 R4 86R4 86R4 812R4 34R4

19



* Moreover, there is a strange circumstance in maxima
super Yang-Mi”s theorg for | =3 D=6. Althoug]’w the 1/4

BPS tr 9? F* divergence structure occurs as ex[:)ectecl at
the §~|oop order, the 1/4 BPS (tr OF?)(tr OF?) double-

trace structure fails to occur in D=6.

None’tlﬁelessJ both the single~trace and double-trace

structures do show up as exl:)ectecl in the | =2, D=/
theorg.

+ This appears to be an echo of the situation in max.

supergravity, where the 1/8 BPS 8% R* counterterm

occurs in D=6, |.=3, but does not occur in D=5 1.=4.

20



Dixon; Howe, Lindstrom & White;

Al gebraic Renormalization Pigyict & Sorella; Hennaus

) ) Stora; Baulieu ,& Bossard
° Another aPProach to analgzmg the cllvergences n

supersymmetric gauge theories, using the full
supersymmetry, begins with the Ca”an~59manzi|<

equation for the renormalization of the Lagrangian when

considered as an operator insertion, governing, e.g.,
mixing with the half~-BPS operator sW = tr(F 4). | etting
the classical action be ¥ , the C-Z equation in dimension

0
Dis py- S@) T = (4—D)[SP -T] 4+ 44 g>"@[SW . T] + - --

where ny =4, 2, 1 for D=5, 6, 8

D)

¢ [rom this, one learns that (n(a) — 1)B) = 74 so the beta

function for the SW = tr(F*) operator is determined by

the anomalous dimension 7@ .



* Combining the supersymmetry generator with a commuting
spinor Parameter to make a scalar ol:)erator Q =¢€0, the
exl:)ression of SUSY invariance for a D-form densitg in D~
dimensions is QLp+dLp_1=0. Combining this with the
SUSY algebra Q? = —i(&y'e)d, and using, the Poincaré
| emma, one finds Lieye) Lo +S(QzLlp-1+dLp >, =0.

* Hence, one can consider cocycles of the extended
nilpotent ditferential d + S Q)= T lizre) acting on formal
form-sums Ip+Lp1+Lpr+---.

o The suPersymmetrg Ward identities then imply that the
whole cocycle must be renormalized in a coherent way. In

order for an oPerator ke S@ to mix with the classical

action § (2), their cocycles need to have the same structure.



Ectoplasm

Gates, Grisaru, Knut-Whelau, & Siegel
Berkovits and Howe
E)ossard, Howe & KSS

o The construction of supersgmmetric invariants 1s

isomorphic to the construction of cohomologica”g

nontrivial closed forms in superspace:

I = [, o"Lpisinvariant (where o*is a Pu||~bac|< to the

“boclg” subspace My

Vit Lpis a closed form in

superspace, and is nonvanishing it £ is nontrivial.

o Revisit the BRST formalism, but now include all gauge

sgmmctries (in Partic

cﬂigeomorl:)hisms) N

ular inclu&ing sPatial

he nilpotent BRST oPerator 5. The

invariance condition -

Cor LpissLp +doLp_1 =0 where dg

is the usual bosonic exterior derivative. Since s2 = 0 and s

anticommutes with do

,one obtains sLp_1 +doLp_2=0.



* Sothe colﬁomological Problem reappears in BRST guise,
but with the commuting spinor 3 rcPIacecl bﬂ the
commuting suPerSHmme‘crg ghost. One needs to stuclg
the cohomologg of the nilpotent oPerator 0 =s+d,

whose cochains Lp_q 4 are (D-g) forms with ghost

number q, i.e.(D-q) forms with q spinor indices. The spinor
indices are tota”g symmetric since the supersymmetry

ghost 1S commuting.

* For gauge-invariant supersgmmetric integrancis, this
establishes an isomorphism between the cohomology of
closed forms in superspace (a|<a “ectoplasm”) and the

constuction of BRST invariant counterterms.
24



SU PC 'S Pa ce Colqorwlologﬂ Bonora, Pasti & Tonin

o Flat superspace has a stanclard basis of invariant 1-forms
B — dgo— %d@a(ra)aﬁeﬁ

EY = do°
dual to which are the superspace covariant derivatives (Oa, Dy)

o There is a natural bi—-gracling of superspace forms into even

and odd Parts: Q" = Dpeppg QAP

* Corresponclinglg, the flat superspace exterior derivative

sPlits into three parts with bi»-—graclings (1,0), (O,1) & (~1,2):
d = d()(l, O) + dy (0, 1) + to(—l, 2)

bosonic der. fermionicder.  torsion
d() e 8M dl — Da
where for a (P,q) form in flat superspace, one has

(tow)QQ...apﬁl...qurQ ~ (Fal)(5152wa1...ap53...5q+2)
25



o The nilpotcnce of the total exterior derivative d imPlies the

relations
te = 0
t()dl T Cllto = 0
di + todo + dotg = 0

o Then, sincedLp = 0, the lowest dimension non\/anisl’)ing

cochain (or ‘generator”) Lp—q,q must satis% toLp—gq =0,

sOLp_q.q belongs to the t cohomologg group HtD_q’q.

* Starting with the to cohomologg groups H;™%, one then

defines a sl:)inorial exterior derivative d; : HP? — gPat!

139 ds|w] = [diw], where the [ 1] brackets denote H; classes.

26



Cederwall, Gran, Nilsson & Tsimpis
Howe & TsimPis

» One finds that d,is nilpotent, d2 =0, and so one can

define spinorial cohomologg groups Hr4 = Hy (HP7) -

The groups H4 gjve multi pure spinors.
o This formalism gives a way to reformulate the algebraic
renormalization cohomologg in terms of spinorial
cohomologg. The lowest dimension cochain, or

generator, of a counterterm’s suPerForm will be ds closed,

i.e. it must be an element of HP~94,

* Solving ds|/Lp—g.q] =0 then allows one to solve for all

the higher components of Lpintermsof Lp_q.q.

27



Berkovits & Howe
o To see how this formalism works, consider N=1

suPersgmmetrg in D=10. Corresponding to the K
sgmmetries of strings and §~branes, we have the D=10

Gamma matrix identities tol'12 =0 tol'52=0 .

° The seconcl cnc these IS rele\/ant to the construction og

d»-closecl Forms in D=10. One may have a generator
Lss =152Mjs

where ds[Mys] =0 . The simplest example of such a

form corresponcls to a full superspace integral over S:
Magy = 046%51---55(1911)51.“555
where T 0 B~.51-+-55 15 constructed from the D=10 Gamma

matrices; it 1s tota”g symmetric in afy and tota“g

antisgmmetric in 0105,



o One finds that the lowest dimension cochain in the D=10

SYM Lagrangian cocgcle also has structure

. .o 1
Ls55=152Q03, ie. itis of the same structure as that for

the Fu” superspace integra counterterm.

* Consequentlg, full superspace integral cocgcles have

the same structure as that of the SYM f._.agrangian

cocgcle ancl thus are not subject to a nonrenormalization

theorem.

29



‘.Examples of oPerators that are ruled out ]39 the
cc:olalasm/ algebraic renormalization analysis include

half-BPS counterterms such as the tr(F4) or (1:]['(],’72))2

SYM counterterms. In D dimensions, the generator

component of such a1/2 BPS cocgcle s an (O,D)
form of dimension 8-D/2. Since the structure of this
cocgcle is ditferent (i.e. itis longer) from than that of
the SYM Lagrangian) the corresponcling 1/2 BPS

counterterm is illegal.
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Double-trace SYM non-renormalization
» Similar analgsis of the D=7 tr(0F?)tr(9F?) L=2 double-

trace candidate shows that its lowest cocycle components

(~ ,
-exact terms, consistent

with the D=7 s5U(2) R-symmetry, thus |eavinga (2,5)

lowest dimension form like that of the classical

may be removed bg the addition o

|Lagrangjan. Thus, this structure is not Protectecl.

Bossard, Howe & K.5.5

o In D=6, however, the situation is different. The R-
symmetry is now SU (2)xSU2) and one finds that there is

1no trivial term that can be added to shorten the D=6
double-trace cocgcle so as to agree with the D=6
Lagrangian cocyc!e structure. Thus) the double-trace | =%

counterterm is ruled out in D=6. 5



Current outlook

* A gebraic renormalization / ed:ol:)lasm analgsis explains

all of the current calculational results in max. SYM
theorg. Thus, there is so far no evidence for
“miraculous” SYM cancellations which are not

understandable Purelg within orclinarg field theorg.

* The suPergravitg cases remain to be clarified. Provicling
the D=6, | =3 vs D=5, | =4 max. supergravity cases work
similarlg to SYM, the current SG calculational results may

also be understood Purelg within field theorg.
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