Gravity = Gauge Theory

Kirill Krasnov



What this talk is NOT about

~
- y
N 4
N Wy
\ 4
Z

Gravity = (G Al Theory)"2

D) =
~

Even though many relations to that story as well



Main message:

. . . . . A # () KK PRL106:251103,2011
General Relativity (in 4 dimensions) 7
results on zero scalar

can be reformulated as an SU(2) . ,
. curvature in early 90’s
gauge theory (Of a certain t)’PE) Capovilla, Dell, Jacobson

Why should one be interested in any reformulations?

There are many. Have not helped. The quantum gravity

¢ problem (non-renormalizability) is
still open. And still best understood

Tetrad (first order) formulation
in the original metric formulation

Plebanski (Ashtekar) self-dual formulation

Mac Dowell-Mansouri SO(2,3) gauge theoretic formulation

Some exceptional things happen in the new formulation!



The gauge-theoretic formulation

® Simpler than the metric-based GR

perturbative calculations (scattering amplitudes) are easier in this formulation

conformal mode does not propagate even off-shell

® Suggests generalizations that are impossible
to imagine in the usual formulation

GR is not the only theory of interacting massless spin 2 particles!

Suggests new (speculative at the moment) ideas as to what
may be happening with gravity at very high energies



General Relativit
4 Juv - spacetime metric

Senlg| = 16;61 /(R—QA)

Beautiful geometric theory
that physicists study for
already about a century!

R v ™ g 1%
0 0
Very “I’igid” theOl’)’! An)’ Several GR uniqueness
modification messes it up theorems

GR is the unique theory of interacting massless spin 2 particles

spin two field - h,uu



But things also do get ugly Expansion around an arbitrary background g,u,z/

quadratic order (together with the gauge-fixing term)
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quartic order
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Imagine having to do
calculations with these
interaction vertices!

1
- -l—lghﬂﬂh.,,,h"‘h,,, ~ Eh"'nh’"h.,;h‘,)}



Last 5-6 years: have learnt that computing Feynman
diagrams is the wrong approach to the problem BCFW recursion

relation

In 1963 | gave [Walter G. Wesley] a student of mine the problem of computing the cross section for a
graviton-graviton scattering in tree approximation, for his Ph.D. thesis. The relevant diagrams are

XX

Given the fact that the vertex function in diagram 1 contains over 175 terms and that the vertex functions
in the remaining diagrams each contain 11 terms, leading to over 500 terms in all, you can see that this
was not a trivial calculation, in the days before computers with algebraic manipulation capacities were
available. And yet the final results were ridiculously simple. The cross section for scattering in the
center-of-mass frame, of gravitons having opposite helicities, is

From: Bryce DeWitt

do /dS2 = AG? E? cost? %(9/ sin® %Q arXiv:0805.2935.
Quantum Gravity,

Yesterday and Today
where G is the gravity constant and E is the energy.

Using BCFW technology, this calculation becomes a simple homework exercise

However, having an off-shell formulation that explains this magic would be very
important - non-perturbative statements then possible



Diffeomorphism invariant gauge theories

¢ - Lie algebra of G
Let f be a function on g ®s g f: X = R(C) defining

o function
satisfying X € g®s g

|) f(CMX) — CMf(X) homogeneous degree |
2) f(ngT) _ f(X)’ Vg c G gauge-invariant
Then f(F A F) is awell-defined 4-form (gauge-invariant)

Can define a gauge and F=dA+(1/2)[A, A
diffeomorphism invariant action |

‘ . no dimensionful
;'; S[A] — 1/M f(F A F) coupling constants!



Field equations: daB =0

of Second-order
where B = 8_XF and X = F A F (non-linear) PDE’s

compare Yang-Mills equations: daB =0

where B =*F * _ encodes the metric

Dynamically non-trivial theory with 2n-4 propagating DOF

. ftop — TI(F /\ F)
Gauge symmetries:

0pA = dag gauge rotations

0¢A = 1 F diffeomorphisms



The simplest non- G=SU(2) - gravity
trivial theory: (interacting massless
spin 2 particles)

for any choice of f()
specific f() - GR

A0

related to Plebanski self-dual
formulation of GR

(only) on-shell equivalent description:

connection satisfying
the resulting Euler- =
Lagrange equations

Einstein metric (of non-
zero scalar curvature)



On-shell equivalent description of gravitons

Why only on-shell equivalent:

(Euclidean) EH functional is not convex
(conformal mode problem)

Description of GR without the
conformal mode problem!

The new action (its Euclidean version) is a
convex functional

Have a different functional with the same critical points

The key to the simplicity of the new formulation is that
the conformal mode is absent even off-shell



Perturbation theory

Background: background connection At — a(.n) dr’ 1 - time
1
. a 1 F'=dA" + (1/2)€* A7 A AF
F' = —q* (i—zdn A dx’ + §€ijd$3 A d:z:k) (1/2)
a
/ 1 . .
reparameterize time a_dn —dt = at)= to - Integration
a2 to — t constant
introduce scale M and - (1) !
c(t) =
introduce scale M and a constant curvature metric Mty — 1)
d2:2t(—dt2 dz’2)
i c ( ) * Z( * ) ‘t Hooft symbols M2 — A/3

de Sitter metric in flat slicing

1
c*(t) (idt A dx’ ie”kd:vj A dazk)

-
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Background curvature self-dual two-forms




Perturbative expansion:
XY ~ F" A\ F?
of
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Convenient to define X% —=

whose evaluation on the background XU 2§

The action takes the form

S[A] = —2M* / Vg f(X



Rescaled perturbations:

. 1 . .
SXU = — WE(”“/DM(SA,{),
A e e 1 . . 1 . .
62XV = eI Dy A, DS AL — RIS ALG AL,
1
. 3 o
3vyi] ~ vpo 1 1)kl ¢ Ak s Al
69XV = 7Dy S AT AS A,
51X =0

Can now compute the expansion of the action to any order

Remark: Ty (52X ) - total derivative



Linearization: Independent of the defining function

Y .
after a rescaling to give canonical normalization a, 514“ simplest known

Lagrangian for massless
1 spin 2 in de Sitter space

£®) = - P (£ D,a}) (847 Dyay)

e, fOr any
choice of f()

where P’ijlkl _ 5’i(k5l)j o 15733'5]{[
3 M-independent
projector on spin 2 in V1 @ V!

The flat limit is easy to take D — O

Simple Hamiltonian analysis = two propagating graviton
polarizations



Spinorial description: TM =5,®5_

u— AA

using GR notations for spinors the Lie algebra index ¢ —> (AB)
al, — aan”C €5,05_ ®857 =515 ®S; 05
ABC ST -E-'-~~~~
a/f4/ ) :" AA'E A ,

£(2) N (61(41?GJBCD)A’) (diffeomorphisms) part

. only depends on the

o 3 BC
: : a
dlm(Si & S_) — & (per point) S_|_ &) S_ part of aaa’

explicitly positive-definite (Euclidean signature) functional



Comparison with the metric description:

1 1 y
r2) _ _5@%)2 + 5(aMh)Q + (0"hy)? + hot0" hy,

conformal mode

/o h = h*
“wrong” sign ,

h,lu/ — hAA/BB’ - S—2|- ® S% @ (tI‘lVlal)

dim(huy) = 10 (perpoint) —4 — 4 — 2  propagating DOF

diffeomorphisms

In the gauge theory
description a smaller space 8 — 3 —3 — 2 propagating DOF
of fields to start with! SU(2) gauge rotations



Comparison with Yang-Mills:

can rewrite the Lagrangian as (gauge indices suppressed)

1
Ly = 492 (F,L—LI_V)Q - self-dual part of the curvature
Spinorial description: TM =5.®5_
u— AA’
Aaa ES_|_®5_ spin |

quadratic order (not gauge-fixed)

L3 ~ (05 ABIA)?

our linearized graviton Lagrangian is just 3 |
the generalization to the case AABCA' = S—I— R S5 spin 2



Gauge-fixing:

gauge-fixing condition invariant under shifts o (P(3/2’1/2)AZ) =0

. . /
in spinor terms (8@)30 = 8;2, aﬁCA —( where aﬁ?c - Si QR S_

gauge-fixed Lagrangian - functional on COO(Si ®S_) Analog of Feynman
gauge inYM
(2) (2) (A BCD)A’ 2,3 AB)?2 1 A’ 02 ABC
L _I_Lgf — (6 ) + Z ((6’&) ) — —§CLABC 0“a A
Thus, the propagator N e (e pBey,Clep, M
A(k’)E‘FM D! — k2
ABC l EFM only the (3/2,1/2)

D Wi 1.2 component propagates



Interactions: Case of GR A2 -
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significantly more complicated

complete off-shell cubic vertex o .
expression in the metric case

zero on-shell e
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the only part that is relevant for MHV graphical notation for the 3-derivative vertex

where the spinor contraction notations are

(aa)ABCD _ a(AM/a/B)CDM"
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Spinor helicity states

5+(k)ABCD/ p— 1 kAkBkch/ g (k)ABCD/ — MQAQBQCkD/
M [kp] (kq)?

here, as usual p“, ¢ are arbitrary spinors not aligned with &

and  |kp| := kA/pA/, (kp) := k“pa  are spinor products

To take the M — () limit

need to make the (positive helicity) external momenta slightly massive

A A
]{?AA/ :kAkA/ | qu q

| so that k‘AA/k ) = —2M?
(kq) k4] A




Relation to the metric description both valid on-

shell only
hABA’B’ ~ i(aa)ABA’B’ aABC’A’ N ia(AhBC)A/B’
M M B’
2 __ 2
both are trueon k° = 2M
then our helicity states are just images of the usual metric states
3-vertex in the metric language square of the
YM vertex

]_ / / / /
L(B) ~/ ﬁ (ngagthD)A B ) hM N ABhM’N’CD
p

calculations done with the usual metric helicity states and the above vertex give the same amplitudes

Compare with the Yang-Mills vertex in the form
gauge indices
suppressed

(Fsa)® ~ (82%3)14') a™ qanip+ ...



Summary of perturbation theory:

® Using Si ® S_ instead of Si ® S?
to describe spin 2 gravitons

® Much easier way the diffeomorphisms are realized -
the corresponding field components can be

projected out from the outset

® Much simpler linearized action, e.g. off-shell 4-vertex contains

. . . . ' only 7 terms, as compared to a
much simpler interaction vertices! vage in the metric-based case

® Formulation in which the off-shell 3-vertex
is (basically) (YM vertex)"2

as close to the explanation
Gravity=(YM)”2 as one can currently get



Deformations of GR

All other choices of f() lead to can be shown to correspond to the
different (from GR) interacting agrangtan with an Infinite set o
: . . counterterms added
theories of massless spin 2 particles

seemingly impossible due to the GR uniqueness, but specific
(sometimes innocuous) assumptions that go into each version of
the uniqueness theorems are explicitly violated here

Not a dynamical theory of Guv

(in its second-order formulation)

A generic theory is not parity invariant!

Modified gravity theories with 2 propagating DOF - a very
interesting object of study



In GR only parity-preserving processes:
\ + +i \ 1 -j \ 7 'i
+ + T - -

, 1 s° E\°
amplitude A ~ M2t ~ <ﬁp>

becomes larger than unity at Planck
energies, cannot trust perturbation theory



In a general theory from our family parity-violating
processes become allowed:

84 + t4 + U,4
M8

AN

stu <E>6
AN—GN _—
e~ \ M,

A general theory likes negative helicity gravitons!

Can speculate that at high energies these processes will dominate and all gravitons will get
converted into negative helicity ones (strongly coupled by the parity-preserving processes)



Quantum Theory Hopes

Remark: no dimensionful coupling constants
in any of these gravitational theories

Non-renormalizable in the usual sense

Hope: the class of theories - all possible f() - is large enough
to be closed under renormalization

Of(F A F)
0 log 1

= Br(F'AF)

l.e. physics at higher energies continues to be
described by theories from the same family



The speculative RG flow

strongly coupled negative helicity gravitons at high energies
= no propagating DOF ! = topological theory !

fiop(F' A F) = Tr(F A F) necessarily a fixed point
of the RG flow

corresponds to a topological theory
(no propagating DOF)

ftop

JGRr * Planck scale



Summary:

® Dynamically non-trivial diffeomorphism invariant gauge theories
® The simplest non-trivial such theory G=SU(2) - gravity

® GR can be described in this language (on-shell equivalent only)
= possibly different quantum theory

® Computationally efficient alternative to the usual description
(no propagating conformal mode even off-shell)

® Different from GR (parity-violating)
theories of interacting massless spin 2 particles

® |f this class of theories is closed under renormalization

understanding of the gravitational RG flow

—
description of the Planck scale physics



Open problems

Chiral, thus complex description. Unitarity?
Coupling to matter?

Enlarging the gauge group - rather general types of
matter coupled to gravity can be obtained. Fermions!?

Closedness under renormalization?

Are these just some effective field theory models,
or they are UV complete as Yang-Mills?



