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What this talk is NOT about

Gravity = (Gauge Theory)^2

Even though many relations to that story as well

string-theory inspired 
KLT relations



General Relativity (in 4 dimensions) 
can be reformulated as an SU(2) 
gauge theory (of a certain type)

results on zero scalar 
curvature in early 90’s

KK  PRL106:251103,2011

Main message:

Why should one be interested in any reformulations?

There are many:

Tetrad (first order) formulation 

Plebanski (Ashtekar) self-dual formulation

Mac Dowell-Mansouri SO(2,3) gauge theoretic formulation

...

Have not helped. The quantum gravity 
problem (non-renormalizability) is 

still open.  And still best understood 
in the original metric formulation

Some exceptional things happen in the new formulation!

Capovilla, Dell, Jacobson

Λ != 0



Simpler than the metric-based GR

The gauge-theoretic formulation

perturbative calculations (scattering amplitudes) are easier in this formulation

Suggests generalizations that are impossible 
to imagine in the usual formulation 

GR is not the only theory of interacting massless spin 2 particles!

Suggests new (speculative at the moment) ideas as to what 
may be happening with gravity at very high energies

conformal mode does not propagate even off-shell



gµν - spacetime metric

SEH[g] = − 1
16πG

∫
(R− 2Λ)

Rµν ∼ gµν

General Relativity

Beautiful geometric theory 
that physicists study for 
already about a century! 

Very “rigid” theory! Any 
modification messes it up

Several GR uniqueness 
theorems

GR is the unique theory of interacting massless spin 2 particles

hµνspin two field - 



But things also do get ugly... Expansion around an arbitrary background gµν

quadratic order (together with the gauge-fixing term)

cubic order
from Goroff-Sagnotti 

“2-loop” paper



quartic order

Imagine having to do 
calculations with these 
interaction vertices!



Last 5-6 years: have learnt that computing Feynman 
diagrams is the wrong approach to the problem BCFW recursion 

relation
In 1963 I gave [Walter G. Wesley] a student of mine the problem of computing the cross section for a 
graviton-graviton scattering in tree approximation, for his Ph.D. thesis. The relevant diagrams are 
these: 

In 1963 I gave [Walter G. Wesley] a student of mine the problem of computing the cross section for a

graviton-graviton scattering in tree approximation, for his Ph.D. thesis [28]. The relevant diagrams are

these:

Given the fact that the vertex function in diagram 1 contains over 175 terms and that the vertex functions

in the remaining diagrams each contain 11 terms, leading to over 500 terms in all, you can see that this

was not a trivial calculation, in the days before computers with algebraic manipulation capacities were

available. And yet the final results were ridiculously simple. The cross section for scattering in the

center-of-mass frame, of gravitons having opposite helicities, is

dσ/dΩ = 4G2E2 cos12 1
2θ/ sin4 1

2θ

where G is the gravity constant and E is the energy [28].

In string theory there is only one diagram, namely

and its contribution to the graviton-graviton amplitude is relatively easy to compute, giving the same

result as that obtained by my student.

The other “pretty” feature of string theory concerns the topological transitions. In conventional quan-

tum gravity topological transitions are impossible. I say this despite occasional efforts that have been

made in the past to sum “amplitudes” for different spacetime topologies in “Euclidean quantum gravity,”
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where G is the gravity constant and E is the energy.

From: Bryce DeWitt

Quantum Gravity, 
Yesterday and Today

arXiv:0805.2935

Using BCFW technology, this calculation becomes a simple homework exercise

However, having an off-shell formulation that explains this magic would be very 
important - non-perturbative statements then possible



Let f be a function on 

satisfying

f(αX) = αf(X) homogeneous degree 1

gauge-invariant

1)

2)

Then

Diffeomorphism invariant gauge theories

f(F ∧ F ) is a well-defined 4-form (gauge-invariant)

Can define a gauge and 
diffeomorphism invariant action

g⊗S g
f : X → R(C)
g - Lie algebra of G

f(gXgT ) = f(X), ∀g ∈ G

X ∈ g⊗S g

no dimensionful 
coupling constants!S[A] = i

∫

M
f(F ∧ F )

defining 
function

F = dA + (1/2)[A, A]



Field equations: dAB = 0

B =
∂f

∂X
Fwhere X = F ∧ Fand

compare Yang-Mills equations:

* - encodes the metric

dAB = 0

B = ∗Fwhere

Second-order 
(non-linear) PDE’s

Dynamically non-trivial theory with 2n-4 propagating DOF

Gauge symmetries:

δφA = dAφ

δξA = ιξF

gauge rotations

diffeomorphisms

apart from the single point ftop = Tr(F ∧ F )



Λ != 0

(only) on-shell equivalent description:

connection satisfying 
the resulting Euler-
Lagrange equations

⇒ Einstein metric (of non-
zero scalar curvature)

SGR[A] =
i

16πGΛ

∫

M

(
Tr
√

F ∧ F
)2

related to Plebanski self-dual 
formulation of GR

The simplest non-
trivial theory: (interacting massless 

spin 2 particles)

G=SU(2)  -  gravity
for any choice of f()

specific f() - GR



On-shell equivalent description of gravitons

Why only on-shell equivalent:

(Euclidean) EH functional is not convex 
(conformal mode problem)

The new action (its Euclidean version) is a 
convex functional

Have a different functional with the same critical points

Description of GR without the 
conformal mode problem!

The key to the simplicity of the new formulation is that 
the conformal mode is absent even off-shell



Background: Ai =
a(η)

i
dxibackground connection

F i = dAi + (1/2)εijkAj ∧Ak

F i = −a2

(
i
a′

a2
dη ∧ dxi +

1
2
εijkdxj ∧ dxk

)

η - time

reparameterize time
a′

a2
dη := dt ⇒ a(t) =

1
t0 − t

t0 - integration 
constant

introduce scale M and a constant curvature metric c(t) :=
1

M(t0 − t)

F i = −M2Σi

ds2 = c2(t)
(
−dt2 +

∑
(dxi)2

)

de Sitter metric in flat slicing

‘t Hooft symbols

Σi = c2(t)
(

idt ∧ dxi +
1
2
εijkdxj ∧ dxk

)

Background curvature self-dual two-forms

M2 = Λ/3

Perturbation theory



δS =
∫

∂f

∂Xij
δXij

Perturbative expansion:

δ2S =
∫

∂2f

∂Xij∂Xkl
δXijδXkl +

∂f

∂Xij
δ2Xij

δ3S =
∫

∂3f

∂Xij∂Xkl∂Xmn
δXijδXklδXmn + 3

∂2f

∂Xij∂Xkl
δ2XijδXkl +

∂f

∂Xij
δ3Xij

Xij ∼ F i ∧ F j

Convenient to define X̂ij =
1

8iM4
εµνρσF i

µνF j
ρσ

whose evaluation on the background X̂ij=̂δij

S[A] = −2M4

∫ √
−g f(X̂)

The action takes the form



2.3 Variations

We start by computing the variations of X̂, as a function of the connection, evaluated at the background
X̂ij =̂ δij . We have:

δX̂ij =̂ − 1
M2

Σ(iµνDµδAj)
ν , (20)

δ2X̂ij =̂
1

iM4
εµνρσDµδAi

νDρδA
j
σ −

1
M2

Σ(iµνεj)klδAk
µδAl

ν ,

δ3X̂ij =̂
3

iM4
εµνρσDµδA(i

ν εj)klδAk
ρδA

l
σ.

Finally, the fourth variation is zero δ4X̂ij = 0 even away from the background. In all expressions
above Dµ is the covariant derivative with respect to the background connection. Thus, it is important
to keep in mind that D’s do not commute:

2D[µDν]V
i = εijkF j

µνV
k, (21)

for an arbitrary Lie algebra valued function V i. Here F i
µν is the background curvature (13). Thus,

the commutator (21) is of the order M2. This has to be kept in mind when (in the limit M → 0)
replacing the covariant derivatives D with the usual partial derivatives.

The variations of the action (19) are now quite easily obtained by defining Y =
√

X̂, and writing

S[A] =
2
3
M2

p M2
∫

(TrY )2 , (22)

where we have dropped the integration measure d4x(σ) for brevity. The variations are then easily
obtained:

δS[A] =
2
3
M2

p M2
∫

2 Tr (Y ) Tr (δY ) , (23)

δ2S =
2
3
M2

p M2
∫

2
[

Tr (δY ) Tr (δY ) + Tr (Y ) Tr
(
δ2Y

)]
, (24)

δ3S =
2
3
M2

p M2
∫

2
[
3 Tr (δY ) Tr

(
δ2Y

)
+ Tr (Y ) Tr

(
δ3Y

)]
, (25)

δ4S =
2
3
M2

p M2
∫

2
[
3Tr

(
δ2Y

)
Tr

(
δ2Y

)
+ 4Tr (δY ) Tr

(
δ3Y

)
+ Tr (Y ) Tr

(
δ4Y

)]
. (26)

It thus remains to obtain a relation between the variations of Y and those of X̂. This is easily
done by varying the relation Y 2 = X̂ (any required number of times), and then solving the resulting
equations for δkY . We only need these variations on the background, where we have Y ij=̂δij . This
procedure gives:

δY =̂
1
2
δX̂, (27)

δ2Y =̂
1
2
δ2X̂ − δY δY =

1
2

(
δ2X̂ − 1

2
δX̂δX̂

)
, (28)

δ3Y =
1
2
δ3X̂ − 3

2
δY δ2Y − 3

2
δ2Y δY =

1
2
δ3X̂ − 3

8

(
δ2X̂δX̂ + δX̂δ2X̂ − δX̂δX̂δX̂

)
, (29)

δ4Y = −2δY δ3Y − 2δ3Y δY − 6δ2Y δ2Y. (30)

An alternative way to write these formulas is as follows. We introduce the function f(X̂) =

Tr
(√

X̂
)2

, as well as its derivatives

f (n)
ijkl... =

∂nf

∂X̂ij∂X̂kl...

∣∣∣∣
δ

5

Rescaled perturbations:

δ4X̂ij = 0

Can now compute the expansion of the action to any order

Remark: Tr
(
δ2X̂

)
- total derivative



for any 
choice of f()

M-independent
P ij|kl = δi(kδl)j − 1

3
δijδklwhere

projector on spin 2 in V 1 ⊗ V 1

Linearization: Independent of the defining function

L(2) = −1
2
P ij|kl

(
Σi µνDµaj

ν

) (
Σk ρσDρa

l
σ

)

after a rescaling to give canonical normalization ai
µ ∼ δAi

µ

The flat limit is easy to take D → ∂

Simple Hamiltonian analysis ⇒ two propagating graviton 
polarizations

simplest known 
Lagrangian for massless 
spin 2 in de Sitter space



Spinorial description:

µ→ AA′
TM = S+ ⊗ S−

the Lie algebra index i→ (AB)

ai
µ → aAA′

BC ∈ S+ ⊗ S− ⊗ S2
+ = S3

+ ⊗ S− ⊕ S+ ⊗ S−

a(ABC)
A′ aA′E

E
A

only depends on the 
S3

+ ⊗ S− part of aAA′
BC

pure gauge 
(diffeomorphisms) part

dim(S3
+ ⊗ S−) = 8 (per point)

explicitly positive-definite (Euclidean signature) functional

L(2) ∼
(
∂(A

A′ aBCD)A′
)2

using GR notations for spinors



Comparison with the metric description:

L(2) = −1
2
(∂µhρσ)2 +

1
2
(∂µh)2 + (∂µhµν)2 + h∂µ∂νhµν

h = hµ
µ“wrong” sign 

hµν → hAA′BB′ ∈ S2
+ ⊗ S2

− ⊕ (trivial)

dim(hµν) = 10 (per point)

diffeomorphisms

−4− 4→ 2 propagating DOF

In the gauge theory 
description a smaller space 

of fields to start with!
8− 3− 3→ 2 propagating DOF

SU(2) gauge rotations 

conformal mode



Comparison with Yang-Mills:

Spinorial description:
µ→ AA′

TM = S+ ⊗ S−

(gauge indices suppressed)

L2
YM ∼ (∂(A

A′ AB)A′
)2

quadratic order (not gauge-fixed)

F+

can rewrite the Lagrangian as

- self-dual part of the curvatureLYM = − 1
4g2

(F+
µν)2

our linearized graviton Lagrangian is just 
the generalization to the case 

AAA′ ∈ S+ ⊗ S−

AABCA′ ∈ S3
+ ⊗ S− spin 2

spin 1



Gauge-fixing:

gauge-fixing condition invariant under shifts ∂µ
(
P (3/2,1/2)Ai

µ

)
= 0

(∂a)BC ≡ ∂A
A′aBCA′

A = 0in spinor terms where aABC
A′ ∈ S3

+ ⊗ S−

gauge-fixed Lagrangian - functional on

L(2) + L(2)
gf =

(
∂(A

A′ aBCD)A′
)2

+
3
4

(
(∂a)AB

)2
= −1

2
aABC

A′
∂2aABC

A′

5.2 Feynman rules for MHV

For MHV computations the only contributing term in the Lagrangian is the first (anti self-dual) term

L(3) =
2

MMp
(∂a)ABCD(∂a)M ′N ′

AB(∂a)M ′N ′CD.

The corresponding vertex reads

V (α,β, γ)EFM
M ′GHN

N ′ABC
D′ =

2
iMMp

(kα + kβ)E
D′kM

α N ′kN
β M ′εAF εBGεCH

The propagator is

∆(k)EFM
M ′ABC

D′ =
εE

(AεF
BεM

C)εD′M
′

k2

6 Polarization spinors

In our description the main dynamical field is a (complex) SO(3) connection, which in [1], [2] has been
denoted by Ai

µ, where µ is the spacetime index, and i = 1, 2, 3 is the Lie algebra one. As is common
to any modern derivation of the scattering amplitudes, the formalism of helicity states turns out to
be extremely convenient. These are most efficiently described using spinors, or, as some literature
calls them, twistors. The recent wave of interest to the spinor helicity methods originates in [8]. The
method itself is, however, at least twenty years older [9], [10]. For a concise review of the method
the reader can refer to e.g. [11]. For more details see [8] and references therein. To give a spinor
description of the helicity states for Ai

µ we need to fix our spinor notations.

6.1 Spinors

We use relativist’s spinor notations, see [12]. In this framework an important role is played by the
soldering form θAA′

µ , which is an object that maps vectors to rank two mixed spinors. The spinor
”metrics” εAB, εA′B′ then give rise to a metric gAA′BB′ = εABεA′B′ on the space of rank two mixed
spinors, and this pulled back with θAA′

µ gives the metric gµν (modulo a signature dependant sign). We
use the signature (−,+,+,+) best suited for the Wick rotation to the Euclidean signature. With our
conventions the soldering form is hermitian (θAA′

µ )∗ = θAA′
µ , which then requires a minus sign in the

relation between the metric and the soldering form squared:

gµν = −θAA′
µ θBB′

ν εABεA′B′ . (65)

Using the soldering form θAA′
µ any spacetime index can be replaced by a pair of spinor indices (one

primed one unprimed). It is also possible to replace the Lie algebra index i in Ai
µ by spinor indices.

In the spinor notation the connection Ai
µ reads AAB

µ , where the pair AB is symmetric. It turns out
to be very convenient to write the helicity vectors/tensors in this completely spinorial notation, and
we shall do so here as well.

6.2 Background

The discussion above assumed that a spacetime metric (or the soldering form) exists, and so can be
used for the identification of the spacetime and spinor indices. However, the main dynamical field of
our theory is a connection, and there is no metric to start with. The later arises as follows. Let us
first start with a metric background and build a certain connection corresponding to this background.
We can then forget about the original metric and use the obtained connection as our background

11

Thus, the propagator

ABC
D′ M ′

EFM
1
k2

only the (3/2,1/2) 
component propagates

C∞(S3
+ ⊗ S−) Analog of Feynman 

gauge in YM



SGR[A] = −
2M2

p M2

3

∫

M

√
−g

(
Tr

√
X̂

)2

M2
p :=

1
16πG

Interactions: Case of GR

complete off-shell cubic vertex significantly more complicated 
expression in the metric case 

where the spinor contraction notations are

4 Interactions

The cubic interaction vertex is obtained from the third order terms in the expansion of the action.
We introduce some notation to simplify the tensorial structure

(Σ∂a)ij = Σiµν∂µaj
ν , (εaa)i

µν = εijkaj
µak

ν , (ε∂a∂a)ij = εµνρσ∂µai
ν∂ρa

j
σ. (60)

Then

S(3) =
1

MpM

∫
d4x

[
1
4

(
δi(kδl)(mδn)j −

1
3
δijδk(mδn)l

)
(Σ∂a)ij(Σ∂a)kl(Σ∂a)mn (61)

−1
2

(
δi(kδl)j −

1
3
δijδkl

)
1
i
(Σ∂a)ij(ε∂a∂a)kl

−M2

2

(
δi(kδl)j −

1
3
δijδkl

)
(Σ∂a)ijΣkµν(εaa)l

µν +
M2

i
εµνρσ∂µai

ν(εaa)i
µν

]
.

The interesting part from this point of view?
Fourth order terms...

5 Feynman rules

5.1 Spinor methods

We now introduce a spinor notation which greatly simplify the computations. Our conventions are
presented in the appendix. The translation rule is that each spacetime index becomes a pair of primed
and unprimed spinor indices and each internal index becomes a symmetrized pair of unprimed spinor
indices multiplied by a factor

√
2. For the field a we have

ai
µ #−→

√
2a(AB)

MM ′ . (62)

We also introduce some notation to simplify the spinorial expressions. We basically omit pairs of
naturally contracted indices, eg.,

(aa)ABCD = aABM
M ′aCD

M
M ′

, (aa)M ′N ′CD = aCD(AM ′
aCD

B)N ′
, (63)

(∂a)ABCD = ∂(A
M ′aB)CDM ′

, (∂a)M ′N ′AB = ∂C(M ′
aC

ABN ′),

(∂a)AB = ∂(A
A′aB)C

C
A′

, (∂a)M ′N ′
= ∂A(M ′

aA
B

B
N ′).

The variations of the X̂ variable in spinor notation become

δX̂ij #−→ 2δX̂ABCD 1
MpM

[
(∂a)ABCD + (∂a)CDAB

]

δ2X̂ij #−→ 2δ2X̂ABCD =
2

M2
p M2

[
(∂a)MNAB(∂a)MN

CD − (∂a)M ′N ′AB(∂a)M ′N ′CD − 2M2(aa)ABCD
]

δ3X̂ij #−→ 2δ3X̂ABCD =
6

M3
p M

[
(∂a)M ′N ′AB(aa)M ′N ′CD + (∂a)M ′N ′CD(aa)M ′N ′AB

− (∂a)MNAB(aa)M ′N ′CD − (∂a)MNCD(aa)M ′N ′AB
]

and the third order Lagrangian

L(3) =
2

MMp
(∂a)ABCD(∂a)M ′N ′

AB(∂a)M ′N ′CD −
1

4MMp
(∂a)ABCD(∂a)AB(∂a)CD (64)

+
4M

Mp
(∂a)M ′N ′AB(aa)M ′N ′AB.
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zero on-shell

the only part that is relevant for MHV
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1
3
δijδk(mδn)l

)
(Σ∂a)ij(Σ∂a)kl(Σ∂a)mn (61)

−1
2

(
δi(kδl)j −

1
3
δijδkl

)
1
i
(Σ∂a)ij(ε∂a∂a)kl

−M2

2

(
δi(kδl)j −

1
3
δijδkl

)
(Σ∂a)ijΣkµν(εaa)l

µν +
M2

i
εµνρσ∂µai

ν(εaa)i
µν

]
.

The interesting part from this point of view?
Fourth order terms...

5 Feynman rules

5.1 Spinor methods

We now introduce a spinor notation which greatly simplify the computations. Our conventions are
presented in the appendix. The translation rule is that each spacetime index becomes a pair of primed
and unprimed spinor indices and each internal index becomes a symmetrized pair of unprimed spinor
indices multiplied by a factor

√
2. For the field a we have

ai
µ #−→

√
2a(AB)

MM ′ . (62)

We also introduce some notation to simplify the spinorial expressions. We basically omit pairs of
naturally contracted indices, eg.,

(aa)ABCD = aABM
M ′aCD

M
M ′

, (aa)M ′N ′CD = aCD(AM ′
aCD

B)N ′
, (63)

(∂a)ABCD = ∂(A
M ′aB)CDM ′

, (∂a)M ′N ′AB = ∂C(M ′
aC

ABN ′),

(∂a)AB = ∂(A
A′aB)C

C
A′

, (∂a)M ′N ′
= ∂A(M ′

aA
B

B
N ′).

The variations of the X̂ variable in spinor notation become

δX̂ij #−→ 2δX̂ABCD 1
MpM

[
(∂a)ABCD + (∂a)CDAB

]

δ2X̂ij #−→ 2δ2X̂ABCD =
2

M2
p M2

[
(∂a)MNAB(∂a)MN

CD − (∂a)M ′N ′AB(∂a)M ′N ′CD − 2M2(aa)ABCD
]

δ3X̂ij #−→ 2δ3X̂ABCD =
6

M3
p M

[
(∂a)M ′N ′AB(aa)M ′N ′CD + (∂a)M ′N ′CD(aa)M ′N ′AB

− (∂a)MNAB(aa)M ′N ′CD − (∂a)MNCD(aa)M ′N ′AB
]

and the third order Lagrangian

L(3) =
2

MMp
(∂a)ABCD(∂a)M ′N ′

AB(∂a)M ′N ′CD −
1

4MMp
(∂a)ABCD(∂a)AB(∂a)CD (64)

+
4M

Mp
(∂a)M ′N ′AB(aa)M ′N ′AB.
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graphical notation for the 3-derivative vertex



Spinor helicity states

These can be continued to the non-zero mass shell as

h+
AA′BB′(k) =

kAE′qE′
qA′kBF ′qF ′

qB′

[kq]4
, h−AA′BB′(k) =

qAqEkEA′qBqF kFB′

(kq)4
, (79)

where in the denominators, as before, one understands that eventually the massless limit will be taken,
when all the denominators get well-defined.

A relation between the connection and metric helicity can then be worked out as follows. Here
one recalls that any connection defines a (conformal) metric by requiring that the triple of curvature
two-forms of this connection be self-dual with respect to this conformal metric. In practice, at the
level of the perturbations, this boils down to the requirement that the anti-self-dual part of the
perturbation curvature ∂a is proportional to the anti-self-dual tensor Σi

[µ
αhν]α constructed from the

metric perturbation hµν (which is traceless on shell). The proportionality coefficient in this formula
is a factor of M (for dimensional reasons). Then recalling the usual rescalings needed to make h and
a their canonical normalizations we get the following relation, best stated in the spinor language:

MhAB A′B′ = ∂E
A′aB′EAB. (80)

It is then easy to check that, up to inessential at the moment numerical factors, the above defined
connection helicity states reproduce the usual metric helicity. In the computation of kE

A′ε+B′EAB one
uses the fact that kE

A′kEB′ ∼ M2εA′B′ , which explains how the factors of M get canceled out to give
the correct final expression for the metric helicity. Note that in this calculation we have taken the
massless limit at the end, when no factors of M have remained.

Thus, we see that the anti-self-dual part of the linearized curvature ∂[µaAB
ν] (times 1/M) gives the

usual metric helicity states. Let us also see what the self-dual parts become. We get:

kAA′
ε+A′

BCD ∼ 1
M

kAkBkCkD, (81)

where it is understood that kA ∼ kAA′
qA′ . Similarly,

kAA′
ε−A′

BCD ∼M3qAqBqCqD. (82)

The right-hand-sides here are just (modulo the M prefactors) the self-dual parts of the Weyl curvature
of the corresponding gravitons. The bottom line is that neither the self-dual, nor anti-self-dual parts
of the linearized curvature are zero for our states. However, the anti-self-dual part of the positive
helicity curvature vanishes in the M → 0 limit (in view of (80)), and the self-dual part of the negative
helicity curvature vanishes. At the same time, the self-dual part of the positive helicity blows up in
this limit. So, in a sense, in the massless limit the positive helicity is self-dual, while negative helicity
is anti-slef-dual as one expects, but one cannot use this fact till the very end of the calculations, once
all the spinors have been contracted.

Our final remark is that on-shell we should also have the property that our connection is just
the self-dual part of the metric-compatible spin connection. The latter is expressible in terms of the
derivatives of the metric (perturbation), and so, recalling all normalizations involved in defining the
canonically normalized fields, we must have:

MaAA′BC = ∂CB′hAA′B
B′

. (83)

It is again easy to see that for both polarizations this relation is satisfied (modulo inessential for the
moment numerical factors).

6.6 Helicity

The helicity states in our language are

ε+(k)ABC
D′ =

1
M

kAkBkCpD′

[kp]
, ε−(k)ABC

D′ = M
qAqBqCkD′

(kq)3

15here, as usual            are arbitrary spinors not aligned with pA, qA kA

[kp] := kA′pA′
, (kp) := kApAand are spinor products

To take the                limit

kAA′
= kAkA′

+
M2qAqA′

(kq)[kq] kAA′
kAA′ = −2M2so that

need to make the (positive helicity) external momenta slightly massive
M → 0



Relation to the metric description 

hABA′B′ ∼ 1
M

(∂a)ABA′B′ aABCA′
∼ 1

M
∂(A

B′ hBC)A′B′

both are true on k2 = 2M2

then our helicity states are just images of the usual metric states

both valid on-
shell only

3-vertex in the metric language

calculations done with the usual metric helicity states and the above vertex give the same amplitudes

L(3) ∼ 1
Mp

(
∂(A

A′ ∂B
B′hCD)A′B′

)
hM ′N ′

ABhM ′N ′CD

(Fsd)2 ∼
(
∂(A

A′ aB)A′
)

aM ′
AaM ′B + . . .

Compare with the Yang-Mills vertex in the form

square of the 
YM vertex

gauge indices 
suppressed



Much simpler linearized action, 
much simpler interaction vertices!

Summary of perturbation theory:

Using S3
+ ⊗ S− instead of S2

+ ⊗ S2
−

to describe spin 2 gravitons

parity invariance 
non-manifest!

Much easier way the diffeomorphisms are realized -
the corresponding field components can be 
projected out from the outset

e.g. off-shell 4-vertex contains 
only 7 terms, as compared to a 
page in the metric-based case

Formulation in which the off-shell 3-vertex 
is (basically) (YM vertex)^2 became possible because the 

conformal mode does not 
propagate even off-shellas close to the explanation 

Gravity=(YM)^2 as one can currently get



Deformations of GR

All other choices of f() lead to 
different (from GR) interacting 

theories of massless spin 2 particles

A generic theory is not parity invariant!

seemingly impossible due to the GR uniqueness, but specific 
(sometimes innocuous) assumptions that go into each version of 

the uniqueness theorems are explicitly violated here

Not a dynamical theory of gµν

Modified gravity theories with 2 propagating DOF - a very 
interesting object of study

can be shown to correspond to the 
EH Lagrangian with an infinite set of 

counterterms added

(in its second-order formulation)



In GR only parity-preserving processes:

+

-

+

+ + +

-+ - -

- -

amplitude A ∼ 1
M2

p

s3

tu
∼

(
E

Mp

)2

becomes larger than unity at Planck 
energies, cannot trust perturbation theory



In a general theory from our family parity-violating 
processes become allowed:

+ +

- -

-

+ -

- -

++

+

A ∼ s4 + t4 + u4

M8
p

∼
(

E

Mp

)8

A ∼ stu

M6
p

∼
(

E

Mp

)6

A general theory likes negative helicity gravitons!

Can speculate that at high energies these processes will dominate and all gravitons will get 
converted into negative helicity ones (strongly coupled by the parity-preserving processes)



Quantum Theory Hopes

Remark: no dimensionful coupling constants 
in any of these gravitational theories (negative) dimension coupling 

constant comes when expanded 
around a background

Non-renormalizable in the usual sense

Hope:  the class of theories - all possible f() - is large enough 
to be closed under renormalization

∂f(F ∧ F )
∂ log µ

= βf (F ∧ F )

I.e. physics at higher energies continues to be 
described by theories from the same family = no new DOF appear 

at Planck scale, just the 
dynamics changes



The speculative RG flow

ftop(F ∧ F ) = Tr(F ∧ F )

corresponds to a topological theory
(no propagating DOF)

necessarily a fixed point 
of the RG flow

ftop

fGR Planck scale

strongly coupled negative helicity gravitons at high energies
⇒ no propagating DOF ? ⇒ topological theory ?

flow from very steep 
in IR towards very 
flat in UV potential



Summary:

Dynamically non-trivial diffeomorphism invariant gauge theories

The simplest non-trivial such theory G=SU(2) - gravity

GR can be described in this language (on-shell equivalent only)

Computationally efficient alternative to the usual description

Different from GR (parity-violating)
 spin 2 particles

If this class of theories is closed under renormalization

⇒ understanding of the gravitational RG flow
description of the Planck scale physics

theories of interacting massless

possibly different quantum theory⇒

(no propagating conformal mode even off-shell)



Open problems

Chiral, thus complex description. Unitarity?

Coupling to matter?

Enlarging the gauge group - rather general types of 
matter coupled to gravity can be obtained. Fermions?

Closedness under renormalization?

Are these just some effective field theory models, 
or they are UV complete as Yang-Mills?


