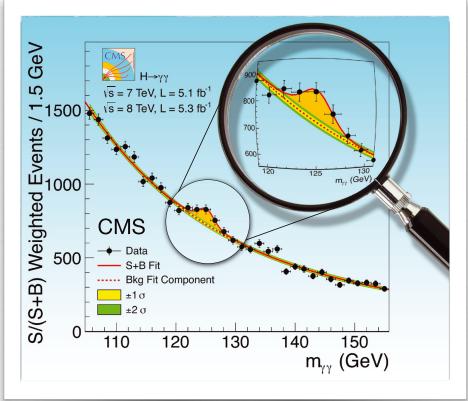
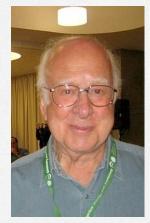


A Higgs Near 125 GeV Beyond the MSSM


Part 1 Higgs in SM and NMSSM Part 2 Higgs and Gluinos in E6SSM

Steve King Sussex, Mon 22nd Oct 2012



LHC has discovered a new particle

Congratulations to both attas and CMB Collaborations and to the builders of the LHC on a magnificent achievement!

Peter Stigge 30 August 2012

[&]quot; ... The decay to two photons indicates that the new particle is a boson with spin different from one. The results presented here are consistent, ... with expectations for a standard model Higgs boson."

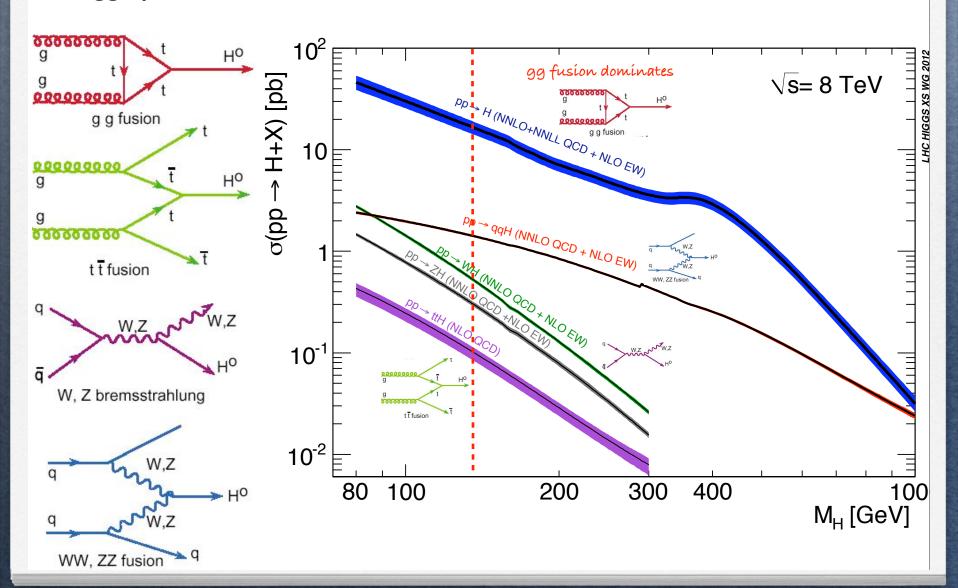
Not only does the discovery yield the missing link to the present Standard Model theory of elementary particles, but a detailed analysis of the decays, in particular of the decay of the Scalar to two photons which is sensitive to loops of intermediated charged particles, will possibly yield information about the spectrum beyond the Standard Model.

Prof. François Englert

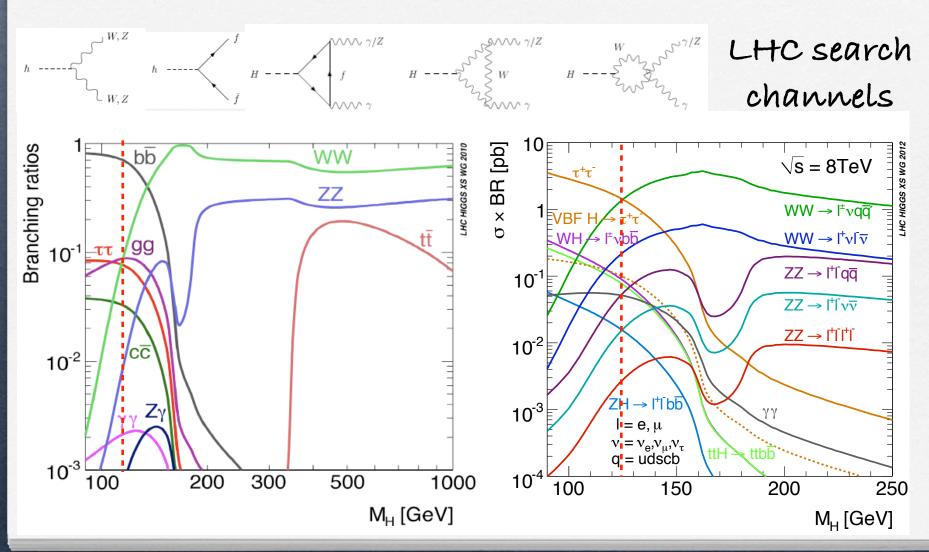
It is great to know that the famous boson almost certainly exists, and we are eagerly waiting for detailed measurement of its properties.

Prof. Tom Kibble

Prof. Carl R. Hagen

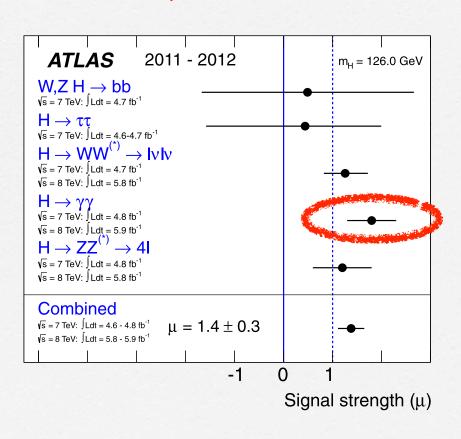

Prof. Gerald Guralnik

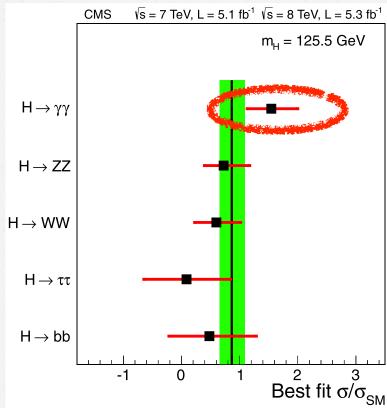
Tom Kilble

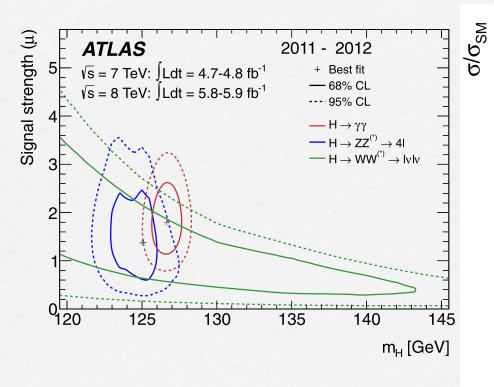

Corl RHogen

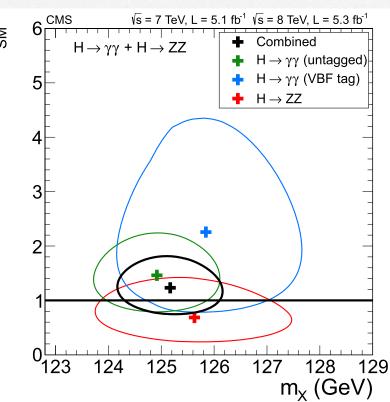
S. D. Meralniz

• Higgs production mechanisms and cross sections

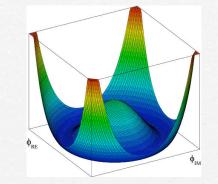



Higgs Decays


Higgs decay LHC signal strengths


Two photon rate too high in both experiments

Higgs mass 124-127 GeV


 $126.0 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (sys) GeV}$

 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV.

Higgs Theory in SM

Higgs potential

$$V = m_H^2 \left| H \right|^2 + \frac{1}{2} \lambda \left| H \right|^4$$

Tree-level min cond

$$m_H^2 = -\lambda v^2 = -\lambda \left(246 \, GeV\right)^2$$

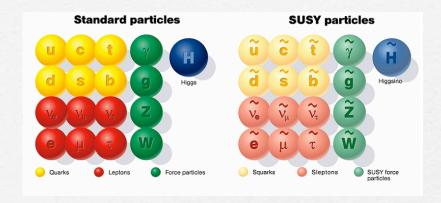
Including rad corr

$$m_H^2 + \delta m_H^2 = -\lambda \left(246 \, GeV\right)^2$$

$$H - - - \underbrace{\underbrace{\frac{Q_{3L}}{t_R}}_{Q_{3L}} - - - - H$$

$$\delta m_H^2(top \, loop) = -\frac{3}{\sqrt{2\pi^2}} G_F m_t^2 \Lambda^2 = -\left(100 \, GeV\right)^2 \left(\frac{\Lambda}{1 \, TeV}\right)^2$$

Fine-tuning is required if the cut-off $\Lambda\gg 1\,TeV$


Motivates new physics at TeV scale e.g. SUSY

Minimal SUSY SM (MSSM)

Table 1: The MSSM Particle Spectrum

Superfield	Bosons	Fermions	
Gauge			
\widehat{G}	g	\widetilde{g}	
\widehat{V}^a	W^a	$\dfrac{\widetilde{g}}{\widetilde{W}^a}$	
\widehat{V}'	B	\widetilde{B}	

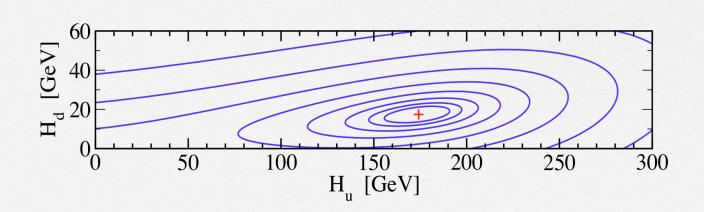
$\frac{V'}{\text{Matter}} \qquad B \qquad B \\ \underline{\widehat{H}}_{\text{atter}} \qquad \text{leptons} \begin{cases} \widetilde{L} = (\widetilde{\nu}, \widetilde{e}^-)_L & (\nu, e^-)_L \\ \widetilde{E} = \widetilde{e}_R^+ & e_L^c \end{cases}$ $\frac{\widehat{Q}}{\widehat{Q}} \qquad \text{quarks} \begin{cases} \widetilde{Q} = (\widetilde{u}_L, \widetilde{d}_L) & (u, d)_L \\ \widetilde{U}^c = \widetilde{u}_R^* & u_L^c \\ \widetilde{D}^c = \widetilde{d}_R^* & d_L^c \end{cases}$ $\frac{\widehat{H}_d}{\widehat{H}_u} \qquad \text{Higgs} \begin{cases} H_d^i & (\widetilde{H}_d^0, \widetilde{H}_d^-)_L \\ H_u^i & (\widetilde{H}_u^+, \widetilde{H}_u^0)_L \end{cases}$

Higgs/Higgsino mass parameter

$$\mu \tilde{H}_u \tilde{H}_d$$

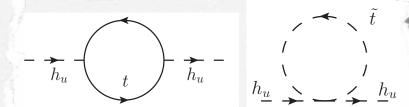
$$|\mu| \lesssim 200 \text{ GeV}.$$

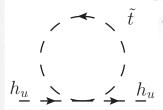
to avoid tree-level tuning since


$$m_H^2 = \mu^2 + m_0^2$$

Higgs Theory in MSSM $W = \mu \hat{H}_u \hat{H}_d$

$$H_u = (H_u^+, H_u^0)$$
 $H_d = (H_d^0, H_d^-)$

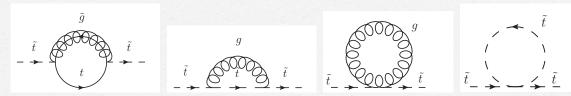

Higgs
$$V=(|\mu|^2+m_{H_u}^2)|H_u^0|^2+(|\mu|^2+m_{H_d}^2)|H_d^0|^2-(b\,H_u^0H_d^0+\mathrm{c.c.})$$
 potential
$$+\frac{1}{8}(g^2+g'^2)(|H_u^0|^2-|H_d^0|^2)^2.$$

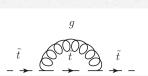

$$\tan \beta = \frac{v_u}{v_d}$$

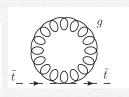
In SUSY, stop loops dominate Higgs mass parameter correction

 $\delta m_H^2(stop\ loop)$

Leading quadratic divergence cancels

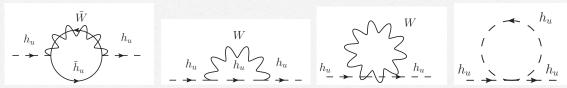

$$\delta m_{h_u}^2 = -\frac{3y_t^2}{4\pi^2} m_{\tilde{t}}^2 \ln\left(\frac{\Lambda_{UV}}{m_{\tilde{t}}}\right)$$


To avoid tuning need


$$m_{\tilde{t}} \lesssim 400 {
m GeV}$$
. 500 GeV OK

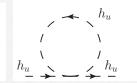

LHC should find stops SOON

Gluino corrections to stop


$$\delta m_{\tilde{t}}^2 = \frac{2g_s^2}{3\pi^2} m_{\tilde{g}}^2 \ln \frac{\Lambda_{UV}}{m_{\tilde{g}}}.$$

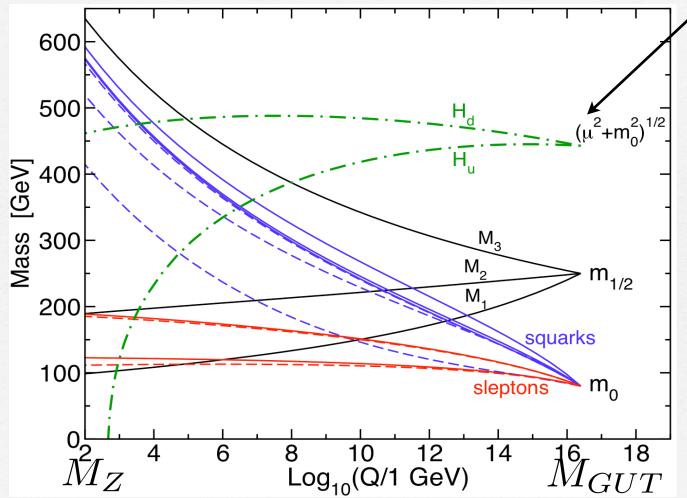
To avoid tuning need

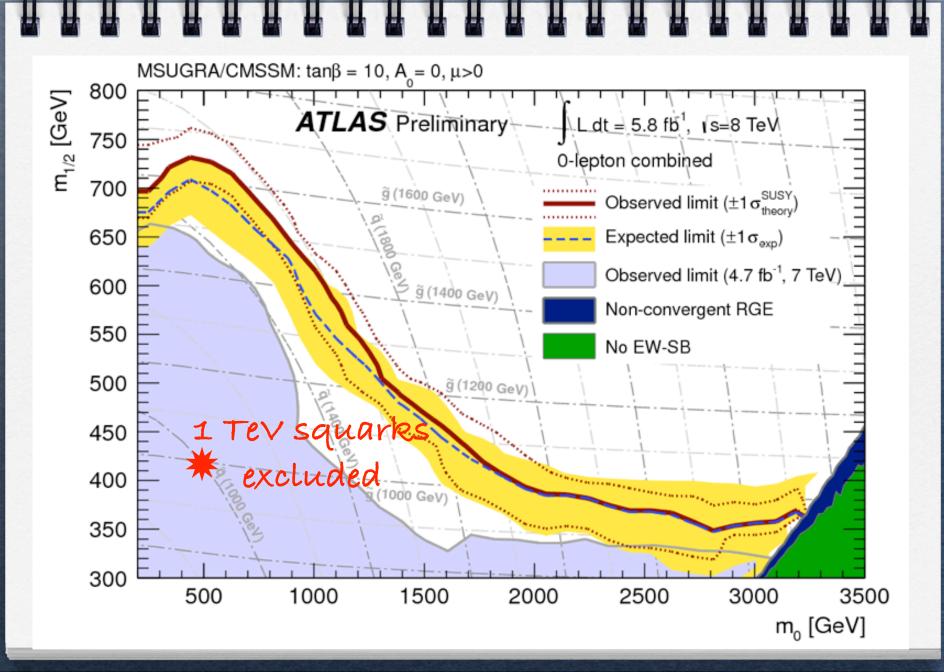
$$m_{\tilde{g}} \lesssim 2 m_{\tilde{t}}.$$
 1 TeV OK


LHC should find gluinos SOON

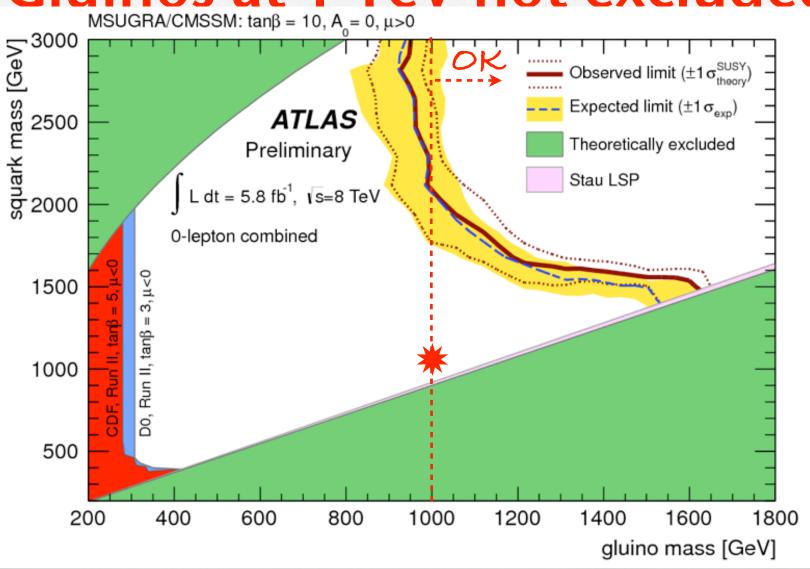
Other important loops

$$\delta m_{h_u}^2 = \frac{3g^2}{8\pi^2} (m_{\tilde{W}}^2 + m_{\tilde{h}}^2) \ln \frac{\Lambda_{UV}}{m_{\tilde{W}}}.$$

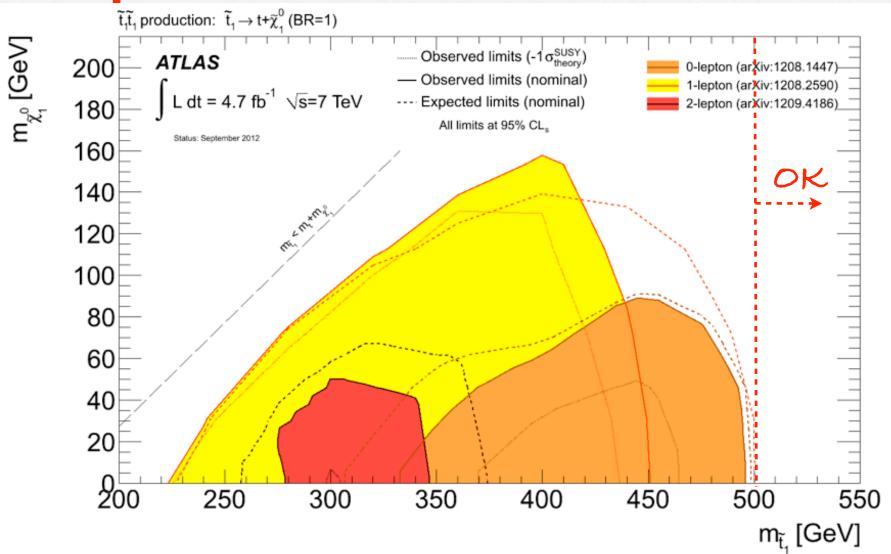

To avoid tuning need


$$m_{\tilde{W}} \lesssim {
m TeV}$$
. 1 TeV OK

Difficult to find colour singlets at LHC

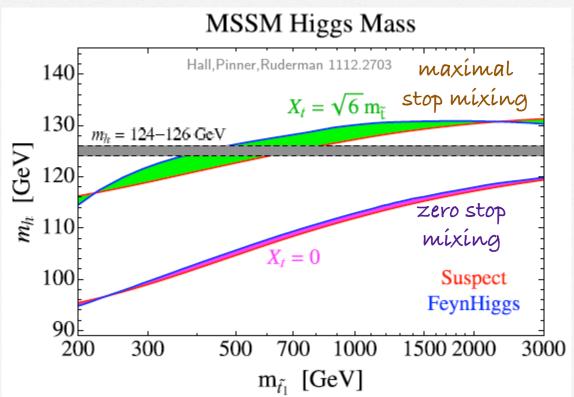

Constrained MSSM

 $m_H^2 = \mu^2 + m_0^2$



Gluinos at 1 TeV not excluded

Stops at 500 GeV not excluded


Mass Spectrum in MSSM CHC Higgs

Names	Spin	P_R	Gauge Eigenstates Mass Eigensta			
Higgs bosons	0	+1	$H_u^0 \ H_d^0 \ H_u^+ \ H_d^-$	h^0 H^0 A^0 H^\pm		
			$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$	(same)		
squarks	0	-1	$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$	(same)		
			$\widetilde{t}_L \ \widetilde{t}_R \ \widetilde{b}_L \ \widetilde{b}_R$	\widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2		
			$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$	(same)		
sleptons	0	-1	$\widetilde{\mu}_L \ \widetilde{\mu}_R \ \widetilde{ u}_\mu$	(same)		
			$\widetilde{ au}_L \ \widetilde{ au}_R \ \widetilde{ u}_{ au}$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_{ au}$		
neutralinos	1/2	-1	\widetilde{B}^0 \widetilde{W}^0 \widetilde{H}_u^0 \widetilde{H}_d^0	\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4		
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}_{u}^{+} \widetilde{H}_{d}^{-}	\widetilde{C}_1^{\pm} \widetilde{C}_2^{\pm}		
gluino	1/2	-1	\widetilde{g}	(same)		
goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)		

Higgs h Mass in MSSM

$$\mathcal{W} = \mu \widehat{H}_u \widehat{H}_d$$

$$m_h^2 \approx M_Z^2 \cos^2 2\beta + \Delta m_h^2$$

$$\Delta m_h^2 \approx \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

$$m_{\tilde{t}}^2 = m_{\tilde{Q}_3} m_{\tilde{t}_R} \qquad X_t = A_t - \mu \cot \beta.$$

Must have at least one stop mass heavier than 500 GeV -->
Fine Tuning!

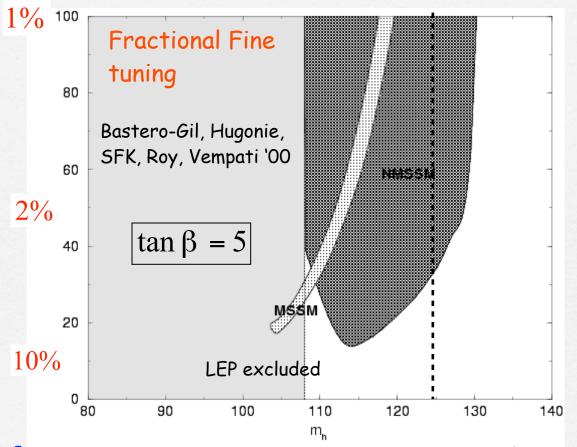
Next-to-Minimal SUSY SM (NMSSM)

Model gives dynamical origin of μ term via complex singlet S:

SHuHd where singlet <S> $\sim \mu \sim$ TeV

Danger from weak scale axion due to global U(1) symmetry

Need to avoid axion somehow


In NMSSM we add S^3 to break U(1) to Z_3

Extra tree-level contribution to

$$\mathcal{W}=\lambda \widehat{S}\widehat{H}_u\widehat{H}_d+rac{\kappa}{3}\,\widehat{S}^3$$
 Higgs mass reduces fine-tuning

$$m_h^2 \approx M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta m_h^2$$

Fine Tuning vs. Higgs Mass

For 125 GeV
Higgs the
MSSM fine
tuning is
much worse
than in
NMSSM

LEP favours NMSSM over MSSM (12 years ago) LHC with Higgs @ 125 GeV strengthens conclusion

NMSSM Higgs Theory

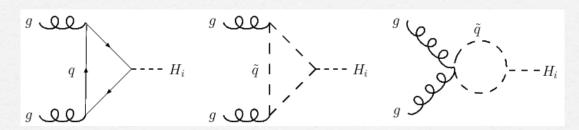
Spectrum has an extra CP even S plus extra CP odd A (both singlets) compared to MSSM

CP even mass eigenstates

$$H_1 = S_{1,d} H_d + S_{1,u} H_u + S_{1,s} S,$$

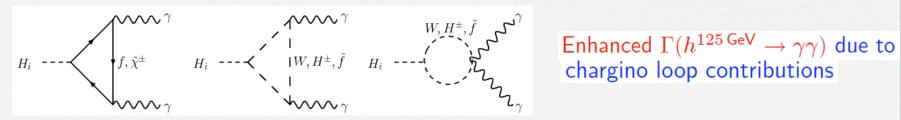
 $H_2 = S_{2,d} H_d + S_{2,u} H_u + S_{2,s} S,$

$$H_3 = S_{3,d} H_d + S_{3,u} H_u + S_{3,s} S$$
.


HI or H2 have reduced couplings due to the singlet component

 $h^{125\,\mathrm{GeV}}$ can be H_1,H_2

NMSSM Higgs Phenomenology


Enhanced gluon fusion production

Stop and sbottom loop contributions in $gg o H_i$

$$BR(h^{125\,\mathrm{GeV}} \to \gamma\gamma) = \frac{\Gamma(h^{125\,\mathrm{GeV}} \to \gamma\gamma)}{(\Gamma_{b\bar{b}} + \Gamma_{WW} + \Gamma_{ZZ} + \ldots)[h^{125\,\mathrm{GeV}}]}$$

Suppression of $\Gamma(h^{125\,{\rm GeV}} \to b\bar{b})$ due to strong singlet-doublet mixing

NMSSM Higgs Benchmarks Near 125 GeV

Point	NMP1	NMP2	NMP3		
$\tan \beta$	3	2	2		
$\mu_{\rm eff} \ [{ m GeV}]$	200	200	200		
λ	0.64	0.6	0.57		
κ	0.25	0.18	0.2		
$A_{\lambda} [{ m GeV}]$	560	405	395		
$A_{\kappa} [\mathrm{GeV}]$	-10	-10	-80		
$M_{Q_{3L}}$ [GeV]	650	700	530		
M_{t_R} [GeV]	650	700	530		
M_1 [GeV]	106	91	115		
M_2 [GeV]	200	200	200		
M_3 [GeV]	600	600	600		
SM-like Hig	gs boson	11			
M_{H_1} [GeV]	124.5	126.5	124.6		
$R_{\gamma\gamma}(H_1)$	1.06	1.24	1.47		
$R_{WW}(H_1)$	0.85	0.93	1.02		
$R_{ZZ}(H_1)$	0.76	0.85	0.90		
$R_{b\bar{b}}(H_1)$	1.12	1.09	1.04		
$R_{\Gamma_{tot}}(H_1)$	1.02	0.93	0.76		
$R_{\sigma_{gg}}(H_1)$	0.97	0.96	0.77		
$R_{\sigma_{tot}}(H_1)$	0.84	0.91	0.82		
$m_{\tilde{t}_1}$ [GeV]	548	587	358		
$m_{\tilde{t}_2} \; [{ m GeV}]$	782	838	686		
$X_t/m_{\tilde{t}}$	1.74	1.86	2.26		
Relic density					
Ωh^2	0.9819	0.1170	0.1100		

Point	NMP4	NMP5	NMP6		
$\tan eta$	3	3	2		
$\mu_{\rm eff} \ [{ m GeV}]$	200	200	140		
λ	0.67	0.66	0.55		
κ	0.1	0.12	0.31		
$A_{\lambda} \; [{ m GeV}]$	650	650	210		
A_{κ} [GeV]	-10	-10	-210		
$M_{Q_{3L}}$ [GeV]	600	600	800		
M_{t_R} [GeV]	600	600	600		
M_1 [GeV]	200	200	145		
M_2 [GeV]	400	400	300		
M_3 [GeV]	600	600	800		
SM-like Hig	gs boson	112			
M_{H_2} [GeV]	123.8	126.5	124.5		
$R_{\gamma\gamma}(H_2)$	1.09	1.19	1.431		
$R_{WW}(H_2)$	0.91	0.98	1.00		
$R_{ZZ}(H_2)$	0.80	0.89	0.89		
$R_{bar{b}}(H_2)$	1.08	1.06	1.04		
$R_{\Gamma_{tot}}(H_2)$	0.96	0.90	0.78		
$R_{\sigma_{gg}}(H_2)$	1.00	0.96	0.91		
$R_{\sigma_{tot}}(H_2)$	0.92	0.95	0.93		
$m_{\tilde{t}_1} \; [{ m GeV}]$	517	483	549		
$m_{\tilde{t}_2} \; [{ m GeV}]$	724	741	892		
$X_t/m_{\tilde{t}}$	1.56	1.89	-1.83		
Relic density					
Ωh^2	0.0999	0.1352	0.1258		

Kíng, Muhlleítner, Nevzorov arxív:1201.2671

Key features:

- Stops below 1 TeV in all cases
- Two photon Higgs rate enhanced

$$R_{\gamma\gamma}(H_i) \equiv R_{\sigma_{incl}}(H_i) R_{\gamma\gamma}^{BR}(H_i)$$

$$R_{VV}(H_i) \equiv R_{\sigma_{incl}}(H_i)R_{VV}^{BR}(H_i)$$

$$R_{b\bar{b}}(H_i) \equiv R_{\sigma_{incl}}(H_i) R_{b\bar{b}}^{BR}(H_i)$$

Summary of Part 1

- D Particle discovered at LHC consistent with SM Higgs boson
- But LHC Higgs decay signal strengths have large errors (two photon rate too high)
- ☐ Higgs may be window into BSM physics
- Higgs theory fine-tuning problem solved by SUSY
- □ Natural Susy requires stops = 500 GeV, gluino = 1 TeV (or less)
- These are not excluded by LHC searches (so far!)
- □ Stops>500 GeV required for Higgs mass in MSSM
- ☐ Stops = 500 GeV possible for Higgs mass in NMSSM
- □ NMSSM can lead to large di-photon rate especially with h(125) = H2
- Other decays such as WW, ZZ, bb, tau tau can also have different rates
- ☐ We eagerly await the next LHC results!

Exceptional SUSY SM (E₆SSM)

$$E_6 \rightarrow SO(10) \times U(1)_{\psi}$$

$$SO(10) \to SU(5) \times U(1)_{\chi}$$

M_{string} –

M₃ –

M₂ –

M₁ –

 $SU(3) \times SU(2) \times U(1)_{Y} \times U(1)_{N}$

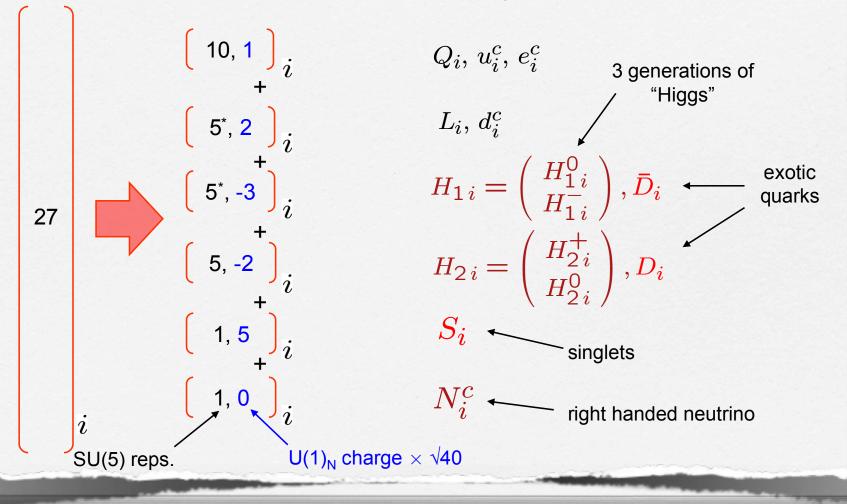
RH neutrinos neutral under:

$$U(1)_N = \frac{\sqrt{15}}{4}U(1)_{\psi} + \frac{1}{4}U(1)_{\chi}$$

remaining matter content of 3 families of 27's of E_6 survives down to the TeV scale

 $u(1)_N$ broken, Z' and exotics get mass, μ term generated $su(2)_L \times u(1)_Y$ broken

Energy


M

Tev

Matter Content of 27's of E₆

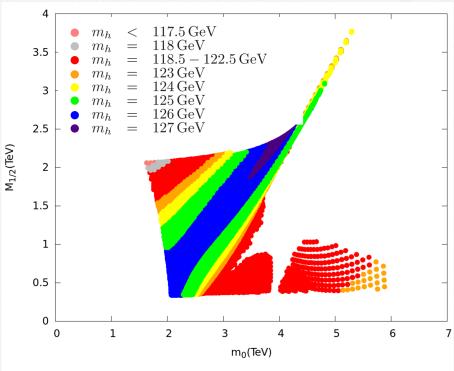
All the SM matter fields are contained in one 27-plet of E_6 per generation.

Miller

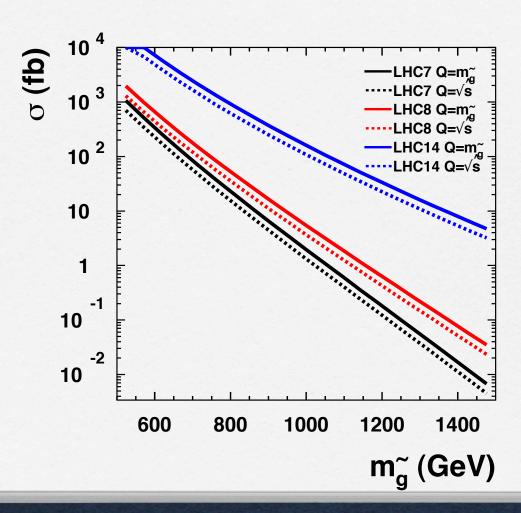
Higgs mass bounds

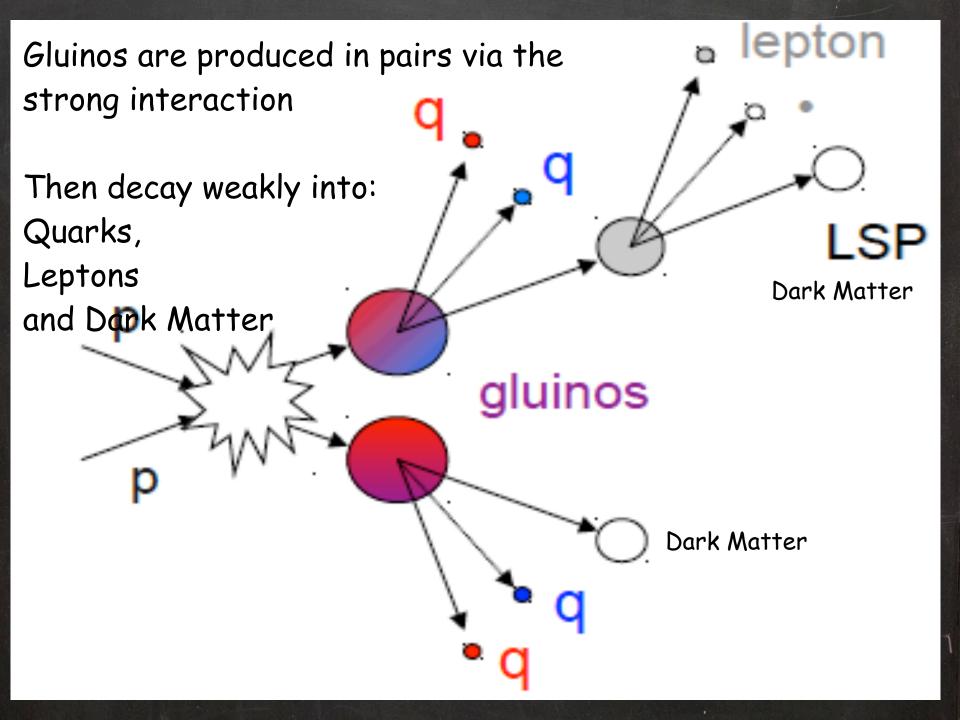
 m_{h_1} SFK, Moretti, Nevzorov 160 E_6SSM 140120 **NMSSM** MSSM 100 80 60 2-loop Higgs mass bounds 40 20 $tan \beta$


$$m_h^2 \approx \underbrace{M_Z^2 \cos^2 2\beta}_{MSSM} + \frac{\lambda^2}{2} v^2 \sin^2 2\beta + \frac{M_Z^2}{4} (1 + \frac{1}{4} \cos 2\beta)^2 + \Delta m_h^2$$


 E_6SSM

Higgs, Squarks, Gluinos in CE6SSM


Athron, King, Miller, Moretti, Nevzorov


$$\tan \beta = 10, \, \lambda_{12} = 0.1, \, s = 10 \, \text{TeV}.$$

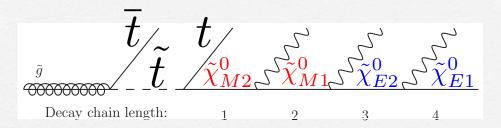
Gluino pair production

Neutralinos in E₆SSM

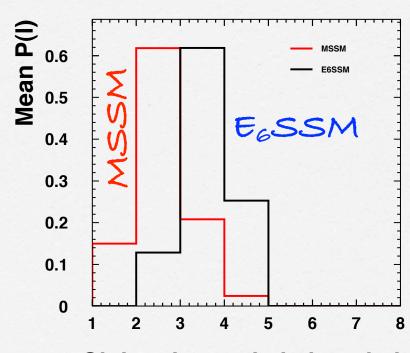
Hall, King

- 3 Higgs families = 1 MSSM family $H_u H_d + 2$ inert families $H_{u1} H_{d1} H_{u2} H_{d2}$
- \square 3 famílies of Singlets = 1 NMSSM singlet \Rightarrow + 2 inert singlets $S_1 S_2$

The full neutralino mass matrix


$$\tilde{\chi}_{\text{int}}^0 = (\begin{array}{ccc|c} \tilde{B} & \tilde{W}^3 & \tilde{H}_d^0 & \tilde{H}_u^0 \end{array} \middle| \begin{array}{ccc|c} \tilde{S} & \tilde{B}' & \tilde{H}_{d2}^0 & \tilde{H}_{u2}^0 & \tilde{S}_2 & \tilde{H}_{d1}^0 & \tilde{H}_{u1}^0 & \tilde{S}_1 \end{array})^{\text{T}}$$

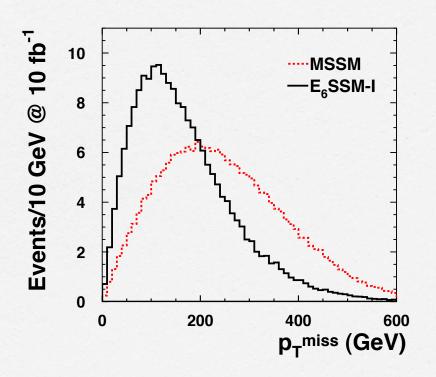
$$M_{\rm E_6SSM}^n = \begin{pmatrix} M_{
m USSM} & D_2 & D_1 \\ B_2^{
m T} & A_{22} & A_{21} \\ B_1^{
m T} & A_{21}^{
m T} & A_{11}^{
m T} \end{pmatrix}$$

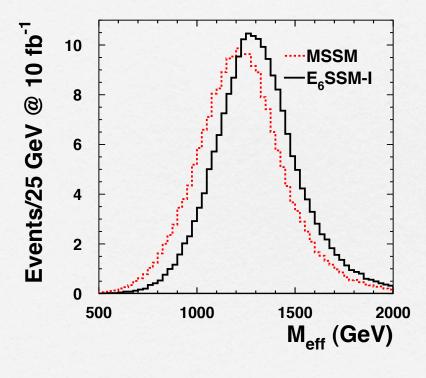

12x12 matrix!!

Gluino decay chains

Belyaev, Hall, King, Svantesson (preliminary)

E₆SSM has longer gluino chains with a lighter LSP at the end

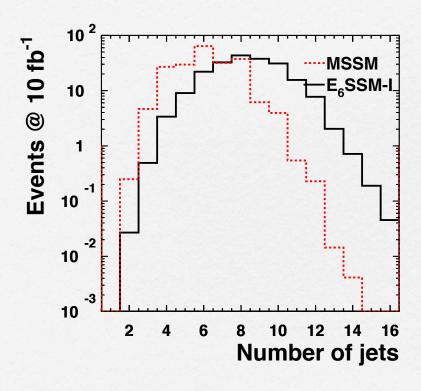



Gluino decay chain length, I

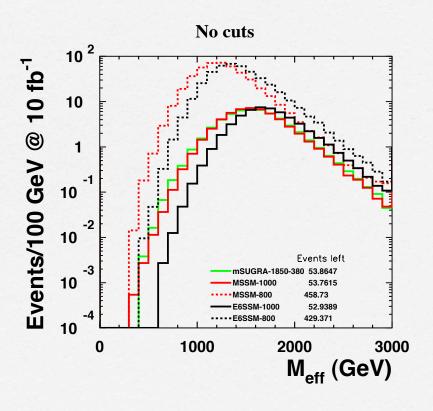
	MSSM	E_6SSM-I	E ₆ SSM-II	E ₆ SSM-III	E ₆ SSM-IV	E_6SSM-V	E ₆ SSM-VI	
$\tan \beta$	10	1.5	1.42	1.77	3	1.42	1.42	
λ		0.497	0.598	-0.462	-0.4	0.598	0.598	
s		5180	5268	5418	5500	5268	5268	
μ	1578	(1820)	(2228)	(1770)	(-1556)	(2228)	(2228)	
$A_t = A_b = A_t$		-3110	-3100	476.2	4638	-2684	-2684	
M_A	302.5	3666	4365	2074	4341	4010	4000	\overline{Q}
M_1	150	150	150	150	150	150	150	[GeV]
M_2	285	300	300	300 151	300	300	300	
$M_{1'}$	800.2	151 800.0	151 800.0	800.0	151 800.0	151 800.0	151 800.0	
$m_{\tilde{g}}$	148.7	148.9	149.1	151.2	150.6	149.1	149.1	
$m_{ ilde{\chi}_{M1}^0}$	302.2	296.1	296.8	303.7	301.7	296.8	296.8	
$m_{ ilde{\chi}^0_{M2}}$								
$m_{ ilde{\chi}^0_{M3}}$	1582	1763	2233	1766	1557	2233	2233	
$m_{ ilde{\chi}_{M4}^0}$	1584	1823	2246	1771	1558	2246	2246	
$m_{ ilde{\chi}_{M1}^{\pm}}$	302.2	299.0	299.2	300.9	300.4	299.2	299.2	
$m_{ ilde{\chi}_{M2}^{\pm}}$	1584	1822	2229	1771	1557	2229	2229	
$m_{ ilde{\chi}_{U1}^0}$		1878	1835	1909	1937	1835	1835	\overline{Q}
$m_{ ilde{\chi}_{U2}^0}$		1973	2003	2062	2087	2003	2003	[GeV]
$m_{ ilde{\chi}_{E1}^0}$		62.7	43.5	45.2	0	0	0.00011	
$m_{ ilde{\chi}^0_{E2}}$		62.8	48.6	53.2	0	0	1.53	
$m_{ ilde{\chi}_{E3}^0}$		119.8	131.3	141.6	164.1	119.9	120.1	
$m_{ ilde{\chi}_{E4}^0}$		121.0	163.6	187.4	164.1	119.9	122.8	
$m_{ ilde{\chi}_{E5}^0}$	-	183.0	197.0	227.8	388.9	185.8	185.8	
$m_{ ilde{\chi}^0_{E6}}$		184.4	224.3	265.6	388.9	185.8	187.0	
$m_{ ilde{\chi}_{E1}^{\pm}}$		109.8	119.9	122.7	164.1	119.9	119.9	
$m_{ ilde{\chi}_{E2}^{\pm}}$		117.7	185.8	225.1	388.9	185.8	185.8	
$m_h^{\kappa_{E2}}$	124.4	125.4	133.8	116.3	124.7	126.1	125.8	
P(l=1)	0.188	$< 10^{-9}$	$< 10^{-5}$	$< 10^{-5}$	0.1727	$< 10^{-8}$	$< 10^{-12}$	
P(l=2)	0.812	$< 10^{-4}$	0.01524	0.1723	0.8273	0.01	$< 10^{-5}$	
P(l=3)	0	0.1746	0.2336	0.7986	$< 10^{-6}$	0.2	0.1721	
P(l=4)	0	0.8196	0.7512	0.02915	$< 10^{-15}$	0.8	0.8280	
P(l=5)	0	0.0058	$< 10^{-7}$	0	0	$< 10^{-15}$	0	
Ωh^2	0.00628	0.00114	0.0006842	0.0006937	0.101	0.00154		
σ_{SI}	0.401×10^{-9}	15.34×10^{-8}	9.35×10^{-8}	16.35×10^{-8}	3.75×10^{-11}	3.98×10^{-13}		[pb]

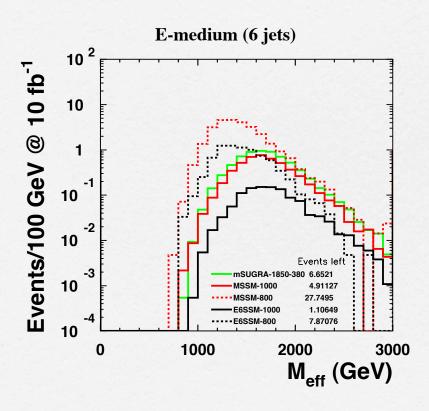
E₆SSM gluino gives less p_Tmiss

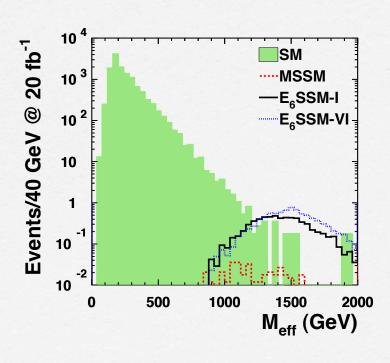

Belyaev, Hall, King, Svantesson (preliminary)

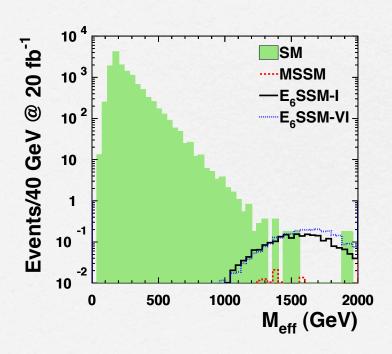


E₆SSM gluino gives more jets and leptons

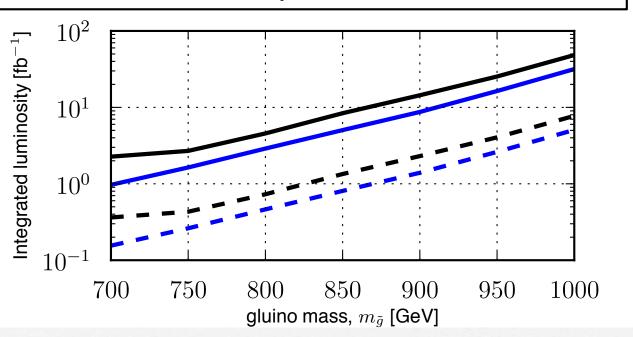

Belyaev, Hall, King, Svantesson (preliminary)




LHC@7 TeV, gluino@800 GeV


E₆SSM gluino harder to see in 6 jet channel

E₆SSM gluino easier to see in 3 lepton channel at 8 TeV



Luminosity required for 5σ discovery and 2σ exclusion, $\sqrt{s}=8{\rm TeV}$ in 3 lepton channel

E₆SSM-I: 5σ discovery **–** • E₆SSM-I: 2σ exclusion

 $\mathsf{E}_6\mathsf{SSM}\text{-VI: }5\sigma$ discovery \bullet \bullet $\mathsf{E}_6\mathsf{SSM}\text{-VI: }2\sigma$ exclusion

Summary of Part 2

- □ E6SSM is richer theory with many LHC signals
- □ Matter spectrum with 3 families of 27 dimensional particle reps and a Z'
- ☐ Higgs at 125 GeV possible in E6SSM
- □ Typical spectrum is heavy squarks but lighter gluino
- Gluino has longer decay chains with more jets and leptons and less missing transverse momentum
- □ E6SSM Gluino is harder to see in 6 jet channel
- ☐ But easier to see in 3 lepton channel
- We eagerly await the next LHC results!

Extra Slides

F-Theory GUTs: a 12d string theory

Heckman and Vafa "6d spheres" with "2d fibres" "4d Flatlander" SU(2) SU(3) gluons Quarks Unification We live close to E₈ point SU(5)_{GUT} on the extra dimensional "6d sphere" Steve King, Sout 3/24/11

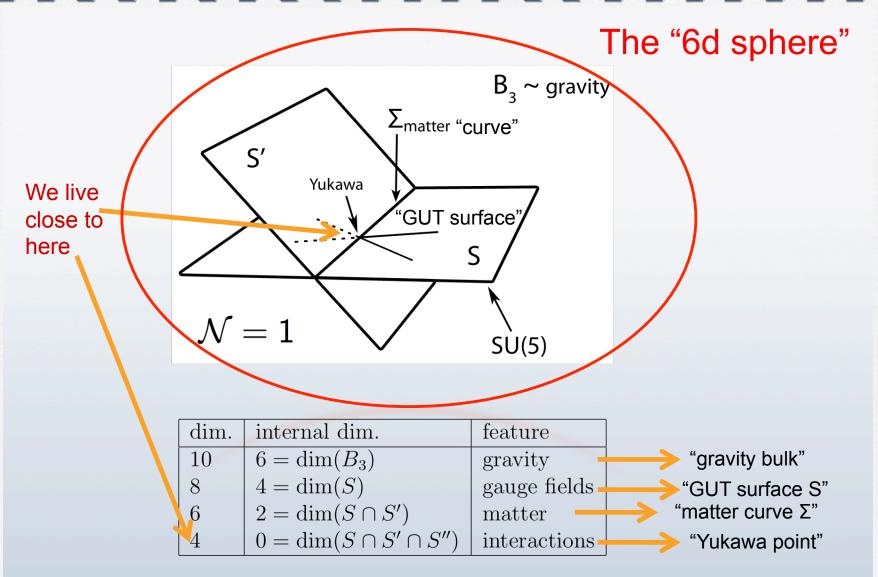


Figure 1: The structure of an F-theory GUT

GUT breaking is achieved not with Higgs but with Hypercharge Flux

$$SU(5)\supset SU(3)_C\times SU(2)_L\times U(1)_Y$$
 Think of magnetic
$$5\to (1,2)_{1/2}+(3,1)_{-1/3}.$$
 2-d Matter curve Σ

Index theorem gives number of chiral doublets and triplets (think of Gauss's law):

$$(1,2)_{1/2}: n_L - n_R = 3 \int_{\Sigma} F_{U(1)_Y} + q \int_{\Sigma} F_{U(1)_{\perp}}$$
$$(3,1)_{-1/3}: n_L - n_R = -2 \int_{\Sigma} F_{U(1)_Y} + q \int_{\Sigma} F_{U(1)_{\perp}}$$

Doublet-triplet Higgs splitting requires:

Higgs:
$$\int_{\Sigma} F_{U(1)_Y} \neq 0$$
Matter:
$$\int_{\Sigma} F_{U(1)_Y} = 0.$$

Typically predicts exotics

Callaghan, King, Leontaris, Ross

E6SSM from F-theory

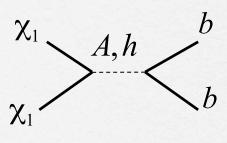
E_6	<i>SO</i> (10)	SU(5)	Weight vector	N_Y	$M_{U(1)}$	SM particle content	Low energy spectrum	
$27_{t'_1}$	16	$\overline{5}_3$	$t_1 + t_5$	1	4	$4d^c + 5L$	$3d^c + 3L$	
$27_{t'_1}$	16	10 _M	t_1	-1	4	$4Q + 5u^c + 3e^c$	$3Q + 3u^c + 3e^c$	
$27_{t_1'}$	16	θ_{15}	$t_1 - t_5$	0	n_{15}	$3v^c$	-	
$27_{t_1'}$	10	51	$-t_1 - t_3$	-1	3	$3D+2H_u$	$3D+2H_u$	
$27_{t_1'}$	10	$\overline{5}_2$	$t_1 + t_4$	1	3	$3\overline{D} + 4H_d$	$3\overline{D} + 3H_d$	
$27_{t_1'}$	1	θ_{14}	$t_1 - t_4$	0	n_{14}	$ heta_{14}$	<u>-</u>	
$27_{t_3'}$	16	$\overline{5}_5$	$t_3 + t_5$	-1	-1	$\overline{d^c} + 2\overline{L}$	-	
$27_{t_{3}'}$	16	102	t_3	1	-1	$\overline{Q} + 2\bar{u^c}$	-	
$27_{t_{3}'}$	16	θ_{35}	$t_3 - t_5$	0	n ₃₅	<u>-</u>	-	
$27_{t_3'}$	10	5_{H_u}	$-2t_{1}$	1	0	H_u	H_u	
$27_{t_{3}'}$	10	$\overline{5}_4$	$t_3 + t_4$	-1	0	$\overline{H_d}$	-	
		-		-				

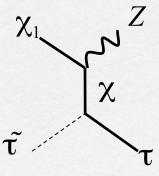
F-theory model predicts incomplete multiplets with matter content of 3 copies of 27s of E6

CMSSM Dark Matter

Neutralino mass matrix

$$ilde{B}$$
 $ilde{W}_3$ $ilde{H}_d$ $ilde{H}_u$


$$egin{pmatrix} M_1 & & & & & \\ & M_2 & & & & \\ & & 0 & -\mu & \\ & & -\mu & 0 \end{pmatrix}$$


$$\chi_1 = N_1 \tilde{B} + N_2 \tilde{W} + N_3 \tilde{H}_d + N_4 \tilde{H}_u$$

$$\Omega_{DM}h^2 = C \frac{T_0^3}{M_P^2} \frac{1}{\langle \sigma v \rangle}$$

$$\chi_1$$
 \tilde{f}
 χ_1
 f

 χ_1 χ^{\pm} χ_{W}

Bulk

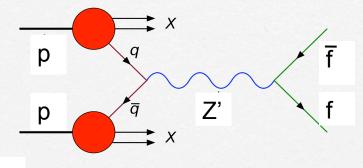
$$m_{\tilde{f}} \approx m_{\chi_1}$$

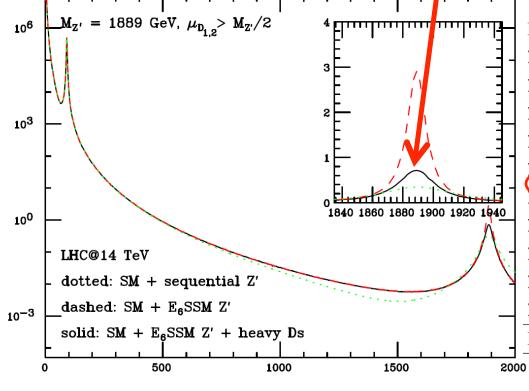
Focus

Funnel

$$m_{A,h} \approx 2m_{\chi_1}$$

Co-annihilation

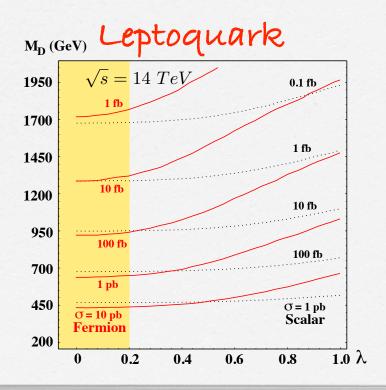

$$m_{\tilde{\tau}} \approx m_{\chi_1}$$

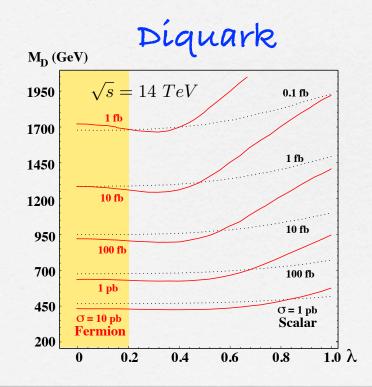

Athron, SFK, Miller, Moretti, Nevzorov

 Z'_N

 $d\sigma/dM_{l+l-}$ (fb/GeV)

Latest ATLAS limit is $M_{Z_N^\prime} > 1520~GeV$ but exotic decays makes Z' peak smaller and harder to discover

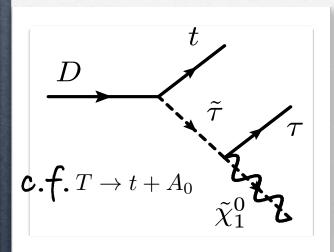

 M_{l+l-} (GeV)

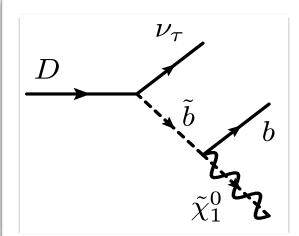

$\Gamma(Z_N' \to l^+ l^-) \ (l = e, \mu \text{ or } \tau)$	0.77
$\Sigma_l \Gamma(Z_N' \to \nu_l \overline{\nu}_l)$ (all neutrinos)	1.64
$\Sigma_l \Gamma(Z_N' \to l^+ l^-, \nu_l \overline{\nu}_l)$ (all leptons)	3.96
$\Sigma_q \Gamma(Z_N' \to q\bar{q})$ (all quarks)	10.08
$\Sigma_i \Gamma(Z_N' \to D_i \bar{D}_i)$ (exotic fermions)	0.00
$\sum_{\alpha} \Gamma(Z'_N \to \tilde{H}_{\alpha} \tilde{H}_{\alpha})$ (inert Higgsinos	5.19
$\Sigma_{\alpha}\Gamma(Z_N' \to \tilde{S}_{\alpha}\tilde{S}_{\alpha}) \text{ (singlinos)}$	7.63
$\Sigma_i \Gamma(Z_N' \to D_i D_i)$ (exotic scalars)	0.19
$\Sigma_f \Gamma(Z_N' \to \tilde{f}\tilde{f})$ (sfermions)	0.010
$\Sigma_{\alpha}\Gamma(Z_N' \to H_{\alpha}H_{\alpha})$ (inert Higgses)	0.39
$\Sigma_j \Gamma(Z_N' \to \tilde{\chi}_j \tilde{\chi}_j)$ (gauginos)	7.92×10^{-5}
Γ_{tot} (all)	27.45

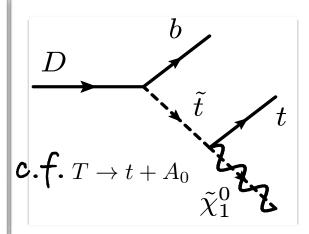
Exotic D-particles

Kang, Langacker, Nelson

D-particles are coloured and may be pair produced at LHC D-particles may be Leptoquarks D→LQ or Diquarks D→QQ




D-fermion decays


Leptoquark

Leptoquark

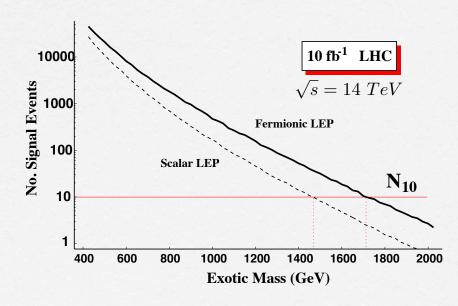
Díquark

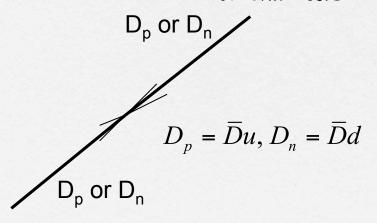
$$pp \to t\bar{t}\tau^+\tau^- + E_T^{miss} + X$$

$$pp \to b\bar{b} + E_T^{miss} + X$$

$$pp \to t\bar{t}b\bar{b} + E_T^{miss} + X$$

spectacular signals!


Kang, Langacker, Nelson

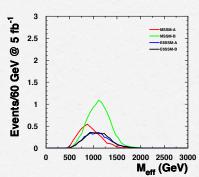

D-fermion as R-hadron

- Imposing B and Lall couplings DFF forbidden
- D-particle are quasi-stable R-hadrons, decay via

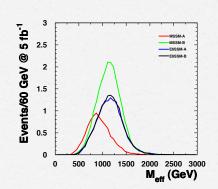
dim5 : D^cQH_dS , D^cQQu^c , $D^cQL\nu^c$.

punch through to muon chambers

Belyaev, Hall, King, Svantesson (preliminary)


Meff

$$M_{eff} = p_T^{miss} + \sum_{jets} |p_T^{jet}|$$


Meff does not really help to distinguish models

ATLAS style cuts

	MSSM-A								
No.	limit	Eff.	${\rm Frac.}$	Eff.	Frac.	Eff.	Frac.	Eff.	Frac
0	no cut	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
1	$p_T > 130$	0.12	0.88	0.19	0.81	0.40	0.60	0.40	0.60
2	$\begin{array}{c} p\!\!\!/_{T} > \!\!\!130 \\ p_{T}^{jet_{1}} > \!\!\!130 \end{array}$	0.42	0.51	0.04	0.77	0.03	0.58	0.03	0.59
3	$p_T^{jet_2} > 40$	0.13	0.44	0.01	0.76	0.00	0.58	0.00	0.58
4	$p_T^{jet_3} > 40$	0.36	0.28	0.11	0.68	0.04	0.56	0.04	0.56
5	$p_T^{jet_4} > 40$	0.55	0.13	0.20	0.54	0.11	0.50	0.11	0.50
$6 \Delta \phi$	$b(p_T, jet)_{min} > 0.4$	0.28	0.09	0.37	0.34	0.59	0.20	0.58	0.21
7	$p_T/M_{eff} > 0.25$	0.15	0.08	0.49	0.17	0.69	0.06	0.68	0.07

	0 500 1000 1500 2000 2500 3000 M _{eff} (GeV)
	0
Eve	1 / / \
inte	
9/8	2 // \
Events/60 GeV @	3 / //
>	4 / // \
(8)	5 — MSSM-B — E6SSM-A — E6SSM-B
5 fb	——MSSM-A ——MSSM-B
7	

CMS style cuts

CUT			MSSM-A		MSSM-B		E ₆ SSM-A		E ₆ SSM-B	
No.	limit	Eff.	Frac.	Eff.	Frac.	Eff.	Frac.	Eff.	Frac.	
0	no cut	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
1	$H_T > 200 \text{ GeV}$	0.58	0.42	0.34	0.66	0.47	0.53	0.47	0.53	
2	$p_T^{jet_1} > 50 \text{ GeV}$	0.00	0.42	0.00	0.66	0.00	0.53	0.00	0.53	
3	$p_T^{jet_2} > 50 \text{ GeV}$	0.13	0.37	0.02	0.64	0.01	0.52	0.01	0.53	
4	$p_T^{jet_3} > 50 \text{ GeV}$	0.43	0.21	0.13	0.56	0.06	0.49	0.06	0.50	
5	$\Delta \phi(p_T, jet_1) > 0.5$	0.02	0.21	0.02	0.55	0.03	0.48	0.03	0.48	
6	$\Delta \phi(p_T, jet_2) > 0.5$	0.05	0.19	0.08	0.50	0.12	0.42	0.12	0.42	
7	$\Delta \phi(p_T, jet_3) > 0.3$	0.04	0.19	0.07	0.47	0.10	0.38	0.10	0.38	
8	$\Delta R(jet, lep)_{min} < 0.3$	0.18	0.15	0.24	0.36	0.37	0.24	0.36	0.25	
9	$H_T > 800 \text{ GeV}$	0.88	0.02	0.49	0.18	0.38	0.15	0.38	0.15	

Two potential problems: rapid proton decay + FCNCs

- FCNC problem may be tamed by introducing a Z_2^H under which third family Higgs and singlet are even all else odd \rightarrow only allows Yukawa couplings involving third family Higgs and singlet H_u , H_d , S
- Z₂^H also forbids all DFF and hence forbids D decay (and p decay)
- \rightarrow Z_2^H cannot be an exact symmetry!

How do we reconcile D decay with p decay?

In E₆SSM can have extra discrete symmetries:

 Z_2^L under which L are odd \rightarrow forbids DQL, allows DQQ \rightarrow exotic D are diquarks

 Z_2^B with L & D odd \rightarrow forbids DQQ, allows DQL \rightarrow exotic D are leptoquarks

Or:-- small DFF couplings $\sim 10^{\text{-}12}$ will suppress p decay sufficiently while couplings $\sim 10^{\text{-}12}$ will allow D decay with lifetime <0.1 s (nucleosynth) N.B. $\Gamma_{\text{D}} \propto g^{\text{2}}$, $\Gamma_{\text{p}} \propto g^{\text{4}}$ (Howl, SFK)