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• RG flow provides a topology on the space 
of quantum field theories	



• Is RG flow always between isolated fixed 
points?	



• Are fixed points CFTs?	



• Is more exotic behaviour such as limit 
cycles possible?	



• Is RG flow gradient flow?	



• Is Unitarity crucial for these properties?

Since Wilson we know that QFTs should be considered	


as belonging to a space of QFTs with differing couplings



UV

UV, IR	


fixed	


points

UV fixed	


point, IR	



limit cycle

UV fixed	


point, IR	


chaos

Most of of our understanding of RG flow is	


based on fixed points, but limit cycles can	



exist in non unitary theories

Possible RG flows



Zamolodchikov c-theorem in 2 dimensions	


provides strong constraints on RG flow

Based just on em tensor conservation and unitarity
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Crucial properties

C̃ = Virasoro central charge at fixed points

Zamolodchikov metric

GIJ = x

2
x

2hOI(x)OJ(0)i

C̃(0) = cUV C̃(1) = cIR

positive for unitary theories

cUV > cIR



Basic eqs  for a-theorem

� d

dt
gI = �I(g) increases to the IRt

Fixed point �I(g⇤) = 0

a-theorem (minimal) aUV � aIR > 0

a-theorem (strong)

gradient flow

GIJ is a positive metric on couplings

T(IJ) = GIJ gradient flow requires integrability	


conditions on beta functions

   is stationary	


at a fixed point
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Cardy proposal in 4 dimensions

For a CFT on curved space

�µ⌫hTµ⌫i = c Weyl tensor

2 � a Euler density

Free theories

On flat space for a CFT

In simple versions of AdS/CFT a = c
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For conformally flat spaces, e.g. a sphere, the Weyl	


tensor vanishes



Is                       ? a > 0

First proper argument given by 
Hofman and Maldacena in 2008

Look at energy flux at infinity

E(n) = lim
r!1

Z 1

�1
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i(t, rn)

Requiring positivity in all directions  
restricts          to a triangular region, 	
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scalars, vectors give the extreme values of a/c
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Derivation of 4 dim RG eqs

Couplings

Consider Weyl rescalings �µ⌫ ! e2��µ⌫
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Defines GIJ , wI as well as c, a

There are crucial integrability conditions by 	


commuting Weyl rescalings for different   �

If            then the equation is equivalent to

�µ⌫hTµ⌫i = �IhOIi + c Weyl tensor

2 � a Euler density

@g = 0

@Ia = GIJ�J � L�wI

L�wI = �J@JwI + @I�
J wJ



In two dimensions there are very similar eqs

Consistency @Ic = GIJ�J � L�wI

L�wI = �J@JwI + @I�
J wJ

This is equivalent to Zamolodchikov’s eqs
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Let

ã = a + wI�
I

@I ã = TIJ�J TIJ = GIJ + @IwJ � @JwI

�I@I ã = GIJ�I�J

Then

ã = a at fixed points

Ambiguities

GIJ ⇠ GIJ + L�DIJ wI ⇠ wI + DIJ�J

ã ⇠ ã + DIJ�I�J



For irreversible RG flow require   
positive        GIJ

In two dimensions
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From this it follows that

GIJ ⇠ (x2)2hOI(x)OJ(0)i > 0

equivalent to Zamolodchikov metric



In four dimensions at a fixed point

Away from a fixed point        and        	


differ 
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In four dimensions for general renormalisable 
field theories	



with gauge couplings       Yukawa couplings       
quartic scalar couplings 

g Y

�

using perturbation theory

1 loop 2 loops 3 loops

GIJdgIdgJ = nV
dg2

g2
+ dY 2 + d�2

�(1)
� = �Y 4 , �(2)

Y = ��Y 3

Integrability gives constraints on beta functions



Possible proof of a-theorem in 4 dimensions

Komargodski & Schwimmer 2011,	


Luty, Polchinski & Rattazzi  2012

Based on constructing effective Lagrangians 	


for the dilaton. This couples to the trace of 	


the energy momentum tensor. In a CFT if 	


conformal symmetry is spontaneously broken	


then the dilaton is a physical Goldstone boson.	



The construction assumes a lot of folklore	


about effective Lagrangians and the role of	


anomalies.



The pole determines a non zero amplitude	


in a CFT for a massless dilation	


!

By assumption the CFT is invariant under 	


Weyl rescaling of the metric and a shift of the	


dilaton field

W [e2��µ⌫ , ⌧ + �] = W [�µ⌫ , ⌧ ]

A trivial solution is one which depends only on
�̃µ⌫ = e�2⌧�µ⌫
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This can be used to construct a low	


energy effective action for ⌧

If there are couplings     to operators with	


dimension          then  

g
� g ! e(4��)⌧g



The trace anomaly generates contributions	


involving        on flat space⌧

A effective kinetic term is may be constructed	


from R̃

r2⌧ = @µ⌧@µ⌧
On shell                                               

This determines the leading low energy 
contribution to the dilaton scattering amplitude

L
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Other contributions to 	


the effective action are 	


less important or vanish	


on shell
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At a fixed point the dilaton is formal and	


need not represent additional degrees of	


freedom,  a physical dilaton represents SSB	


for scale invariance	


Away from a fixed point such dilatons become 	


massive 

Crucial step in KS and LPR is in the effective	


dilaton action to take a ! aUV � aIR

Two arguments:   	


Anomaly matching of UV and IR fixed points,	


Removes the singular high energy behaviour of	


the dilaton theory

Assume              is defined along RG flow	


from  UV to IR

L
dilaton



Positivity of                 follows by assuming	


an unsubtracted dispersion relation for	


the forward dilaton-dilaton scattering 	


amplitude

aUV � aIR

Positivity obtains from positivity of	


the absorptive part of dilaton-dilaton	


forward scattering (unitarity)

A(s, 0) = A(�s, 0)

A(s, 0) ⇠ (aUV � aIR)
4
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aUV � aIR =
f4

2⇡

Z 1

0

ds

s3
ImA(s, 0)

ImA(s, 0) = s�(s) � 0



Perturbatively we expect

�(s) ⇠ 1

f4
�(g(s))2 s

�(s) ⇠ 1

f4
GIJ�

I(g(s))�J(g(s)) sor

but this is not straightforward to show	


the analysis is significantly more intricate	


than in two dimensions

It is not clear how to to carry through	


perturbative calculations beyond lowest	


order



Generalisations to higher dimensions	


!

Weyl anomalies are present in any even	


dimension	


In six dimensions there are three terms	


constructed from the Weyl tensor, as well	


as the six dimensional Euler density with	


coefficient 	


No good argument for	


The KS argument requires analysis of	


3 to 3 dilaton scattering and positivity	


of                   is problematic	


Perturbatively the metric is negative in      ,	


but this is rather unphysical 

a

a > 0

aUV � aIR
�3



AdS/CFT	


!

This provides an alternative route to an	


a-theorem if a CFT has an AdS dual	


Identify the radial direction away from 	


the boundary with the RG scale	


Construct a scalar from the metric which	


is monotonic under radial evolution subject	


to a positivity condition on the bulk 	


energy momentum tensor	


This works in any dimension 



In odd dimensions an analogue of	


can be found by considering contributions	


to the partition function on a sphere	


There is an analogue of a weak version	


of the     theorem, but no strong version	


in which       is stationary at a fixed point

The theorem is doubtless true for unitary	


theories, at least in even dimensions, but 	


the derivation, and the necessary 	


assumptions, is still rather murky

a

a
a



In general beta functions are not unique

@�̄ Z @�! @�̄0 @�0

if
Z = Z̄Z �̄0 = �̄Z̄ �0 = Z�

but             are not unique

�Z̄ = �Z̄! �Z = !Z
Z, Z̄

leads to �I ⇠ �I + (!g)I � ⇠ � + !

is the anomalous dimension matrix for � �

Conventionally           is hermitian but this	


is not essential	
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Fortin et al showed that at three loops	


there were solutions of

�I = (Sg)I

which appeared to generate limit cycles	


but

BI = �I � (Sg)I = 0

gives                    and hence CFT   Tµµ = 0

but the anomalous dimension matrix	


is then non hermitian and might have 	


non real eigenvalues


