GAUGE MEDIATION OF EXACT SCALE BREAKING

Alberto Mariotti

Institute for Particle Physics Phenomenology (IPPP) Durham University, UK

> 3 February 2014 University of Sussex

Based on arXiv:1312.5335 with Steve Abel

PLAN AND MOTIVATIONS

- Naturalness problem in the Standard Model (SM)
- Strategy: symmetries to protect Higgs mass
- Scale symmetry as candidate
- Review of popular scenarios where scale symmetry plays a role
 - 125 GeV scalar as a dilaton
 - Classical scale invariance and Coleman Weinberg mechanism
- In this talk: DIFFERENT APPROACH FOR SCALE INVARIANCE

EXACT (QUANTUM LEVEL) SCALE INVARIANCE IN THE UV

- Gauge mediation principle for scale invariance breaking
- Phenomenological consequences in the resulting Higgs potential

NATURALNESS PROBLEM IN THE SM

- Higgs boson discovered in July 2012
- Unique elementary scalar in the Standard Model

HIERARCHY PROBLEM

- Higgs mass is unique dimensionful parameter in the SM
- Hierarchy problem: why $\Lambda_{EW} \ll M_{Plank}$?

TECHNICAL HIERARCHY PROBLEM

- Scalars are (quadratically) sensitive to high scale physics (e.g. M_{Planck})
- How and Why EW scale is stable under quantum corrections?
- Where is the scale of new physics?

Naturalness problem is even more timely now, given the existence of the scalar particle

NEW PHYSICS AND EXTRA SYMMETRY PROTECTION

Expectations:

- New physics at relatively low scale, so effective cut-off is small
- Extra symmetry to protect Higgs mass

POSSIBLE ROUTES:

HIGGS AS A GOLDSTONE MODE OF A BROKEN SYMMETRY

- Global symmetry (Composite Models, Little Higgs)
- Scale invariance (Higgs is actually a dilaton)

SYMMETRY TO PROTECT HIGGS MASS FROM QUANT. CORRECTIONS

- Supersymmetry
- Scale invariance

SCALE SYMMETRY IN 4 DIMENSIONS

Scaling of coordinates and operators

$$x \to e^{-\alpha} x \qquad \mathcal{O} \to e^{d_{\mathcal{O}}\alpha} \mathcal{O}$$

Action transforms as

$$S = \int d^4x \sum_i g_i \mathcal{O}_i \quad \delta_{\alpha} S = \int d^4x \sum_i (d_{\mathcal{O}_i} - 4) g_i \mathcal{O}_i + \beta_i(g) \frac{\partial}{\partial g_i} \mathcal{L} = \int d^4x T^{\mu}_{\mu}$$

• If $d_{\mathcal{O}_i} = 4$ and $\beta_i(g) = 0$ theory is scale invariant

NON LINEAR REALIZATION OF SCALE INVARIANCE

- Assume that scale invariant is spontaneously broken at scale *f_c*
- Goldstone mode is the massless dilaton σ , which transforms as

$$\sigma \to \sigma + \alpha f_c \qquad \chi = f_c e^{\frac{\sigma}{f_c}} \to e^{\alpha} \chi$$

• NLR: Scale breaking is compensated by: $\frac{\sigma}{f_c} = \log \frac{\chi}{f_c}$

$$S_{NLR} = S - \int d^4x \frac{\sigma}{f_c} T^{\mu}_{\mu} \qquad \Rightarrow \qquad \delta_{\alpha} S_{NLR} = 0$$

CAN THE 125 SCALAR BE THE DILATON? GOLDBERGER, GRINSTEIN, SKIBA '07

- Higgs vev sets all the masses in the SM
- Assume Scale Invariance is spontaneously broken at a scale $f_c \simeq \Lambda_{EW}$
- $\bullet \ \Rightarrow$ Light scalar (the Dilaton) in the low energy spectrum
- Some amount of explicit scale breaking to provide dilaton a mass
- The light observed scalar could be the dilaton!
- Dilaton couplings proportional to scale anomaly
- $\bullet\,\Rightarrow$ e.g. Tree level fermion mass and gluon beta function

$$\mathcal{L}_{SM+Dilaton} \supset rac{\sigma}{f_c} m_\psi ar{\psi} \psi - rac{eta_{g_3}}{g_3} rac{\sigma}{f_c} G_{\mu
u} G^{\mu
u}$$

MAIN OUTCOMES

- Deviations in Dilaton coupling to massless gauge boson w.r.t. the SM Higgs
- Restoration of scale invariance (new physics) not too far from EW scale (all scales naturally of order *f_c*)
- Typically Dilaton mass also of order f_c

SCALE INVARIANCE TO PROTECT HIGGS MASS

- The Higgs is a fundamental scalar (doublet as in the SM)
- Mass terms are forbidden in scale invariant theory
- $\bullet \Rightarrow$ Higgs mass term could be protected by scale symmetry
- But: Scale symmetry is explicitly broken by RG running (Quantum Anomaly)

TWO APPROACHES

CLASSICAL SCALE INVARIANCE

BARDEEN '95; MEISSNER, NICOLAI '06; ...

- Scale invariance at a classical level as a principle
- Coleman Weiberg mechanism at quantum level breaks it

EXACT (QUANTUM) SCALE INVARIANCE

- Theory emanates from a quantum UV fixed point (analogous to asymptotic safety idea for gravity Weinberg '76; Litim '11; ...)
- Exact scale symmetry in the UV
- Spontaneous breaking at scale fc leads to relevant operators in the IR

COLEMAN WEINBERG MECHANISM

- Assume classical scale invariance is a principle
- $\bullet\,\Rightarrow$ Tree level lagrangian without dimensionful terms
- Scale symmetry is broken by quantum effects
- Example: complex scalar coupled to U(1) gauge boson
- Compute effective potential and renormalize it

$$V_{eff} = rac{\lambda}{4!} |\phi|^4 + rac{3g^4}{64\pi^2} |\phi|^4 \left(\log rac{|\phi|^2}{\mu^2} - rac{25}{6}
ight) \qquad rac{\partial^2 V}{\partial \phi^2} |_{\phi=0} = 0 \quad rac{\partial^4 V}{\partial \phi^4} |_{\phi=\mu} = \lambda$$

- We imposed by hand no generation of mass terms!
- Minimization leads to dimensional transmutation

$$\langle \phi \rangle = \mu e^{\frac{11}{6} - \frac{4\pi^2 \lambda}{9g^4}}$$

• Ratio of mass over vev is a prediction of the model

$$m_{\phi}^2 = rac{\partial V^2}{\partial \phi^2}|_{\phi=\langle \phi
angle} \qquad \qquad rac{m_{\phi}^2}{\langle \phi
angle^2} = rac{3g^4}{8\pi^2}$$

 $\bullet \ \Rightarrow \text{Cannot work in SM}$

Can classical symmetry be a guiding principle in a UV complete theory?

EXACT SCALE INVARIANCE AND THE HIGGS MASS

- UV complete the theory with exact scale invariance at quantum level
- In the UV, the theory merges into a CFT
- ⇒ Scale invariance restoration in the UV protects the Higgs mass from large radiative corrections coming from high energies
- Can this protect enough the Higgs mass?

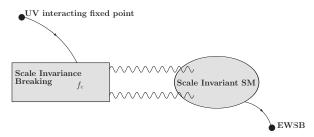
HIGGS MASS NATURALNESS AND SCALE INVARIANCE TAVARES, SCHMALTZ, SKIBA'13

- The UV fixed point cannot be free theory, otherwise it does not tame the divergences in Higgs mass \Rightarrow One needs an interacting UV fixed point
- Anyway there exists a high scale where the running of the couplings deviates from SM towards the UV fixed point
- The Higgs mass is sensitive to this scale (naively at one loop)
- $\bullet\,\Rightarrow$ This scale cannot be too large (few TeV)
- At this scale we expect new physics \leftarrow Experimental constraints

?? Can we improve these features ??

IDEA: MEDIATION OF EXACT SCALE BREAKING S.ABEL, A.M. '13

- Use a modular structure for the UV completion
- Split breaking of scale invariance (in a Hidden Sector) from SM sector
- Assume SM and Hidden Sector emanate from UV scale invariant theories
- Assume SM and Scale Breaking Sector (Hidden) are connected only via gauge interactions
- $\bullet \Rightarrow$ Add a loop of protection to Higgs mass w.r.t. previous arguments



- Scale invariance breaking is communicated to the Higgs via loops effects
- \Rightarrow Relevant operators proportional to f_c are generate in Higgs potential
- The true dilaton resides in the hidden sector and has mass $\sim f_c$

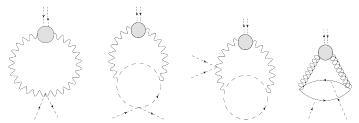
Setup

- Assume SM and Scale Breaking Sector are connected only via gauge interactions (perturbative)
- Lagrangian schematically (modular structure)

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{hid} + gA_{\mu}(J^{\mu}_{vis} + J^{\mu}_{hid})$$

• Parameterize hidden sector in terms of two point function

• Effective potential induced by loops of gauge fields with C_{hid} insertions



COMPUTATION OF EFFECTIVE POTENTIAL

$$V_{tree} = \lambda (HH^{\dagger})^2 \quad , \quad V_{loop} = \int \frac{d^4p}{(2\pi)^4} \log \left(1 + \frac{m_V^2}{p^2} + g^2 C_{vis}(p^2, H^2) + g^2 C_{hid}(p^2, f_c^2) \right) ,$$

- We are interested in relevant operators in the Higgs potential prop. to f_c
- Our assumptions imply that for $f_c \rightarrow 0$ no terms mixing the two sectors
- ullet \Rightarrow we can simplify computation focusing on

$$\delta_{f_c} V_{loop} = V_{loop}(f_c^2) - V_{loop}(f_c^2 = 0) \,.$$

• Keep large momentum expansion of SM gauge boson two point functions Bardin Passarino

$$\begin{split} 8\pi^2 C_{vis}^{SU(2)} &= \log(\frac{\mu^2}{p^2}) b'^{(2)} + \frac{m_H^2}{4p^2} (1 + \log\frac{m_H^2}{p^2}) - 6\frac{m_t^2}{p^2} + \frac{m_W^2}{4p^2} (51 - 13\log\frac{m_W^2}{p^2}) \\ 8\pi^2 C_{vis}^{SU(3)} &= \log(\frac{\mu^2}{p^2}) b'^{(3)} - 6\frac{m_t^2}{p^2} + \mathcal{O}(1/p^4) \end{split}$$

where
$$m_H^2=4\lambda HH^\dagger$$
, $m_W^2=rac{g_2^2}{2}HH^\dagger$ and $m_t^2=\lambda_t^2HH^\dagger$

Effective potential results

$$V_{e\!f\!f} = \lambda (HH^{\dagger})^2 + rac{9g_2^4 \mathcal{A}_2}{16\pi^2} f_{c(2)}^2 HH^{\dagger} \left(4\pi^2 - \lambda_t^2 (6 + 16 rac{f_{c(3)}^2 \mathcal{A}_3}{f_{c(2)}^2 \mathcal{A}_2} rac{g_3^4}{g_2^4}) + (\lambda - rac{13}{8} g_2^2) \log rac{HH^{\dagger}}{f_c^2}
ight)$$

 where we parameterize unknown hidden sector two point function integrals as

$$\mathcal{A}_{a} = \frac{1}{f_{c(a)}^{2}} \int \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{p^{2}} \left(C_{hid}^{(a)}(p^{2},0) - C_{hid}^{(a)}(p^{2},f_{c}^{2}) \right) , a = SU(2), SU(3)$$

- Different $f_{c(a)}^2$ and two point functions for SU(2) and SU(3) hidden sectors
- *A_a* naturally at least two loop suppressed
- \Rightarrow Loop suppressed $f_{c(a)}^2$ determine EW scale
- Parameterize Higgs as $H = e^{i\xi \cdot \tau} \begin{pmatrix} 0 \\ \phi/\sqrt{2} \end{pmatrix}$

• Minimization trades A_a for λ and ratio $\frac{m_h^2}{\langle \phi \rangle^2}$

$$rac{\partial V}{\partial \phi}|_{\phi=\langle \phi
angle} = 0, \qquad rac{\partial^2 V}{\partial \phi^2}|_{\phi=\langle \phi
angle} = m_h^2 \qquad \Rightarrow \mathcal{A}_2(\langle \phi
angle^2, m_h^2) \,, \, \mathcal{A}_3(\langle \phi
angle^2, m_h^2)$$

EFFECTIVE POTENTIAL SIMPLIFIED

• \Rightarrow Effective potential can be written in terms of only physical quantities

$$V = rac{\lambda}{4}\phi^4 + rac{1}{4}\phi^2\left(-m_h^2 + \left(m_h^2 - 2\langle \phi
angle^2 \lambda
ight)\log\left[rac{\phi^2}{\langle \phi
angle^2}
ight]
ight)\,.$$

• where minimization conditions implies (with $f_{c(2)} = f_{c(3)} = f_c$ for simplicity)

$$\begin{split} \mathcal{A}_{2} &= \frac{64\pi^{2}}{9g_{2}^{4}} \frac{X}{Y} \frac{m_{h}^{2}}{f_{c}^{2}} ; \qquad Y = 13g_{2}^{2} - 8\lambda ; \qquad X = \frac{2\langle \phi \rangle^{2}\lambda}{m_{h}^{2}} - 1 \\ \mathcal{A}_{3} &= \frac{\pi^{2}}{18g_{3}^{4}\lambda_{t}^{2}} \left(1 + 16\frac{X}{Y}(2\pi^{2} - 3\lambda_{t}^{2}) - \frac{X}{\pi^{2}}\log\frac{\langle \phi \rangle^{2}}{2f_{c}^{2}} \right) \frac{m_{h}^{2}}{f_{c}^{2}} \end{split}$$

- Observations:
 - Electroweak scale two to three loops suppressed with respect to fc

$$f_c \sim 10 - 100 \text{ TeV}$$

- Hidden sectors (A₂ and A₃) related to λ and ratio ^{m²_h}/_{(h)²}
- e.g.: given a value of λ , A_2 should be > 0 or < 0 to obtain correct EWSB
- Higgs self coupling \u03c6 characterizes different phenomenologies

MINIMAL COMPUTABLE CASE

- Assume hidden sector made of fermions and bosons with anomalous dimensions
- Matter in the Hidden Sector has mass *f_c*
- Matter content to compensate β function of SM gauge coupling
- C_{hid} can be computed perturbatively (1-loop) as a function of

$$n_B = \sum_{bosons} C(r_{\phi})$$
 $n_F = \sum_{fermions} C(r_{\psi})$ γ_B γ_F

• \Rightarrow Simple expressions for \mathcal{A}_a integral

$$\mathcal{A}_{a} = \frac{1}{(16\pi^{2})^{2}} \left(2 \left(b_{0}^{SM} \right)_{(a)} + \frac{4n_{B}^{(a)}}{(\gamma_{B}^{(a)})^{2}} - \frac{8n_{F}^{(a)}}{\gamma_{F}^{(a)}} \right) \qquad a = SU(2), SU(3)$$

- Two independent sets of quantities for sector associated to SU(2) and SU(3)
- \mathcal{A}_2 and \mathcal{A}_3 generically positive for this minimal perturbative model

~

TOY MODEL SM: BANKS-ZAKS FIXED POINT

• SU(N) theory with F Dirac fermions and a singlet scalar

$$\mathcal{L} = -\frac{1}{4g^2}F_{\mu\nu}^2 + i\bar{\psi}\gamma.D\psi + \frac{1}{2}\left(\partial h\right)^2 - \left(y\bar{t}th + h.c.\right) - \lambda h^4$$

- Only F' fermions *t* are coupled to the singlet scalar (F' < F)
- Compute the beta function of the couplings

$$\beta_{\alpha_g} = -2\alpha_g^2 N \left[\frac{11}{3} - \frac{2}{3} \frac{F}{N} + \alpha_y \frac{F'}{N} \right] - 2a_g^3 N^2 \left[\frac{34}{3} - \frac{F}{N} \left(\frac{13}{3} - \frac{1}{N^2} \right) \right], \quad \beta_{\alpha_y}, \quad \beta_{\alpha_\lambda}$$

- Look for $\beta_i = 0$ solution
- Compensate one loop with two loops in gauge coupling beta function

$$F = \frac{11}{2}N(1-\epsilon) \qquad \Rightarrow b_0 \sim \epsilon > 0$$

• \Rightarrow There is a fixed point ($\beta_i = 0$) with couplings

$$4\pi N\left\{\alpha_{g*}, \, \alpha_{y*}, \, \alpha_{\lambda*}\right\} = 4\pi \frac{11\epsilon}{50} \left\{\frac{4}{3}, \, \frac{N}{F'}, \, \frac{N}{2F'}\right\} \qquad 0 < \epsilon \ll 1$$

- Stability analysis indicates that it is stable as soon as $\epsilon > 0$
- Perturbative provided $F' \ge N$

TOY MODEL

TOY MODEL SM

- Consider $SU(3)_{color}$ at a BZ fixed point
- We need F = 15 and F' = 6 quarks
- Toy SM: SU(3) gauge group with F' = 6 flavours coupled to a singlet scalar (the Higgs)

TOY MODEL HIDDEN SECTOR

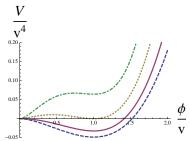
- F F' = 9 are not coupled to the Higgs and can be considered part of the hidden sector
- They are coupled only to SU(3) in the toy SM
- Embed F F' = 9 in a gauge theory with UV fixed point
- E.g. gauge diagonal $SU(9)_L \times SU(9)_R$ group and add other fermions and/or other scalars in the hidden sector (singlets under $SU(3)_{color}$) such that SU(9) has unstable UV fixed point (details in the paper)
- SU(9) gauge theory breaks scale invariance spontaneously

PHENOMENOLOGY OF HIGGS POTENTIAL

Independently from hidden sector dynamics the Higgs potential results

$$V = rac{\lambda}{4}\phi^4 + rac{1}{4}\phi^2\left(-m_h^2 + \left(m_h^2 - 2\langle\phi
angle^2\lambda
ight)\log\left[rac{\phi^2}{\langle\phi
angle^2}
ight]
ight)\,.$$

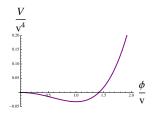
 Three different phenomenology depending on value of λ (related to hidden sector A_a, so depending on hidden sector properties)



Expansion around EWSB vacuum

$$V = \frac{1}{4} \left(\langle \phi \rangle^4 \lambda - m_h^2 \langle \phi \rangle^2 \right) + \frac{m_h^2 h^2}{2} + \left(\frac{m_h^2}{6 \langle \phi \rangle} + \frac{2 \langle \phi \rangle \lambda}{3} \right) h^3 + \left(\frac{\lambda}{3} - \frac{m_h^2}{24 \langle \phi \rangle^2} \right) h^4$$

SM LIMIT



SM LIMIT

•
$$\lambda = \frac{m_h^2}{2\langle \phi \rangle^2} \simeq \frac{1}{8}$$

Recover SM potential around EWSB vacuum

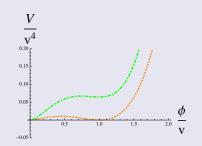
$$V=-rac{m_h^2\langle\phi
angle^2}{8}+rac{m_h^2}{2}h^2+rac{m_h^2}{2\langle\phi
angle}h^3+rac{m_h^2}{8\langle\phi
angle^2}h^2$$

- $\bullet \Rightarrow$ Retrofitted SM potential
- It can be achieved with $\mathcal{A}_2 = 0$ and $\mathcal{A}_3 > 0$
- \Rightarrow Pure $SU(3)_c$ mediated exact scale breaking

DEGENERATE OR METASTABLE EWSB

- $\lambda \gtrsim \frac{m_h^2}{\langle \phi \rangle^2} \simeq \frac{1}{4}$ EWSB vacuum is metastable
- Compute Lifetime of EWSB
 vacuum
- Bounce Action should be large

$$S_{O_4} \sim rac{2\pi^2 \langle \phi
angle^4}{V(\langle \phi
angle) - V(0)} \gtrsim 400$$



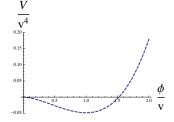
- $\Rightarrow 0.25 < \lambda \lesssim 0.45$ (using $\frac{m_h^2}{\langle \phi \rangle^2} \simeq \frac{1}{4}$) we can achieve a longlived metastable EWSB vacuum
- Enhancement of Higgs self-couplings compared with SM case
- e.g. Degenerate minima, zero vacuum energy for $\lambda = \frac{m_h^2}{\langle \phi \rangle^2}$

$$V=rac{m_h^2}{2}h^2+rac{5m_h^2}{6\langle\phi
angle}h^3+rac{7m_h^2}{24\langle\phi
angle^2}h^4+\mathcal{O}(h^5)$$

LOG POTENTIAL

- Very small λ
- Approximate potential is quadratic Logarithmic

$$V = \frac{1}{4}m_h^2\phi^2\left(\log\frac{\phi^2}{\langle\phi\rangle^2} - 1\right)$$



- $\bullet \ \Rightarrow \text{New mechanism for EWSB}$
- Similar to CW mechanism but with quadratic term
- Expansion around EWSB vacuum significantly different from SM case

$$V = -\frac{m_h^2 \langle \phi \rangle^2}{4} + \frac{m_h^2}{2} h^2 + \frac{m_h^2}{6 \langle \phi \rangle} h^3 - \frac{m_h^2}{24 \langle \phi \rangle^2} h^4 + \mathcal{O}(h^5)$$

Suppression of Higgs self-coupling compared with SM case

SUMMARY

- Assume SM and hidden sector emanate from UV scale invariant theories
- Assume SM and hidden sector only connected by SM gauge interactions
- Scale invariance is broken in the Hidden sectors at scale f_c
- Relevant operators are generate in the Higgs potential, proportional to f_c

$$\begin{split} V &= \frac{\lambda}{4}\phi^4 + \frac{1}{4}\phi^2 \left(-m_h^2 + \left(m_h^2 - 2\langle\phi\rangle^2\lambda\right)\log\left[\frac{\phi^2}{\langle\phi\rangle^2}\right] \right) \,. \\ V &= \frac{1}{4} \left(\langle\phi\rangle^4\lambda - m_h^2\langle\phi\rangle^2\right) + \frac{m_h^2h^2}{2} + \left(\frac{m_h^2}{6\langle\phi\rangle} + \frac{2\langle\phi\rangle\lambda}{3}\right)h^3 + \left(\frac{\lambda}{3} - \frac{m_h^2}{24\langle\phi\rangle^2}\right)h^4 \end{split}$$

• New physics scale fc is two or three loops enhanced w.r.t. EW scale

$$f_c \sim 10 - 10^2 \text{ TeV}$$

- λ and $rac{m_{h}^{2}}{\langle \phi
 angle^{2}}$ related to Hidden Sector loop integrals \mathcal{A}_{a}
- Contains SM limit and possible new phenomenologies (unusual Higgs potentials and self-couplings)
- Higgs couplings with SM particles are usual ones

OUTLOOK AND CONCLUSIONS

- We proposed a gauge mediation principle for exact scale breaking in SM
- Higgs mass protected from quantum corrections by UV scale invariance
- Gauge mediation structure protects Higgs mass sensitivity at two loops
- Different phenomenology in Higgs potential (self-couplings)
- Other Higgs couplings equal to SM case

!! SM UV-completion where only deviations are in Higgs self-coupling !!

- Given that self-couplings are only predicted possible deviations from SM
- ⇒ LHC prospects for measuring Higgs self couplings?
- Interesting new possible shape for Higgs potential
- ⇒ Cosmological consequences?
- New physics states in Hidden Sector quite heavy, possibly stable
- ⇒ Heavy dark matter candidates?
- ?? Other symmetries to protect the Higgs mass ??