Black holes in the
1/D expansion

w/ Tetsuya Shiromizu, Ryotaku Suzuki,
(G CICNERECRELCHICRERELE



0 e

Terrparaiure [ K



A dimensionless, adjustable parameter
is a good thing to have
for studying a theory



Quantum ElectroDynamics

Perturb around e? = 0



Quantum GluoDynamics
SU(3) Yang-Miills theory

No parameter?



Quantum GluoDynamics
SU(N) Yang-Mills theory

\

parameter!



What dimensionless
parameter in

Ruv = A gw?



R,uv = A 9uv

uv=0,..,D—1
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Quantum GR: SO(D-1,1) local Lorentz group

# graviton polarizations grows with D
BUT:
No topological expansion of Feynman diagrams
No arrangement into worldsheets

Strominger 1981
Bjerrum-Bohr 2004

Even worse: UV behavior infinitely bad



YM W Quantum GR
SU(N—©0) SO (D —o00,1)




Classical General Relativity
D-diml Einstein’s theory

Well-defined for all D

Many problems can be formulated keeping D

arbitrary
— D = continuous parameter
— expand in 1/D

Kol et al

RE+Suzuki+Tanabe



Classical General Relativity
D-diml Einstein’s theory

Large D

keeps essential physics of D=4
3 black holes

3 gravitational waves

simplifies the theory

reformulation in terms of other variables?



BH in D dimensions




Localization of interactions

Large potential gradient:

O (r)
Ty D3
®(r) ~ (7)
VCD ~ D/T‘O
To
—> Hierarchy of scales T
D

To
- K 1



Fixedr >ry, D —> o

NOREE

ds? - —dt* + dr* + r?dQp_,

Flat, empty space atr > ry

“Far-zone” limit



Black Hole scattering:

\ no deflection
\

“infinitely difficult to
catch a line of force”



Black Hole scattering

No absorption of waves
with wavelength

ANTO

Perfect reflection



No interaction

Holes cut out in Minkowski space



o °
We are keeping length scales ~ 1, finite as
we send D — oo

“Far-zone” limit



Now take a limit that does not
trivialize the gravitational field

(E)D_B =0(1) & r—r, <

o D

............ T'O
L. — T — Ty ~—

D

“Near-horizon” limit



Near-horizon geometry

rozP—3 dr?
ds? = — (1 -~ (70) )dtz + — (7;_0)13_3 +r2dQ,_,

D-3
r 2
(—) = cosh“p
To - finite

D as D — o




Near-horizon geometry

_— 2d string bh
4ré

Dg (_ tanh? P dtrzlear + dpz)

2 N
ds.; =

+ 12 (cosh p)*P dQ3_,

Soda 1993
Grumiller et al 2002



Physics at ~ 1y/D close to the
horizon is not trivial

Perfect absorption
of waves with

A ~ To/D
w~ D/ry

“Near-horizon” dynamics



Not an exact solution
Non-trivial interaction

“Near-horizon” dynamics



Near-horizon universality

2d string bh = near-horizon geometry
of all neutral non-extremal bhs

rotation = local boost

(along horizon)

cosmo const = 2d bh mass-shift



Large D Effective Theory

Solve near-horizon equations

integrate-out short-distance dynamics

— Boundary conds for far-zone fields

Long-distance effective theory



Black hole perturbations v’

all analytic

Scattering
Quasinormal modes
Ultraspinning instability

Holographic superconductors

Full non-linear GR v

General theory of static black holes: Soap-film theory

Black droplets
simple ODE

Non-uniform black strings



BH excitations (quasinormal modes)

“Decoupled” normalizable states
very few modes: O(D?)
slow modes w ~ D%/r,

non-universal

“Non-decoupled” non-normalizable states
most modes: O(D?)

fast modes w ~ D /1,

universal



BH perturbations: How accurate?

. 1
Small expansion parameter: p—

not quite good for D =4 ...



BH perturbations: How accurate?

. 1
Small expansion parameter: p—

not quite good for D =4 ...

1
2(D-3)

But it seems to be

not so bad in D = 4, if we can compute
higher orders

1

(in AdS: 200-1)

)



Quite accurate

Quasinormal frequency in D = 4 (vector-type)

—Im wry — 4D calculation

200 [

150

— Large D @ D=4

100 F

4

4

Calculation up to % yields 6% accuracy in D = 4

6% =

20 - 3))" |D=4



Fully non-linear GR @ large D



Large-D = neat separation bh / background

Replace bh — surface in background
What eqs determine this surface?



Derive them by solving Einstein’s eqgs

in near-horizon zone



Gradient hierarchy

Gradients L Horizon: d, ~ D
Gradients || Horizon: d, ~ 1




Static geometry: large D ansatz

d 2
dS NZ(Z) +g.Q..Q(,0;Z)d-Q-D 3

+ ¢ (0, z)dt2 +9,,(p,z)dz?




Solve radial Einstein’s eqs (w/ horizon at p = 0)

d 2
dS NZ(Z) +gQQ(P;Z)dQD 3

+gtt(p1 Z)dtz + gzz(p, Z)dZZ



Recall: near-horizon bh

2
ds? =1 (— tanh? p dt* + diz) +dz* +
D

ré (cosh p)*/P dQp_s



Solve radial Einstein’s eqs (w/ horizon at p = 0)

= Modulation along z of near-horizon geometry

ds? = N?(2) (—tanh? p dt? + %2) + f(p, 2)dz* +
D2 ’

R?(2) (cosh p)*P dQp_

N(z) : local redshift
R(z) : radius of SP~3



Black hole replaced by effective membrane
embedded in background

Induced metric:

= —N%(2)dt* + dz? + R*(2)dQp_s

L
W

N
|



Einstein vector-constraint in p:

V—9:tK = const
K = mean curvature of ‘horizon surface’

ds? ‘h = g, (2)dt? + dz? + R2(2)dQp_s
R(z)

VAV




Soap-film equation (redshifted)

V— 9t K = const

Valid up to NLO in 1/D (but not at NNLO)



Some applications



Soap bubble in Minkowski

ds? = —dt? + dz? + dr? + r?dQp_;
r=R(z)

R(2)

VAV




Soap bubble in Minkowski = Schw BH

V—9:iK = const = R'“+R2=1

R(2) = R(z) =sinz




Black droplets

Black hole at boundary of AdS

dual to CFT in BH background

AdS bulk

Numerical solution:

AdS boundary Figueras+Lucietti+Wiseman



N

I R(2)

AdS bulk

AdS boundary



V—0+K = const

z 1+z%2+R(2)2(1 —2?)
R(z) 1—z?

= R(z)' =—

> Z

I R(2)




Numerical code

zmin: 0.000001;
zmax: 0.67;
r0: .5;

1-\/r[ z]2~22 (1- r| z| 2]
z

r| z] 1. 22

NDSolve"r'[z]:- , ¥l zmin|: r0} ,r,| z,zmin, zmax



Black droplets




Non-uniform black strings

Z

R(z)

Numerical solution: Wiseman



Non-uniform black strings

Z

1D

K = const

— M'" + M'* + M = const



Non-uniform black strings

2M(z)

R(z) =1+ D

M),

sl




Limitations

1/D expansion breaks down when d, ~ D

e Highly non-uniform black strings

1/D 1/D

e AdS black funnels

S

)



In progress

Extensions of \/—g¢ K = const

Charged black holes

Rotating black holes

(Time-evolving black holes)



Conclusions



1/D: it works

(not obvious beforehand!)

(" )

(50 AHEAD




Static black holes
are soap bubbles

up to NLO in 1/D,
& possibly redshifted



Can we reformulate GR
around D— oo,
with black holes as
basic (extended) objects?






Quantum effects?

Dimensionful scale:

1
Lpianck = (Gh)D—Z

To

Quantum effects governed by
Lpianck



To

If ~ DO the bh is fully quantum:

LPlanck

Entropy — 0O
Temperature — oo

Evaporation lifetime — 0

But other scalings are possible



Scaling —>— with D:
Lpianck

how large are the black holes,

which quantum effects are finite at large D

Finite entropy: 7y/Lpigner ~ D2
Finite temperature: 9 /Lpignex ~ D

Finite energy of Hawking radn: 1y /Lpgncx ~ D?



Near-horizon limits
VS
Decoupling limits



Near-horizon geometries

Well-defined limiting geometry
Requires small parameter—scale separation

Well known: (near-)extremal black holes

small near-extremality parameter

2 _ N2 4 _ 12
VM * JM 2

M M? 1



(Near-)Extremal black holes

Throat geometries near-horizon

throat supports

() v

“decoupled” dynamics

e.g. AdS/CFT decoupling limit



(Near-)Extremal black holes

Decoupled dynamics:

finite-frequency

excitations that are
normalizable in n-h
geometry



Is the large D limit
a decoupling limit?



Is the large D limit
a decoupling limit?
No



Perturbative BH dynamics @ large D
is concentrated close to the horizon

States can be characterized in terms of
their properties within N-H geometry

e normalizable states
e non-normalizable states
e BF bound-violating states



but N-H geometry is not long throat

2 4rg 2 2
dss, = —( tanh? p dtZ,q + dp?) + r6dQ5_,

A\

small extent « 1y/D

D

crossed very quickly t,.4 = pol’
0

Most excitations not trapped within: non-decoupled



