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Quantum Gravity Effects in the Early Universe

One of the main difficulties of any theory of quantum gravity is to
obtain predictions (that are realistically testable) and confront them
to experiment or observations.

The best hope in this direction appears to lie in the very early
universe, where quantum gravity effects are expected to be strong
and may have left some imprints on the cosmic microwave
background (CMB). What form could these imprints have?

In this talk, I will focus on loop quantum cosmology (LQC) and some
potential predictions concerning the CMB.

Caveat: the dynamics of LQC (just like general relativity) depend on
the matter content. Therefore the predictions of LQC will strongly
depend on what the dominant matter field (radiation, inflaton, . . . )
is during the bounce.
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The CMB and the Matter Bounce

Precision measurements of the temperature anisotropies in the CMB
indicate the perturbations are nearly scale-invariant, with a slight red
tilt. Inflation is one model known to generate scale-invariant
perturbations, but it is not the only one.

An alternative to inflation is the matter bounce scenario: Fourier
modes that are initially in the quantum vacuum state that exit the
Hubble radius in a contracting matter-dominated Friedmann universe
become scale-invariant. [Wands]

Then, if this contracting branch can be connected to our currently
expanding universe via some sort of a bounce, these scale-invariant
perturbations can provide suitable initial conditions for the expanding
branch. [Finelli, Brandenberger]
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Cosmological Perturbation Theory

A commonly used gauge-invariant variable for scalar perturbations is
the comoving curvature perturbation R. In particular, the main
quantity of interest is the power spectrum

∆2
R(k) =

k3

2π2
|Rk |2 ∼ A ·

(
k

k?

)ns−1

.

However, for calculations the Mukhanov-Sasaki variable

v = zR, z =
a
√
ρ + P

csH
,

is commonly used since the differential equation that governs its
dynamics is particularly simple:

v ′′k + c2
s k

2vk −
z ′′

z
vk = 0.
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Review of the Matter Bounce

For a contracting matter-dominated (P = 0) FLRW universe,

a(η) = η2, −∞ < η < 0.

Then, the Mukhanov-Sasaki equation becomes

v ′′k + c2
s k

2vk −
2

η2
vk = 0,

as z ′′

z
= a′′

a
= 2

η2 , and the solution to this differential equation is

vk = A1

√
−ηH (1)

3
2

(−cskη) + A2

√
−ηH (2)

3
2

(−cskη).

At early times, |η| � 1 and the Fourier modes are inside the horizon.
If one imposes quantum vacuum fluctuations as the initial conditions,
then A1 ∼

√
~,A2 = 0 and when the modes exit the (sound) horizon

they become scale-invariant.
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The ΛCDM Bounce

In this model the matter fields are radiation and cold dark matter
(CDM), and there is a positive cosmological constant Λ.

We expect the modes that exit the (sound) horizon during
matter-domination to have a scale-invariant spectrum.

Also, those that exit when the effective equation of state is slightly
negative (due to Λ) will have a slight red tilt, in agreement with
observations of the cosmic microwave background.

We assume that loop quantum cosmology (LQC) captures the
relevant high-curvature dynamics, in which case a bounce occurs near
the Planck scale and we can calculate the evolution of the
perturbations through the bounce using the LQC Mukhanov-Sasaki
equations.
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Outline

1 Homogeneous Background

2 Perturbations

3 Predictions
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Homogeneous Background I: ΛCDM Era

In the contracting branch, the dynamics of the
space-time will initially be dominated by the
cosmological constant Λ and afterwards by cold
dark matter.

During the transition between these
two epochs, there will be a period of
time where the effective equation of
state will be slightly negative.

The Fourier modes that exit the sound
horizon at this time will be nearly
scale-invariant with a slight red tilt.
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Loop Quantum Cosmology

After this, the space-time will be dominated by radiation, and we will
use LQC to model the dynamics in the high curvature regime.

In LQC, the quantization techniques of loop quantum gravity (LQG)
are applied to cosmological space-times. [Bojowald; Ashtekar, Paw lowski, Singh; . . . ]

The key steps are the following:

1. Use connection variables (rather than metric variables),

2. Express the field strength that appears in the Hamiltonian in
terms of the holonomy of the connection around a small loop,

3. Assume that the area of the loop is given by the minimal
non-zero eigenvalue of the area operator of LQG.

The result is a Hamiltonian (constraint) operator that can be solved.
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Homogeneous Background II: Radiation Era

The Hamiltonian constraint operator can be solved numerically, and
for a state that is semi-classical at late times —i.e., sharply-peaked
around a classical solution— the result is the following:

[Paw lowski, Pierini, WE]

An important result is that the
effective equation [Taveras]

H2 =
8πG

3
ρ

(
1− ρ

ρc

)
gives the dynamics of the
expectation value of the scale
factor at all times, including at
the bounce point.

Note that the bounce is generic and occurs also for states that are
not sharply-peaked.
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Some Approximations

In order to be able to analytically solve for the background and
perturbations, some approximations are necessary.

1. Split the evolution of the universe into two parts: ΛCDM and
radiation,

2. Assume constant equation of state during each of these eras:

a) ωeff = −δ during the ΛCDM era, with δ̇ = 0 and 0 < δ � 1,
b) ωeff = 1

3 during the radiation-dominated era.

3. Connect the two parts at the matter-raidiation time te by
imposing continuity in the scale factor and in the Hubble rate.

This is a reasonable approximation for the Fourier modes that exit
the sound horizon at a time when the effective equation of state is
ωeff = −δ: this is a mode by mode calculation.
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The Scale Factor

Choosing the bounce time to be t = 0 and setting the overall
normalization of the scale factor so that a(t = 0) = 1, the
approximations on the previous slide give

a(t) =

(
32πGρc

3
t2 + 1

)1/4

during radiation domination, and during the ΛCDM era

a(η) = ae

(
η − ηo
ηe − ηo

)2/(1−3δ)

, where ηo = ηe −
2

(1− 3δ)He
.

Here the subscript ‘e’ denotes matter-radiation equality.
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The Key Ingredients

The key ingredients in the ΛCDM bounce scenario that the
predictions will depend upon are the following:

The effective equation of state when the Fourier modes of
interest exit the sound horizon, ωeff = −δ (recall 0 < δ � 1),

The sound speed of CDM, cs = ε� 1,

The (proper) Hubble rate at the time of matter-radiation
equality He ,

The energy density of the radiation field at the time of the LQC
bounce, ρc ∼ ρPl.
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Scalar Perturbations I: ΛCDM Background

The Mukhanov-Sasaki equation in the ΛCDM background is

v ′′k + ε2k2vk −
2(1 + 3δ)

(1− 3δ)2(η − ηo)2
vk = 0.

The solution (as usual for a constant equation of state) is a Hankel
function. Assuming the quantum vacuum as the initial conditions,

vk =

√
−π~(η − ηo)

4
H (1)

n [−εk(η − ηo)],

where

n ≈ 3

2
+ 6 δ + O(δ2).

Note that to reach the long-wavelength limit, the scalar perturbations
only need to exit the sound horizon, which is smaller than the Hubble
radius by a factor of ε, the sound speed.
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Scalar Perturbations II: Radiation Background

The Mukhanov-Sasaki equation for a radiation-dominated space-time
(in the absence of quantum gravity effects) is

v ′′k +
k2

3
vk = 0,

and the solutions are simply plane waves. Requiring that vk and v ′k
be continuous during the transition between the ΛCDM era and the
radiation-dominated period gives

vk ∼
(
k−n cos

kηe√
3

+ k−n−1 sin
kηe√

3

)
cos

kη√
3

+ sin
kη√

3
.

Note that we have not imposed the condition that k |ηe |/
√

3� 1.
However, as we can see here already, this condition will be necessary
for scale-invariance.
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Scalar Perturbations in Loop Quantum Cosmology

In loop quantum cosmology, scalar perturbations can be studied using
the ‘separate universe’ approach. [Salopek, Bond; Wands, Malik, Lyth, Liddle]

Take a cubic lattice and assume that each cell is
homogeneous and isotropic. (The small variations
between the parameters in each cell correspond to
the perturbations.) Then the usual LQC
quantization of a flat FLRW space-time can be
done in each cell. [WE]

The resulting LQC effective equations for scalar perturbations are
expected to be valid for Fourier modes whose wavelength remains
much larger than `Pl. [Rovelli, WE] For these modes, the long-wavelength
Mukhanov-Sasaki equation in LQC is

v ′′k −
z ′′

z
vk = 0, z =

a
√
ρ + P

cs H
.
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Scalar Perturbations III: Bounce

Knowing the background evolution and the form of the perturbations
at the onset of the radiation-dominated era, the effective LQC
Mukhanov-Sasaki equation can be solved, giving a hypergeometric
function.

Then, by taking the limit of t � tPl, we obtain the form of the scalar
perturbations after the bounce:

∆2
R(k) =

k3

2π
|Rk |2 ∼

√
ρc
ρPl

· |He |`Pl

ε3
·
(

k

ko

)−12δ

,

where the co-moving curvature perturbation is Rk ∼ vk/a.

Here we have assumed that k |ηe |/
√

3� 1 in order to ensure that the
resulting spectrum is nearly scale-invariant.
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Tensor Perturbations

A similar calculation can be done for tensor modes, and the result is
that their resulting amplitude is predicted to be significantly smaller
than the amplitude of the scalar perturbations for two reasons:

1. The amplitude of the scalar perturbations are boosted by a
factor of ε−3,

2. The amplitude of the tensor perturbations is damped by a factor
of 1/4 during the bounce due to LQC effects.

The predicted tensor-to-scalar ratio is

r =
∆2

h(k)

∆2
R(k)

= 24ε3,

which satisfies the current observational
bound of r < 0.12 [Planck+BICEP2/Keck] for ε ∼ 0.1.
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An Asymmetric Bounce

To have scale-invariance, we required that

k |ηe |√
3
� 1.

It is easy to check that, defining η+
e to be the time of

matter-radiation equality in the expanding branch, for k observed in
the CMB today kη+

e ∼ 1.

Therefore, in order for the first condition to hold, |ηe | � η+
e . This

requires an asymmetric bounce where the radiation-dominated era
lasts longer in the expanding branch than in the contracting branch.

An asymmetric bounce has already been suggested to arise in LQC
due to the effect of particle production during the bounce. [Mithani, Vilenkin]

Whether this effect is strong enough to generate sufficient asymmetry
is not yet clear.
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The Effective Equation of State is not Constant

In the contracting branch during the ΛCDM epoch, the effective
equation of state is not constant. Rather,

dωeff

dη
> 0, ⇒ dωeff

dkh
> 0,

where the implication follows due to the fact that small k exit the
sound horizon first.

Recall that the k-dependence of the scalar power spectrum depends
directly on the effective equation of state when the Fourier mode
exits the sound horizon. The same relation holds for tensor modes.

Since the sound speed for tensor modes is larger (1� ε), the tensor
modes exit their sound horizon later than their corresponding scalar
modes. Therefore, by the above inequalities, the tensor index nt must
satisfy the relation

nt > ns − 1.
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The Running of the Scalar Index

Furthermore,

dns
dk

=
dns
dωeff

· dωeff

dk
=

d(1− 12δ)

d(−δ)
· dωeff

dk
> 0.

This is an important prediction, as inflation predicts the opposite:
therefore this effect can allow observations to differentiate between
inflation and the ΛCDM bounce.

Observations currently weakly favour a negative running: [Planck]

dns
d(ln k)

= −0.008± 0.016,

but a positive running is not ruled out.
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Are There Any LQC Effects?

In the model studied here, the bounce occurs due to LQC
quantum-gravity effects. But what happens if we consider a different
ΛCDM bounce, where the bounce occurs due to some other effect?

Most of the predictions are very robust. As we saw, the majority of
the features of the spectrum are determined by the physics of the
contracting branch far before the bounce and therefore the bounce
will not affect these predictions.

However, there is one exception: in LQC, we found that the
amplitude of the tensor modes is suppressed by a factor of 1/4 during
the bounce. Therefore, in other bouncing models (unless there is a
similar suppression of the tensor modes), we would expect a larger
value of r (for a given CDM sound speed ε).

This effect is a potential test for LQC versus other bouncing
cosmology models.
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Open Questions

There remain four main open questions in the ΛCDM bounce
scenario:

Amplitude of the running of ns: We showed that
dns/d(ln k) > 0, but to calculate the amplitude, more must be
known about the details of the pre-bounce era.

Particle production during the bounce: It has been pointed
out that particle production may be important during the LQC
bounce, but can it provide sufficient asymmetry?

Non-Gaussianities: A small sound speed typically causes large
non-Gaussianities. How large? What about the bounce?

Anisotropies during the bounce: In the absence of an
ekpyrotic phase, we expect anisotropies to dominate the
dynamics during the bounce. How might the presence of
anisotropies change the predictions?
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Conclusions

In the ΛCDM bounce scenario, quantum vacuum fluctuations become
nearly scale-invariant with a slight red tilt for the modes that exit the
sound horizon when the effective equation of state is slightly negative.

This model requires an asymmetric bounce, and makes three
important predictions beyond scale-invariance:

A small tensor-to-scalar ratio,

A positive running of ns , and

nt > ns − 1.

There is an LQC-specific effect of an extra damping of the
tensor-to-scalar ratio by a factor of 1/4 which is a potential
observational test for the theory.
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Thank you for your attention!
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