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Physics at the high energy frontier

I LHC now colliding protons at
13 TeV center-of-mass energy.

I Particle physics entering
precision phase in study of EW
symmetry breaking.

I Searching for new physics at the
highest energy ever attained.
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JET SUBSTRUCTURE AND
MACHINE LEARNING



Jets as proxies for partons

Because of color confinement, quarks and gluons shower
and hadronise immediately into collimated bunches of
particles.

Hadronic jets can emerge from a number of processes
I scattering of partons inside colliding protons,
I hadronic decay of heavy particles,
I radiative gluon emission from partons, . . .
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Jets are prevalent
at hadron colliders

[Figures by G. Salam]
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Jet algorithms and choice of jet radius

A jet algorithm maps final state particle momenta to jet momenta.

{pi}︸︷︷︸
particles

�⇒ { jk}︸︷︷︸
jets

This requires an external parameter, the jet radius R (typically R ∼ 0.4),
specifying up to which angle separate partons are recombined into a single
jet.

Basic idea of jet algorithm is to invert QCD branching process, clustering
pairs which are closest in metric defined by the divergence structure of the
theory.

di j � min(k2p
t ,i , k

2p
t , j)
∆2

i j

R2
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Boosted objects at the LHC

I At LHC energies, EW-scale particles (W/Z/t. . . ) are often produced
with pt � m, leading to collimated decays.

I Hadronic decay products are thus often reconstructed into single jets.

[Figure by G. Soyez]
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Boosted objects at the LHC

I Many techniques developed to identify hard structure of a jet based on
radiation patterns.

I In principle, simplest way to identify these boosted objects is by looking
at the mass of the jet.

I But jet mass distribution is highly distorted by QCD radiation and
pileup.
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Identifying boosted objects

Two main approaches to identify boosted decays:

1. Manually constructing substructure observables that help distinguish
between different origins of jets.

2. Apply machine learning models trained on large input images or
observable basis.

Aim of this talk: present a method bridging some of the gap between these
two techniques.
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Jet grooming: (Recursive) Soft Drop / mMDT

I Mass peak can be partly
reconstructed by removing
unassociated soft wide-angle
radiation (grooming).

I Recurse through clustering tree
and remove soft branch if

min(pt ,1 , pt ,2)
pt ,1 + pt ,2

> zcut

(
∆R12

R0

)β

W jet
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[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]

[FD, Necib, Soyez, Thaler arXiv:1804.03657]
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Substructure observables

I Variety of observables have been
constructed to probe the hard
substructure of a jet (V/H/t decay
lead to jets with multiple hard cores).

I Radiation patterns of colourless
objects (W/Z/H) differs from quark or
gluon jets.

I Efficient discriminators can be obtained
e.g. from ratio of N-subjettiness or
energy correlation functions.

τ
(β)
21 �

τ
(β)
2

τ
(β)
1

[Thaler, Van Tilburg JHEP 1103 (2011) 015]
[Larkoski, Salam, Thaler JHEP 1306 (2013) 108]
[Larkoski, Moult, Neill JHEP 1412 (2014) 009]
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Applying Machine Learning in Jet Physics

Recent wave of results in applications of ML algorithms to jet physics.

Two approaches seem particularly promising

I Convolutional Neural Networks used on representation of jet as image

I Recurrent Neural Networks used on jet clustering tree.
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Convolutational Neural Networks and Jet Images

I Project a jet onto a fixed n × n pixel image in rapidity-azimuth, where
each pixel intensity corresponds to the momentum of particles in that
cell.

I Can be used as input for classification methods used in computer
vision, such as deep convolutional neural networks.
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Recurrent Neural Networks and clustering trees

I Train a recurrent neural network on successive declusterings of a jet.
I Techniques inspired from Natural Language Processing with powerful

applications in handwriting and speech recognition.

[Louppe, Cho, Becot, Cranmer 1702.00748]
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THE LUND PLANE



Lund diagrams

I Lund diagrams in the (ln zθ, ln θ)
plane are a very useful way of
representing emissions.

I Different kinematic regimes are
clearly separated, used to illustrate
branching phase space in parton
shower Monte Carlo simulations and
in perturbative QCD resummations.

I Soft-collinear emissions are emitted
uniformly in the Lund plane

dw2 ∝ αs
dz
z

dθ
θ
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Lund diagrams

Features such as mass, angle and momentum can easily be read from a
Lund diagram.

jet mass ≡ m2

p2
t R2 ≈ z1θ2

1
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Lund diagrams for substructure

Substructure algorithms can often also be interpreted as cuts in the Lund
plane.

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
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Studying jets in the Lund plane

Lund diagrams can provide a useful approach to study a range of jet-related
questions

I First-principle calculations of Lund-plane variables.
I Constrain MC generators, in the perturbative and non-perturbative

regions.
I Brings many soft-drop related observables into a single framework.
I Impact of medium interactions in heavy-ion collisions.
I Boosted object tagging using Machine Learning methods.

We will use this representation as a novel way to characterise radiation
patterns in a jet, and study the application of recent ML tools to this picture.
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Lund plane representation

To create a Lund plane representation of a jet, recluster a jet j with the
Cambridge/Aachen algorithm then decluster the jet following the hardest
branch.

1. Undo the last clustering step, defining two subjets j1 , j2
ordered in pt .

2. Save the kinematics of the current declustering
∆ ≡ (y1 − y2)2 + (φ1 − φ2)2 , kt ≡ pt2∆,

m2 ≡ (p1 + p2)2 , z ≡
pt2

pt1+pt2
, ψ ≡ tan−1 y2−y1

φ2−φ1
.

3. Define j � j1 and iterate until j is a single particle.
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Lund plane representation
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Lund representation of a jet

I Each jet has an image
associated with its primary
declustering.

I For a C/A jet, Lund plane is filled
left to right as we progress
through declusterings of hardest
branch.

I Additional information such as
azimuthal angle ψ can be
attached to each point. 0 1 2 3 4 5 6 7 8

ln(R/ )

4

2

0
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ln
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Lund image for a 2 TeV QCD jet
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Analytic study of the Lund plane

To leading order in perturbative QCD and for ∆ � 1, one expects for a
quark initiated jet

ρ ' αs(kt)CF

π
z̄
(
pgq(z̄) + pgq(1 − z̄)

)
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ln
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I Lund plane can be calculated
analytically.

I Calculation is systematically
improvable.
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Declustering other jet-algorithm sequences

I Choice of C/A algorithm to create clustering sequence related to
physical properties and associated to higher-order perturbative
structures

I anti-kt or kt algorithms result in double logarithmic enhancements
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2 (∆, κ) ' +8CF CA ln2 ∆

κ
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F ln2 ∆
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Declustering other jet-algorithm sequences

I Choice of C/A algorithm to create clustering sequence related to
physical properties and associated to higher-order perturbative
structures

I anti-kt or kt algorithms result in double logarithmic enhancements

 0

 200

 400

 600

 800

 1000

 1200

         

ρ_ 2

Lund plane at O(αs
2) - anti-kt

anti-kt

h22
(anti-kt) L2

 0
 50

 100
 150
 200
 250

-8 -7 -6 -5 -4 -3 -2 -1  0

2<log(1/Δ)<2.52<log(1/Δ)<2.5

ρ_ 2
 -

 h
2

2
 L

2

log(κ)

-1000
-800
-600
-400
-200

 0
 200
 400
 600
 800

        

ρ_ 2
Lund plane at O(αs

2) - kt

kt

h22
(kt) L2

 0

 200

 400

 600

 800

 1000

-14 -12 -10 -8 -6 -4 -2  0

2<log(1/Δ)<2.52<log(1/Δ)<2.5

ρ_ 2
 -

 h
2

2
 L

2

log(κ)

 0

 100

 200

 300

 400

 500

 600

 700

 800

        

ρ_ 2

Lund plane at O(αs
2) - C/A

C/A

ρ
_

2,rc
(C/A)

 0

 50

 100

 150

 200

-14 -12 -10 -8 -6 -4 -2  0

2<log(1/Δ)<2.52<log(1/Δ)<2.5

ρ_ 2
 -

 ρ_ 2
,r

c

log(κ)

Frédéric Dreyer 21/42



Declustering other jet-algorithm sequences
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Lund images for QCD and W jets

I Hard splittings clearly visible, along the diagonal line with jet mass
m � mW .
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Lund images for QCD and W jets

I Non-perturbative contributions affect specific parts of the image.
I Main differences due to presence of wide-angle UE emissions and soft

particles.
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Discriminating features in the Lund plane

I Can identify discriminating features by considering log ratio of
averaged images.

I W peak is clearly visible – but after cuts, depletion of emissions at
relatively large angles remains distinctive signature.
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Secondary Lund plane

I Secondary Lund planes are ignored: some information is therefore
lost, but still achieves good performance.

I This limitation can be overcome by extending the methods we will
discuss to include secondary planes as inputs.
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Non-perturbative effects

I Hadronisation corrections appear at the bottom of the Lund plane,
below ln kt ∼ 0.5.

I Underlying event leads to changes in the large angles region.
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Non-perturbative effects

I Hadronisation corrections appear at the bottom of the Lund plane,
below ln kt ∼ 0.5.

I Underlying event leads to changes in the large angles region.
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Detector effects

I Detector effects have significant impact on the Lund plane at angular
scales below the hadronic calorimeter spacing.

I Two enhanced regions corresponding to resolution scale of HCal and
ECal.
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Subjet-Particle Rescaling Algorithm (SPRA)

Mitigate impact of detector granularity using a subjet particle rescaling
algorithm:

I Recluster Delphes particle-flow objects into subjets using C/A with
Rh � 0.12.

I Taking each subjet in turn, scale each PF charged-particle (h±) and
photon (γ) candidate that it contains by a factor f1

f1 �

∑
i∈subjet pt ,i∑

i∈subjet(h± ,γ) pt ,i
,

and discard the other neutral hadron candidates.
I If subjet doesn’t contain photon or charged-particle candidates, retain

all of the subjet’s particles with their original momenta.

Recluster the full set of resulting particles (from all subjets) into a single
large jet and use it to evaluate the mass and Lund plane.
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Subjet-Particle Rescaling Algorithm (SPRA)

Mitigate impact of detector granularity using a subjet particle rescaling
algorithm:
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APPLICATION TO BOOSTED W TAGGING



Tagging jets in the Lund Plane

We will now investigate the potential of the Lund plane for boosted-object
identification.

Two different approaches:

I A log-likelihood function constructed from a leading emission and
non-leading emissions in the primary plane.

I Use the Lund plane as input for a variety of Machine Learning methods.

As a concrete example, we will take dijet and WW events, looking at CA jets
with pt > 2 TeV.
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Log-likelihood use of Lund Plane: leading emission

Log-likelihood approach takes two inputs:

I First one obtained from the “leading” emission.
I The second one which brings sensitivity to non-leading emissions.

Leading emission is determined to be the first emission in the Lund
declustering sequence that satisfies z > 0.025 (∼ mMDT tagger)

Define a L` log likelihood function

L`(m , z) � ln
(

1
NS

dNS

dmdz

/
1

NB

dNB

dmdz

)
where the ratio of dNS/B

dmdz is the differential distribution in m and z of the
leading emission for signal sample (background) with NS(NB) jets.
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Log-likelihood use of Lund Plane: non-leading emissions

Non-leading (n`) emissions within the primary Lund plane are incorporated
using a function

Ln`(∆, kt ;∆(`)) � ln
(
ρ(n`)S

/
ρ(n`)B

)
where ρ(n`) is determined just over the non-leading emissions,

ρ(n`)(∆, kt ;∆(`)) �
dn(n`)emission

d ln kt d ln 1/∆ d∆(`)

/
dNjet

d∆(`)

as a function of the angle ∆(`) of the leading emission.
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Log-likelihood use of Lund Plane: non-leading emissions

Ln` log-likelihood function in a specific bin.
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Log-likelihood use of Lund Plane: full discriminator

Overall log-likelihood signal-background discriminator for a given jet is then
given by

Ltot � L`(m(`) , z(`)) +
∑
i,`

Ln`(∆(i) , k(i)t ;∆(`)) +N(∆(`))

where N � −
∫

d ln∆ d ln kt
(
ρ(`)S − ρ

(`)
B

)
.

Each subjet i in the sum brings information about whether it is in a more
background-like or signal-like part of the Lund plane.

Optimal discriminator if:

I Leading emission correctly associated with W ’s two-prong structure.
I Non-leading emissions are independent from each other.
I Emission patterns for those emissions depend only on ∆(`).
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Tagging with LL method

I Compare the LL approach in
specific mass-bin with equivalent
results from the Les Houches
2017 report (arXiv:1803.07977).

I Substantial improvement over
best-performing substructure
observable.
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ML applied to the Lund plane

A variety of ML methods can be applied to the Lund plane in order to
construct efficient taggers.

We will investigate three approaches:

I Convolutional Neural Networks (CNN) applied on 2D Lund images.
I Deep Neural Networks (DNN) applied on the sequence of

declusterings.
I Long Short-Term Memory (LSTM) networks applied on the sequence of

declusterings.
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CNN on Lund images for W tagging

I Lund images perform particularly
well at high transverse
momentum, were W → qq is
most separated on Lund plane.

I Performance on par with LL
method, better than regular jet
images at low efficiencies.
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Recurrent networks with a Lund plane

I Jets generally associated with a clustering trees, where
each node contains similar type of information.

I Particularly well-adapted for recurrent networks, which
loop over inputs and use the same weights.

I For each declustering node, we consider the inputs{
ln(R/∆R12), ln(kt/GeV)

}
I Inputs are IRC safe as long as there is a cutoff in

transverse momentum.
Figures from

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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DNN with the Lund plane

I Applying DNN directly to the
sequence of declusterings of the
hardest branch.

I Results very similar to previous
CNN approach.
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Long short-term memory networks

I Simple recurrent networks unable to handle dependencies that are
widely separated in the data.

I LSTM networks designed to have memory over longer periods, by
adding four layers for each module and including a no-activation
function.

[Hochreiter, Schmidhuber (1997)]

Figures from
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMs for jet tagging

I LSTM network substantially
improves on results obtained
with other methods.

I Large gain in performance,
particularly at higher efficiencies.
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Sensitivity to non-perturbative effects

I Performance compared to resilience to MPI and hadronisation corrections.
I Vary cut on kt , which reduces sensitivity to the non-perturbative region.
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good performance but is
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NP effects.
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CONCLUSIONS



Conclusions

I Discussed a new way to study and exploit radiation patterns in a jet
using the Lund plane.

I Lund kinematics can be used as inputs for W tagging with a range of
methods:
I Log-likelihood function.
I Convolutional neural networks.
I Recurrent and dense neural networks.

Simple LL approach can match performance obtained with recent ML
methods.

I While ML can achieve high performance, one needs to mindful of
resilience to poorly modeled contributions and systematic uncertainties.

Wide range of experimental and theoretical opportunities brought by
studying Lund diagrams for jets. A rich topic for further exploration.
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