

Leptogenesis: a tantalizing opportunity

Cosmology (early Universe) +

- · Cosmological Puzzles:
- Dark matter

0.1-1 eV

- Matter antimatter asymmetry
- Inflation
- Accelerating Universe
- · New stage in early Universe history:

```
- Inflation
~1016 GeV???
\lesssim 3 \times 10^{14} \text{ GeV}
                   -QCD freeze-in
                     Leptogenesis
      100 GeV
                   <u></u> EWSSB
   0.1-1 MeV
```

BBN

Recombination

Neutrino Physics, models of mass

Leptogenesis complements low energy neutrino experiments testing the seesaw high energy parameters and providing a guidance toward the model behind the seesaw

Two important questions:

- 1. Can leptogenesis help to understand neutrino parameters?
- 2. Vice-versa: can we probe leptogenesis with low energy neutrino data?
- A common approach in the LHC era: "TeV Leptogenesis"
- Is there an alternative approach based on high energy scale leptogenesis? Also considering that:
- > No new physics at LHC (not so far);
- New scale ~ 10¹⁶ GeV (intriguingly close to GUT scale) hinted by BICEP2 (TBC) and typically implying very high reheat temperatures;
- > Discovery of a non-vanishing reactor angle opening the door to completing leptonic mixing matrix parameters measurement;
- \succ Cosmological observations start to have the sensitivity to either rule our or discover quasi-degenerate neutrino masses and huge world efforts in improving $0v\beta\beta$ sensitivity

Neutrino mixing parameters

Pontecorvo-Maki-Nakagawa-Sakata matrix

$$\left|oldsymbol{
u}_{lpha}
ight
angle = \sum U_{lpha i} \left|oldsymbol{
u}_{i}
ight
angle$$

$$U_{\alpha i} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}_{\mathbb{R}}$$

$$|U|_{3\sigma} = \begin{pmatrix} 0.801 \to 0.845 & 0.514 \to 0.580 & 0.137 \to 0.158 \\ 0.225 \to 0.517 & 0.441 \to 0.699 & 0.614 \to 0.793 \\ 0.246 \to 0.529 & 0.464 \to 0.713 & 0.590 \to 0.776 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}$$

 $\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
e^{i\rho} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{i\sigma}
\end{pmatrix}$

Atmospheric, LB

Reactor, Accel.,LI CP violating phase

Solar, Reactor

bb0v decay

$$c_{ij} = \cos\theta_{ij}$$
, and $s_{ij} = \sin\theta_{ij}$

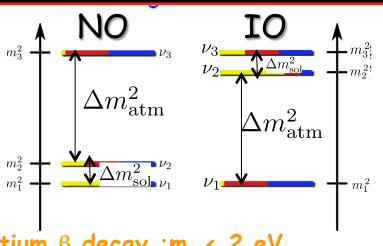
30 ranges(NO):

$$\theta_{23} = 38^{\circ} - 53^{\circ}$$

 $\theta_{12} = 32^{\circ} - 38^{\circ}$
 $\theta_{13} = 7.5^{\circ} - 10^{\circ}$
 $\delta, \rho, \sigma = [-\pi, \pi]$

(Forero, Tortola, Valle '14; Capozzi,Fogli, Lisi,Palazzo '14)

Neutrino masses: $m_1 < m_2 < m_3$



$$m_{\rm atm} \equiv \sqrt{\Delta m_{\rm atm}^2 + \Delta m_{\rm sol}^2} \simeq 0.05 \,\mathrm{eV}$$

 $m_{\rm sol} \equiv \sqrt{\Delta m_{\rm sol}^2} \simeq 0.009 \,\mathrm{eV}$

Tritium β decay : m_e < 2 eV (Mainz + Troitzk 95% CL)

 $\beta\beta$ Ov: $m_{\beta\beta}$ < 0.34 - 0.78 eV (CUORICINO 95% CL, similar from Heidelberg-Moscow)

 m_{68} < 0.12 - 0.25 eV

(EXO-200+Kamland-Zen 90% CL)

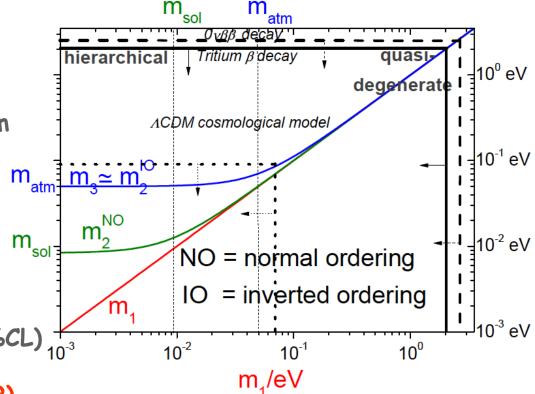
 $m_{\beta\beta}$ < 0.2 - 0.4 eV

(GERDA+IGEX 90% CL)

CMB+BAO+HO: Σ m_i < 0.23 eV (Planck+high-I+WMAPpoI+BAO 95%CL) $\frac{10^{-3}}{10^{-3}}$

 \Rightarrow m₁ < 0.07 eV

(some analyses find $m_1 \sim 0.1 \text{eV}???$)



The minimally extended SM

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{mass}^{\nu}$$

$$-\mathcal{L}_{\mathrm{mass}}^{\nu} = \bar{\nu}_L \, h \, \nu_R \Rightarrow -\mathcal{L}_{\mathrm{mass}}^{\nu} = v \, \bar{\nu}_L \, m_D \, \nu_R$$

Dirac Mass term

Neutrino masses

$$m_D = V_L^{\dagger} \operatorname{diag}(m_{D1}, m_{D2}, m_{D3}) U_R \Rightarrow m_i = m_{Di}$$

$$U = V_L^{\ell\dagger} V_L$$

Many unanswered questions:

- · Why neutrinos are much lighter than albother fermions?
- Why large mixing angles?
- Cosmological puzzles?
-why not a Majorana Mass term as well?

Minimal scenario of Leptogenesis (Fukugita, Yanagida '86)

$$\begin{array}{c|c} \underline{\text{Type I seesaw}} & \mathcal{L}_{\mathrm{mass}}^{\nu} = -\frac{1}{2} \left[(\bar{\nu}_L^c, \bar{\nu}_R) \left(\begin{array}{cc} 0 & \pmb{m}_D^T \\ \pmb{m}_D & \pmb{M} \end{array} \right) \left(\begin{array}{c} \nu_L \\ \nu_R^c \end{array} \right) \right] + h.c. \end{array}$$

In the see-saw limit $(M \gg m_D)$ the mass spectrum splits into 2 sets:

• 3 light Majorana neutrinos with masses

$$\operatorname{diag}(m_1, m_2, m_3) = -U^{\dagger} m_D \frac{1}{M} m_D^T U^{\star}$$

• 3 very heavy Majorana RH neutrinos N_1 , N_2 , N_3 with masses $M_3 > M_2 > M_1 >> m_D$

$$N_i \stackrel{\mathsf{\Gamma}}{\longrightarrow} l_i \, H^\dagger \qquad \qquad N_i \stackrel{\mathsf{\overline{\Gamma}}}{\longrightarrow} \overline{l}_i \, H$$

On average one N_i decay produces a B-L asymmetry given by its

$$\begin{array}{c} \text{total CP} \\ \text{asymmetries} \end{array} \varepsilon_i \equiv -\frac{\Gamma_i - \bar{\Gamma}_i}{\Gamma_i + \bar{\Gamma}_i} \\ \end{array} \qquad N_{B-L}^{\text{fin}} = \sum_i \varepsilon_i \, \kappa_i^{\text{fin}} \end{array}$$

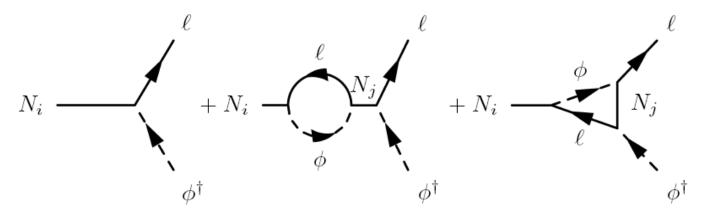
$$N_{B-L}^{\mathsf{fin}} = \sum_{i} \varepsilon_{i} \, \kappa_{i}^{\mathsf{fin}}$$

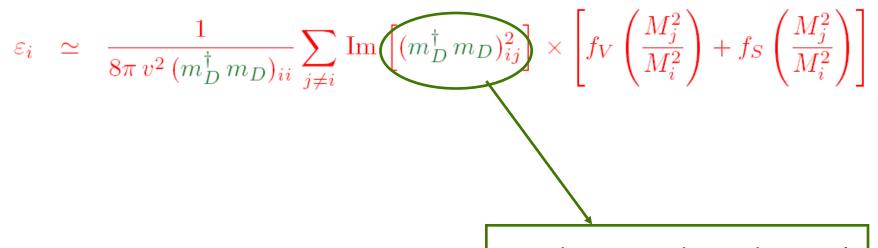
·Thermal production of RH neutrinos (Kuzmin, Rubakov, Shaposhnikov '85)

$$T_{RH} \gtrsim M_{i} / (2 \div 10) \gtrsim T_{sph} \simeq 100 \text{ GeV} \Rightarrow \eta_{B} = a_{sph} rac{N_{B-L}^{nn}}{N_{\gamma}^{rec}} = \eta_{B}^{CMB} = (6.1 \pm 0.1) imes 10^{-10}$$

Total CP asymmetries

(Flanz, Paschos, Sarkar'95; Covi, Roulet, Vissani'96; Buchmüller, Plümacher'98)





It does not depend on U!

Seesaw parameter space

Imposing $\eta_B = \eta_B^{CMB} \approx 6 \times 10^{-10} \Rightarrow$ can we test seesaw and leptog.?

Problem: too many parameters

(Casas, Ibarra'01)
$$m_{\nu} = -m_{D} \frac{1}{M} m_{D}^{T} \Leftrightarrow \Omega^{T} \Omega = I$$
 Orthogonal parameterisation
$$\boxed{ m_{D} } = \boxed{ U \left(\begin{array}{c} \sqrt{m_{1}} 0 \ 0 \\ 0 \ \sqrt{m_{2}} \ 0 \\ 0 \ 0 \ \sqrt{M_{2}} \ 0 \\$$

(in a basis where charged lepton and Majorana mass matrices are diagonal)

The 6 parameters in the orthogonal matrix Ω encode the 3 life times and the 3 total CP asymmetries of the RH neutrinos

A parameter reduction would help and can occur in various ways:

- $> \eta_B = \eta_B^{CMB}$ is satisfied around "peaks"
 - some parameters cancel in the asymmetry calculation
 - imposing independence of the initial conditions
- > imposing some condition on mn
- > additional phenomenological constraints (e.g. Dark Matter)

Vanilla leptogenesis

(Buchmüller,PDB,Plümacher '04; Giudice et al. '04; Blanchet, PDB '07)

1) Lepton flavor composition is neglected

$$N_{i} \xrightarrow{\Gamma} l_{i} H^{\dagger} \qquad N_{i} \xrightarrow{\Gamma} \overline{l_{i}} H$$

$$N_{B-L}^{\text{fin}} = \sum_{B} \varepsilon_{i} \kappa_{i}^{\text{fin}}$$

$$\Rightarrow \eta_{B} = a_{\text{sph}} \frac{N_{B-L}^{\text{fin}}}{N_{C}^{\text{rec}}} = \eta_{B}^{CMB} = (6.1 \pm 0.1) \times 10^{-10}$$

2) Hierarchical spectrum (M₂
$$\gtrsim$$
 2M₁)

3) N₃ do not interfere with N₂:

$$(m_D^{\dagger} m_D)_{23} = 0$$

$$\Rightarrow N_{B-L}^{\mathrm{fin}} = \sum_{i} \varepsilon_{i} \, \kappa_{i}^{\mathrm{fin}} \simeq \varepsilon_{1} \, \kappa_{1}^{\mathrm{fin}}$$

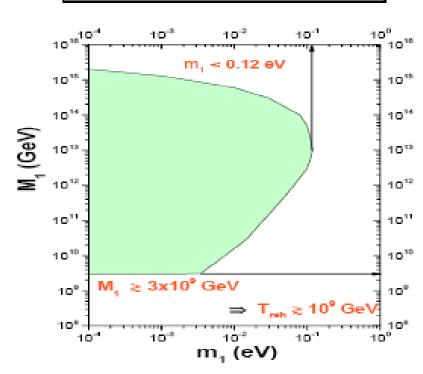
4) Barring fine-tuned cancellations

(Davidson, Ibarra '02)

$$\varepsilon_1 \le \varepsilon_1^{\text{max}} \simeq 10^{-6} \left(\frac{M_1}{10^{10} \text{ GeV}} \right) \frac{m_{\text{atm}}}{m_1 + m_2}$$

5) Efficiency factor from

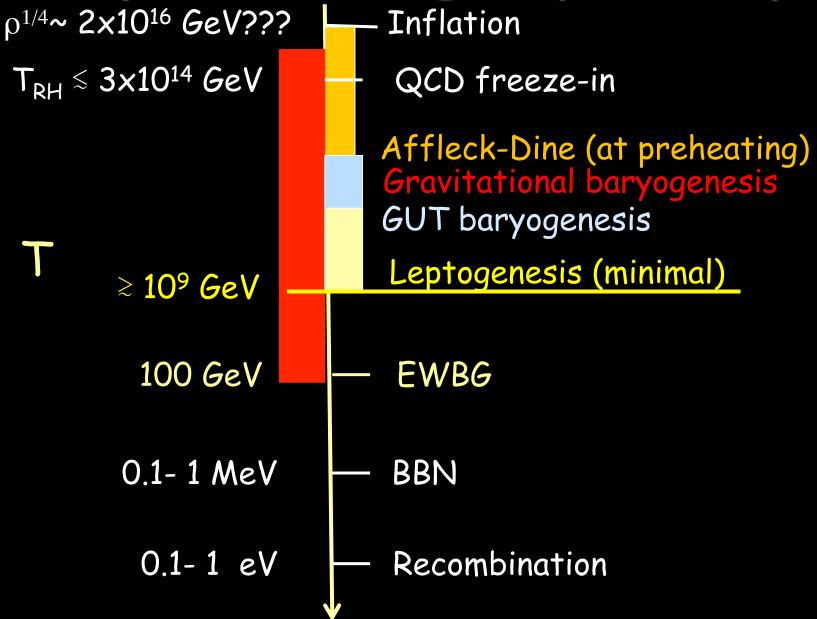
$$\kappa_1^{\text{fin}}(K_1) = -\int_{-\infty}^{\infty} dz' \, \frac{dN_1}{dz'} \, e^{-\int_{z'}^{\infty} dz'' \, W(z'')}$$



No dependence on the leptonic mixing matrix U

$$\kappa_1^{\text{fin}}(K_1) = -\int_{z_{\text{in}}}^{\infty} dz' \, \frac{dN_1}{dz'} \, e^{-\int_{z'}^{\infty} dz'' \, W(z'')}$$
 decay parameter: $K_1 \equiv \frac{\Gamma_{N_1}(T=0)}{H(T=M_1)}$

A pre-existing asymmetry?



Independence of the initial conditions

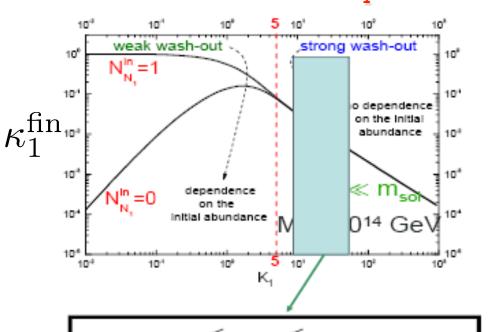
The early Universe "knows" the neutrino masses ...

(Buchmüller, PDB, Plümacher '04)

$$\eta_B \simeq 0.01 \, \varepsilon_1(m_1, M_1, \Omega) \, \kappa_1^{\text{fin}}(K_1)$$

decay parameter
$$K_1 \equiv \frac{\Gamma_{N_1}}{H(T=M_1)} \sqrt{\frac{m_{
m sol,atm}}{m_{\star} \sim 10^{-3}\,{
m eV}}} \sim 10 \div 50$$

Independence of the initial abundance of N₁



 $K_{\mathsf{SOI}} \simeq 9 \stackrel{<}{\sim} K_1 \stackrel{<}{\sim} 50 \simeq K_{\mathsf{atm}}$

wash-out of a pre-existing asymmetry

$$N_{B-L}^{
m p,final} = N_{B-L}^{
m p,initial} e^{-rac{3\pi}{8} K_1} \ll N_{B-L}^{
m f,N_1}$$

$$K_1 \gtrsim K_{\rm st}(N_{B-L}^{\rm p,i})$$

$$K_{\rm st}(x) \equiv \frac{8}{3\pi} \left[\ln \left(\frac{0.1}{\eta_B^{\rm CMB}} \right) + \ln |x| \right] \simeq 16 + 0.85 \ln |x|$$

SO(10)-inspired leptogenesis

(Branco et al. '02; Nezri, Orloff '02; Akhmedov, Frigerio, Smirnov '03)

Expressing the neutrino Dirac mass matrix m_D (in the basis where the Majorana mass and charged lepton mass matrices are diagonal) as:

$$m_D = V_L^{\dagger} D_{m_D} U_R$$
 $D_{m_D} = \text{diag}\{m_{D1}, m_{D2}, m_{D3}\}$

SO(10) inspired conditions*:

$$m_{D1} = \alpha_1 \, m_u \,, \, m_{D2} = \alpha_2 \, m_c \,, \, m_{D3} = \alpha_3 \, m_t \,, \, \, \, (\alpha_i = \mathcal{O}(1))$$
 $V_L \simeq V_{CKM} \simeq I$

From the seesaw formula one can express: $U_R = U_R (U, m_{i,:}; \alpha_i, V_L)$, $M_i = M_i (U, m_{i,:}; \alpha_i, V_L)$ $\Rightarrow \eta_B = \eta_B (U, m_{i,:}; \alpha_i, V_L)$

one typically obtains (barring fine-tuned 'crossing level' solutions):

$$M_1 \simeq \alpha_1^2 \, 10^5 \text{GeV}$$
, $M_2 \simeq \alpha_2^2 \, 10^{10} \, \text{GeV}$, $M_3 \simeq \alpha_3^2 \, 10^{15} \, \text{GeV}$

since
$$M_1 \ll 10^9 \text{ GeV} \implies \eta_B^{(N1)} \ll \eta_B^{CMB}$$

^{*} Note that SO(10)-inspired consditions can be realized also beyond SO(10) and even beyond GUT models (e.g. "Tetraleptogenesis", King '13, Feruglio '14)

Crossing level solutions

(Akhmedov, Frigerio, Smirnov '03; PDB, Fiorentin, Marzola, in preparation)

$$M_1 \simeq rac{lpha_1^2 \, m_u^2}{|m_{
u e e}|} \qquad M_2 \simeq rac{lpha_2^2 \, m_u^2}{|m_1 \, m_2 \, m_3} \, rac{|m_{
u e e}|}{|(m_
u^{-1})_{ au au}|} \qquad M_3 \simeq lpha_3^2 \, m_t^3 \, (m_
u^{-1})_{ au au} \
ho = \pi/2, \ \sigma = 0, \ s_{13} = 0.1$$

- > At the crossing the CP asymmetries undergo a resonant enhancement (Covi, Roulet, Vissani '96; Pilaftsis '98; Pilaftsis, Underwood '04; ...)
- ➤ The correct BAU can be attained for a fine tuned choice of parameters: many models have made use of these solutions (e.g. Buccella, Falcone, Nardi, '12; Altarelli, Meloni '14)
- > These, however, have to be strongly fine tuned to reproduce the observed asymmetry. As we will see there is another solution not relying on resonant leptogenesis.

The N2-dominated scenario

(PDB '05)

What about the asymmetry from the next-to-lightest (N_2) RH neutrinos? It is typically washed-out:

$$N_{B-L}^{f,N_2} = \varepsilon_2 \kappa(K_2) e^{-\frac{3\pi}{8} K_1} \ll N_{B-L}^{f,N_1} = \varepsilon_1 \kappa(K_1)$$

... except for a special choice of parameters when $K_1 = m_1/m_* << 1$ and $\epsilon_1 = 0$:

$$\Rightarrow \boxed{N_{B-L}^{\rm fin} = \sum_i \, \varepsilon_i \, \kappa_i^{\rm fin} \, \simeq \, \varepsilon_2 \, \kappa_2^{\rm fin}} \qquad \varepsilon_2 \stackrel{<}{\sim} 10^{-6} \, \left(\frac{M_2}{10^{10} \, {\rm GeV}}\right)$$

- > The lower bound on M_1 disappears and is replaced by a lower bound on M_2 that however still implies a lower bound on $T_{\rm reh}$
- ➤ How special is having $K_1 \le 1$? $P(K_1 \le 1) = 0.2\%$ (random scan)

10⁹ GeV ---

> 50(10)-inspired models do not realise this special corner in the parameter space since $M_1 \leftrightarrow 10^9$ GeV and $K_1 \gg 1 \Rightarrow \eta_R^{(N1)}$, $\eta_R^{(N2)} \leftrightarrow \eta_R^{CMI}$

Lepton flavour effects

(Abada, Davidson, Losada, Josse-Michaux, Riotto'06; Nardi, Nir, Roulet, Racker '06; Blanchet, PDB, Raffelt '06; Riotto, De Simone '06)

Flavor composition of lepton quantum states:

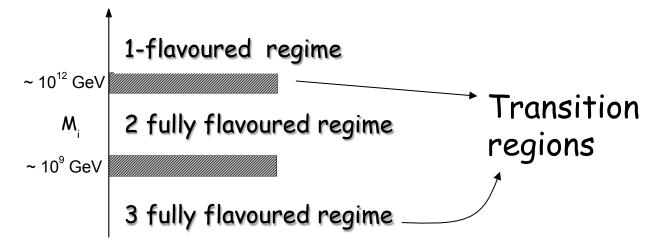
$$|l_1\rangle = \sum_{\alpha} \langle l_{\alpha} | l_1 \rangle |l_{\alpha}\rangle \quad (\alpha = e, \mu, \tau) \qquad P_{1\alpha} \equiv |\langle \ell_1 | \alpha \rangle|^2$$

$$|\bar{l}'_1\rangle = \sum_{\alpha} \langle l_{\alpha} |\bar{l}'_1 \rangle |\bar{l}_{\alpha}\rangle \qquad \bar{P}_{1\alpha} \equiv |\langle \bar{\ell}'_1 | \bar{\alpha} \rangle|^2$$

For T \gtrsim 10¹² GeV \Rightarrow τ -Yukawa interactions $(\bar{l}_{L\tau}\phi\,f_{\tau\tau}\,e_{R\tau})$ are fast enough to break the coherent evolution of $|l_1\rangle$ and $|\bar{l}_1'\rangle$

 \Rightarrow they become an incoherent mixture of a τ and of a μ +e component

At $T \gtrsim 10^9$ GeV then also μ - Yukawas in equilibrium \Rightarrow 3-flavor regime



Two fully flavoured regime

Classic Kinetic Equations (in their simplest form)

$$\frac{dN_{N_1}}{dz} = -D_1 \left(N_{N_1} - N_{N_1}^{\text{eq}} \right)$$

$$\frac{dN_{\Delta_{\alpha}}}{dz} = -\varepsilon_{1\alpha} \frac{dN_{N_1}}{dz} - P_{1\alpha}^0 W_1 N_{\Delta_{\alpha}}$$

$$\Rightarrow N_{B-L} = \sum_{\alpha} N_{\Delta_{\alpha}} \qquad (\Delta_{\alpha} \equiv B/3 - L_{\alpha})$$

$$P_{1\alpha} \equiv |\langle l_{\alpha}|l_{1}\rangle|^{2} = P_{1\alpha}^{0} + \Delta P_{1\alpha}/2 \qquad \qquad \left(\sum_{\alpha} P_{1\alpha}^{0} = 1\right)$$

$$\bar{P}_{1\alpha} \equiv |\langle \bar{l}_{\alpha}|\bar{l}_{1}'\rangle|^{2} = P_{1\alpha}^{0} - \Delta P_{1\alpha}/2 \qquad \qquad \left(\sum_{\alpha} \Delta P_{1\alpha} = 1\right)$$

$$\left(\sum_{\alpha} \Delta P_{1\alpha} = 0\right)$$

$$\Rightarrow \varepsilon_{1\alpha} \equiv -\frac{P_{1\alpha}\Gamma_1 - \bar{P}_{1\alpha}\bar{\Gamma}_1}{\Gamma_1 + \bar{\Gamma}_1} = P_{1\alpha}^0 \varepsilon_1 + \Delta P_{1\alpha}(\Omega, U)/2$$

$$\Rightarrow N_{B-L}^{\text{fin}} = \sum_{\alpha} \varepsilon_{1\alpha} \kappa_{1\alpha}^{\text{fin}} \simeq 2 \varepsilon_{1} \kappa_{1}^{\text{fin}} + \frac{\Delta P_{1\alpha}}{2} \left[\kappa^{\text{f}}(K_{1\alpha}) - \kappa^{\text{fin}}(K_{1\beta}) \right]$$

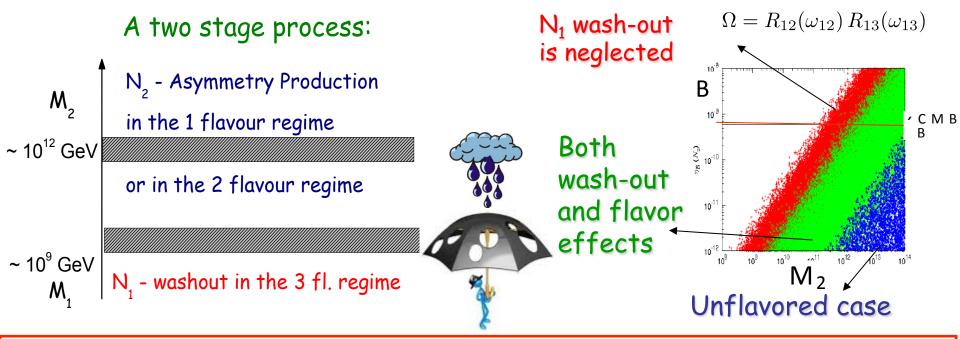
Flavoured decay parameters: $K_{i\alpha} \equiv P_{i\alpha}^0 \, K_i = \left| \sum_k \sqrt{\frac{m_k}{m_\star}} U_{\alpha k} \Omega_{ki} \right|^2$

In SO(10)-inspired models this additional CP source is negligible!

The N2-dominated scenario (flavoured)

(Vives '05; Blanchet, PDB '06; Blanchet, PDB '08, PDB, Fiorentin '14)

Flavour effects produce sort of "holes" in the N₁ wash-out



$$N_{B-L}^{\rm f}(N_2) = P_{2e}^0 \, \varepsilon_2 \, \kappa(K_2) \, e^{-\frac{3\pi}{8} \, K_{1e}} + P_{2\mu}^0 \, \varepsilon_2 \, \kappa(K_2) \, e^{-\frac{3\pi}{8} \, K_{1\mu}} + P_{2\tau}^0 \, \varepsilon_2 \, \kappa(K_2) \, e^{-\frac{3\pi}{8} \, K_{1\tau}}$$

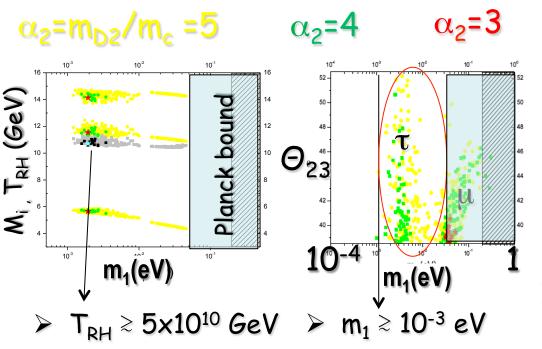
- \triangleright With flavor effects the domain of applicability goes much beyond the special choice $\Omega=R_{23}$
- \triangleright Existence of the heaviest RH neutrino N_3 is necessary for the ϵ_{2a} 's not to be negligible

Flavour effects rescue SO(10)-inspired leptogenesis

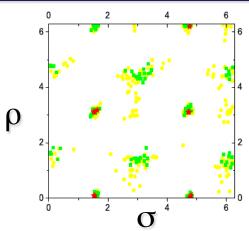
(PDB, Riotto '08, '10)

$$N_{B-L}^{\rm f} \simeq \varepsilon_{2e} \, \kappa(K_{2e+\mu}) \, e^{-\frac{3\pi}{8} K_{1e}} + \varepsilon_{2\mu} \, \kappa(K_{2e+\mu}) \, e^{-\frac{3\pi}{8} K_{1\mu}} + \varepsilon_{2\tau} \, \kappa(K_{2\tau}) \, e^{-\frac{3\pi}{8} K_{1\tau}}$$

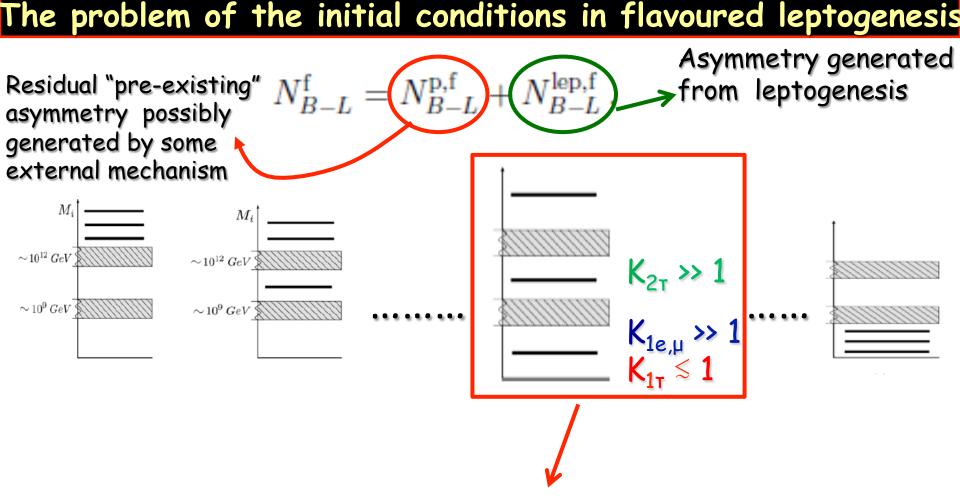
→ Independent of $\alpha_1 = m_{D1}/m_u$ and $\alpha_3 = m_{D3}/m_t$



NORMAL ORDERING



- Majorana phases constrained around specific values
- > Very marginal allowed regions for INVERTED ORDERING
- Most of the solutions are <u>tauon dominated</u> as needed for strong thermal leptogenesis: can SO(10)-inspired thermal leptogenesis be also STRONG?

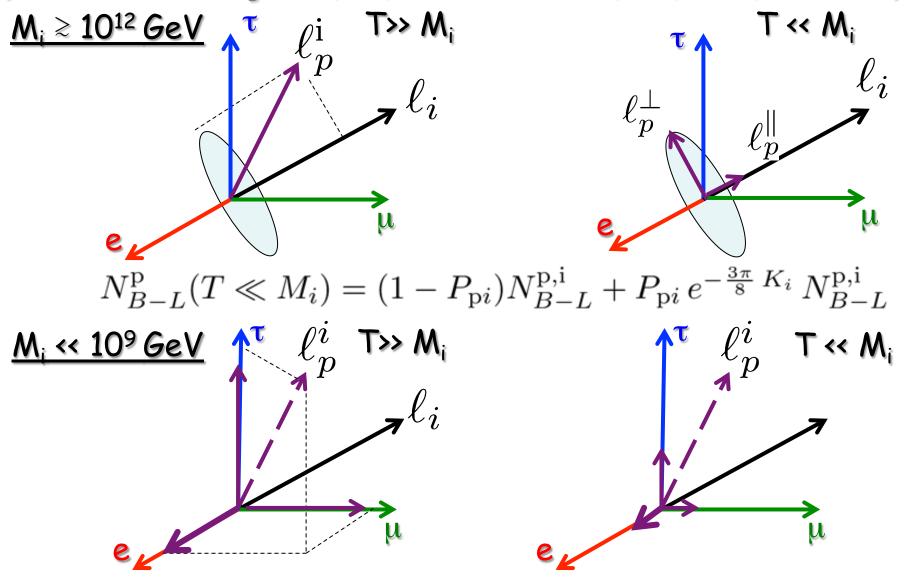


The conditions for the wash-out of a pre-existing asymmetry ('strong thermal leptogenesis') can be realised only within a N_2 -dominated scenario where the final asymmetry is dominantly produced in the tauon flavour

(Bertuzzo, PDB, Marzola '10)

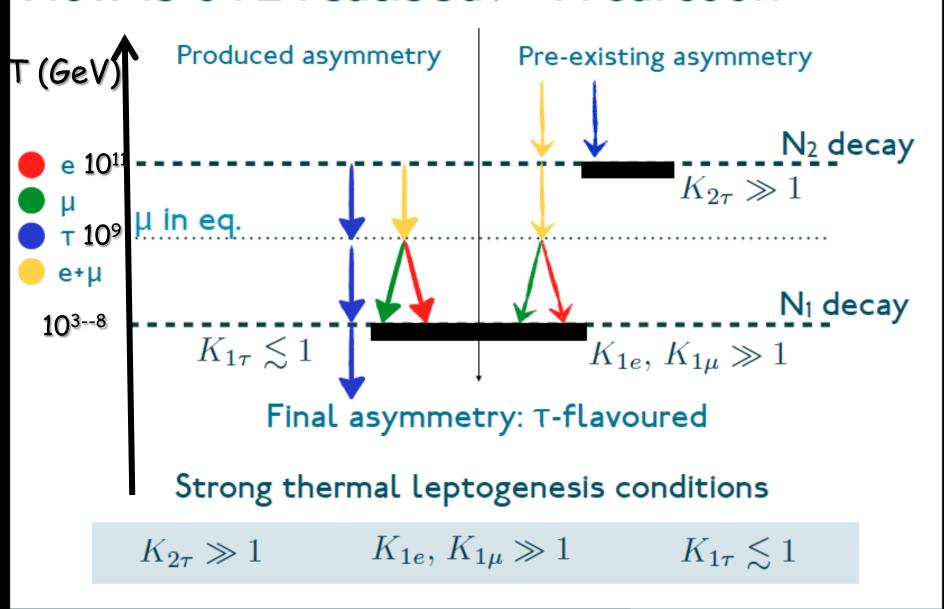
Flavour projection and wash-out of a pre-existing asymmetry

(Barbieri et al. '99; Engelhard, Nir, Nardi '08; Blanchet, PDB, Jones, Marzola '10)



 $N_{B-L}^{p}(T \ll M_{i}) = P_{pe} e^{-\frac{3\pi}{8} K_{ie}} N_{B-L}^{p,i} + P_{p\mu} e^{-\frac{3\pi}{8} K_{i\mu}} N_{B-L}^{p,i} + P_{p\tau} e^{-\frac{3\pi}{8} K_{i\tau}} N_{B-L}^{p,i}$

How is STL realised? - A cartoon



Courtesy of Michele Re Fiorentin

A lower bound on neutrino masses (NO)

(PDB, Sophie King, Michele Re Fiorentin 2014)

Starting from the flavoured decay parameters:

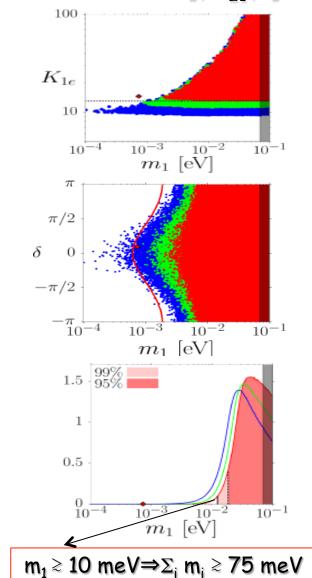
$$K_{i\beta} \equiv p_{i\beta}^0 \, K_i = \left| \sum_k \sqrt{rac{m_k}{m_\star}} \, U_{\beta k} \, \Omega_{ki} \right|^2$$
 and imposing $\mathbf{K}_{1\tau} \gtrsim \mathbf{1}$ and $\mathbf{K}_{1e} \, \mathbf{K}_{1\mu} \gtrsim \mathbf{K}_{st} = \mathbf{10} \; (\alpha = e_\star \mu)$

$$m_1 > m_1^{\text{lb}} \equiv m_{\star} \max_{\alpha} \left[\left(\frac{\sqrt{K_{\text{st}}} - \sqrt{K_{1\alpha}^{0,\text{max}}}}{\max[|\Omega_{11}|] |U_{\alpha 1} - \frac{U_{\tau 1}}{U_{\tau 3}} U_{\alpha 3}|} \right)^2 \right]$$

$$K_{1\alpha}^{0,\text{max}} \equiv \left(\max[|\Omega_{21}|] \sqrt{\frac{m_{\text{sol}}}{m_{\star}}} \left| U_{\alpha 2} - \frac{U_{\tau 2}}{U_{\tau 3}} U_{\alpha 3} \right| + \left| \frac{U_{\alpha 3}}{U_{\tau 3}} \right| \sqrt{K_{1\tau}^{\text{max}}} \right)^2$$

The lower bound exists if $\max[|\Omega_{21}|]$ is not too large)

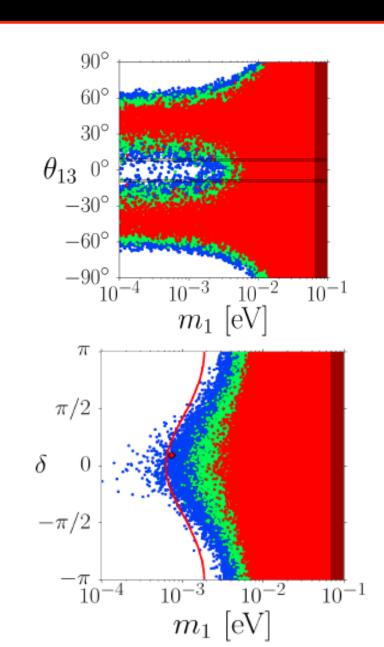
 $N_{B-L}^{P,i} = 0.001, 0.01, 0.1$ $\max[|\Omega_{21}|^2] = 2$



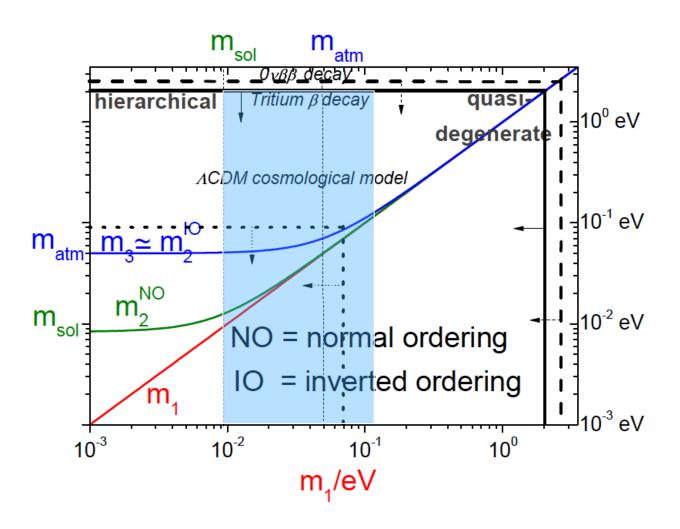
A lower bound on neutrino masses (NO)

The lower bound would not have existed for large θ_{13} values

It is modulated by the Dirac phase and it could become more stringent when δ will be measured

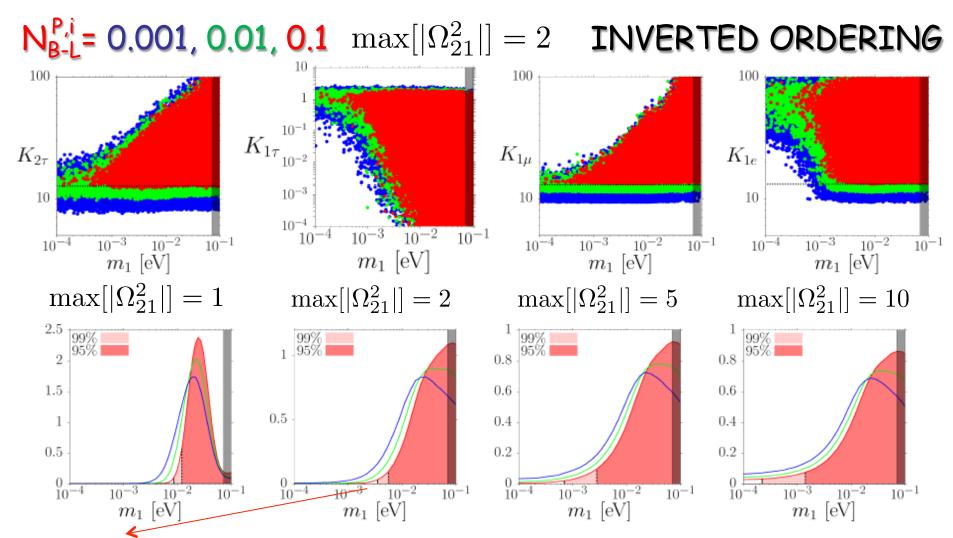


A new neutrino mass window for leptogenesis



 $0.01 \text{ eV} \leq m_1 \leq 0.1 \text{ eV}$

A lower bound on neutrino masses (IO)



 $m_1 \gtrsim 3 \text{ meV} \Rightarrow \Sigma_i m_i \gtrsim 100 \text{ meV}$ (not necessarily deviation from HL)

Wash-out of a pre-existing asymmetry

in SO(10)-inspired leptogenesis

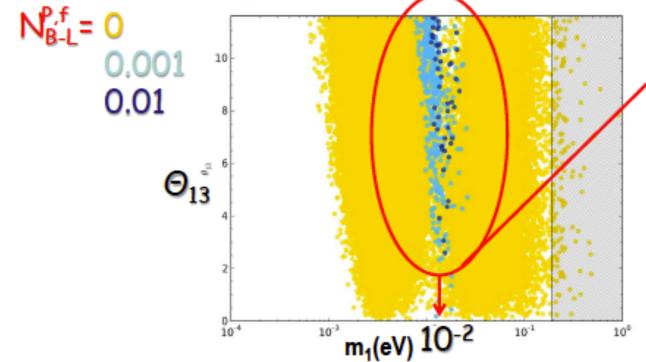
(PDB, Marzola '11)
$$N_{B-L}^{\rm f} = N_{B-L}^{\rm p,f} + N_{B-L}^{\rm lep,f}$$

Imposing successful strong thermal leptogenesis condition:

$$N_{B-L}^{\rm f} = N_{B-L}^{\rm p} + N_{B-L}^{\rm lep}, \ |N_{B-L}^{\rm p}| \ll N_{B-L}^{\rm lep} \simeq 100 \, \eta_B^{CMB}$$

NO Solutions for Inverted Ordering, while for

Normal Ordering there is a subset with interesting predictions:



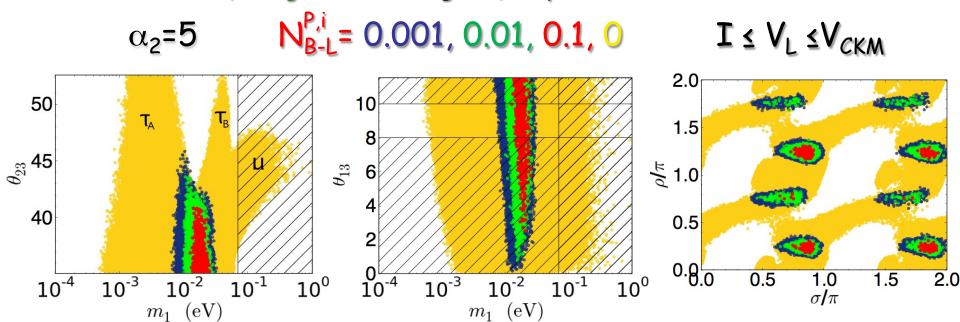
Non-vanishing θ_{13}

Talk at the DESY theory workshop 28/9/11

Strong thermal SO(10)-inspired solution

(PDB, Marzola '11; '13)

YES the strong thermal leptonesis condition can be also satisfied for a subset of the solutions (red, green, blue regions) only for NORMAL ORDERING



- > The lightest neutrino mass respects the general lower bound but is also upper bounded \Rightarrow 15 \leq m₁ \leq 25 meV;
- The reactor mixing angle has to be non-vanishing (preliminary results presented before Daya Bay discovery);
- > The atmospheric mixing angle falls strictly in the first octant;
- > The Majorana phases are even more constrained around special values

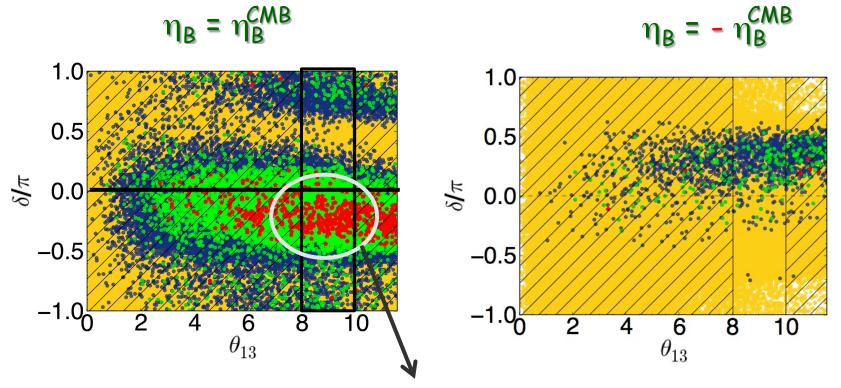
SO(10)-inspired+strong thermal leptogenesis

(PDB, Marzola '11-'12)

Imposing successful strong thermal leptogenesis condition:

$$N_{B-L}^{\rm f} = N_{B-L}^{\rm p} + N_{B-L}^{\rm lep}, \ |N_{B-L}^{\rm p}| \ll N_{B-L}^{\rm lep} \simeq 100 \, \eta_B^{CMB}$$

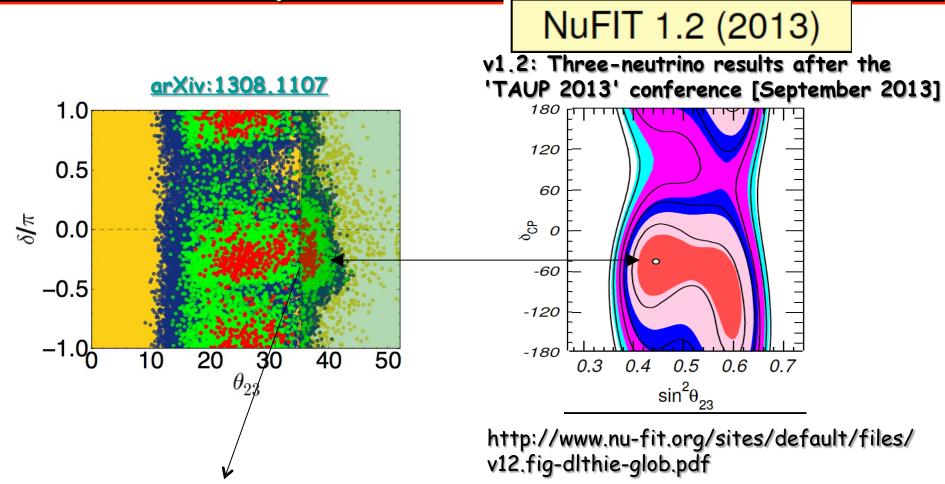
Link between the sign of J_{CP} and the sign of the asymmetry



A Dirac phase $\delta \sim -45^{\circ}$ is favoured; sign matters!

Strong thermal SO(10)-inspired leptogenesis:

the atmospheric mixing angle test

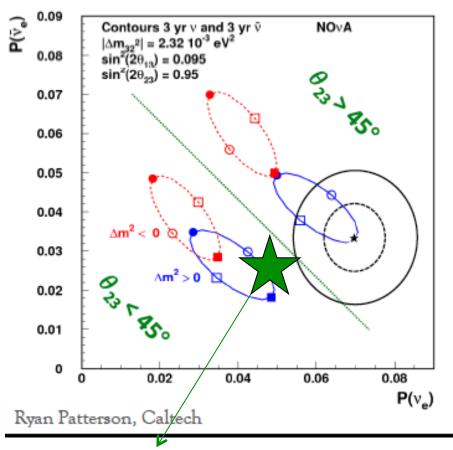


For values of $\theta_{23} \gtrsim 36^\circ$ the Dirac phase is predicted to be $\delta \sim -45^\circ$

It is interesting that low values of the atmospheric mixing angle are also necessary to reproduce $b-\tau$ unification in SO(10) models (Bajc, Senjanovic, Vissani '06)

Experimental test on the way: NOvA

Expected NOvA contours for one example scenario at 3 yr + 3 yr

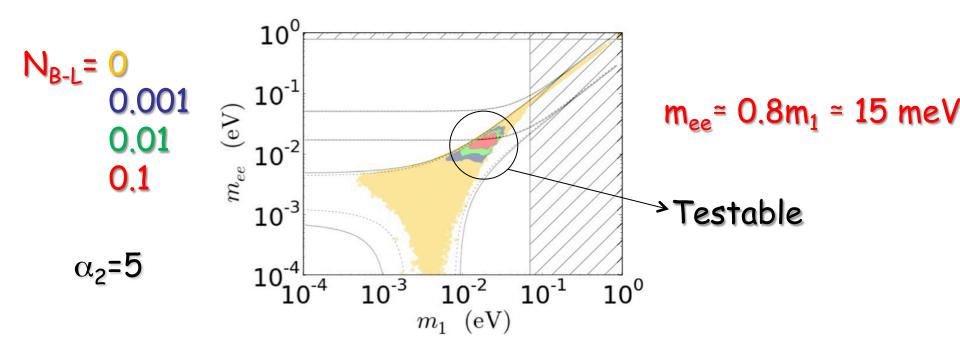


Strong thermal SO(10)-inspired solution

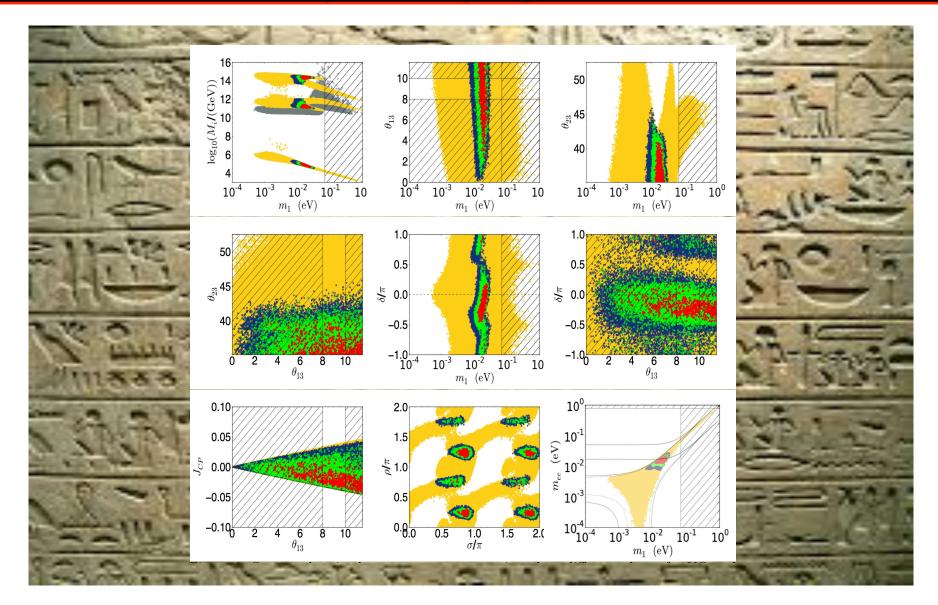
Last brick in the wall: neutrinoless double beta decay

(PDB, Marzola '11-'12)

Sharp predictions on the absolute neutrino mass scale including $0\nu\beta\beta$ effective neutrino mass m_{ee}



Decrypting the strong thermal SO(10)-inspired leptogenesis solution



Decrypting the strong thermal SO(10)-inspired leptogenesis solution

(PDB, Fiorentin, Marzola, in preparation)

$$\eta_{\rm B} \approx 0.01 \, \varepsilon_{2\tau} \, \kappa(K_{2\tau}) \, e^{-\frac{3\pi}{8} \, K_{1\tau}}$$

- + Strong thermal condition
- + SO(10)-inspired conditions



Strong thermal SO(10)-inspired solution

Imposing SO(10)-inspired conditions

Seesaw formula

$$m_{\nu} = -m_D \, \frac{1}{D_M} \, m_D^T \, .$$

Leptonic mixing matrix

Bi-unitary parameterisation

$$U^{\dagger} m_{\nu} U^{\star} = -D_m$$

$$m_D = V_L^{\dagger} D_{m_D} U_R$$

SO(10)-inspired conditions

$$m_{D1} = \alpha_1 \, m_u \,, \, m_{D2} = \alpha_2 \, m_c \,, \, m_{D3} = \alpha_3 \, m_t \,, \, \, \, (\alpha_i = \mathcal{O}(1))$$

$$V_L \simeq V_{CKM} \simeq I$$

Majorana mass matrix (in the Yukawa basis)

A diagonalization problem:

$$U_R^{\star} D_M U_R^{\dagger} = M = D_{m_D} V_L^{\star} U^{\star} D_m^{-1} U^{\dagger} V_L^{\dagger} D_{m_D} \simeq -D_{m_D} m_{\nu}^{-1} D_{m_D}$$

Diagonalizing the Majorana matrix

$$U_R \simeq \begin{pmatrix} 1 & -\frac{m_{D1}}{m_{D2}} \frac{m_{\nu e\mu}^*}{m_{\nu ee}^*} & \frac{m_{D1}}{m_{D3}} \frac{(m_{\nu}^{-1})_{e\tau}^*}{(m_{\nu}^{-1})_{\tau\tau}^*} \\ \frac{m_{D1}}{m_{D2}} \frac{m_{\nu e\mu}}{m_{\nu ee}} & 1 & \frac{m_{D2}}{m_{D3}} \frac{(m_{\nu}^{-1})_{\mu\tau}^*}{(m_{\nu}^{-1})_{\tau\tau}^*} \\ \frac{m_{D1}}{m_{D3}} \frac{m_{\nu e\tau}}{m_{\nu ee}} & -\frac{m_{D2}}{m_{D3}} \frac{(m_{\nu}^{-1})_{\mu\tau}}{(m_{\nu}^{-1})_{\tau\tau}} & 1 \end{pmatrix} D_{\Phi} \qquad D_{\phi} \equiv \left(e^{-i\frac{\Phi_1}{2}}, e^{-i\frac{\Phi_2}{2}}, e^{-i\frac{\Phi_3}{2}}\right)$$

$$M_3 \simeq m_{D3}^2 \left| (m_{\nu}^{-1})_{\tau\tau} \right| = m_{D3}^2 \left| \frac{(U_{\tau 1}^{\star})^2}{m_1} + \frac{(U_{\tau 2}^{\star})^2}{m_2} + \frac{(U_{\tau 3}^{\star})^2}{m_3} \right| \propto \alpha_3^2 m_t^2 \qquad \Phi_3 = \operatorname{Arg}[-(m_{\nu}^{-1})_{\tau\tau}].$$

$$M_1 \simeq \frac{m_{D1}^2}{|m_{uee}|} = \frac{m_{D1}^2}{|m_1 U_{e1}^2 + m_2 U_{e2}^2 + m_3 U_{e2}^2|} \propto \alpha_1^2 m_u^2.$$
 $\Phi_1 = \text{Arg}[-m_{\nu ee}^{\star}].$

$$M_{2} \simeq \frac{m_{D2}^{2}}{m_{1} m_{2} m_{3}} \frac{|m_{\nu ee}|}{|(m_{\nu}^{-1})_{\tau\tau}|} = m_{D2}^{2} \frac{|m_{1} U_{e1}^{2} + m_{2} U_{e2}^{2} + m_{3} U_{e3}^{2}|}{|m_{2} m_{3} U_{\tau1}^{*2} + m_{1} m_{3} U_{\tau2}^{*2} + m_{1} m_{2} U_{\tau3}^{*2}|} \propto \alpha_{2}^{2} m_{c}^{2}, \qquad \Phi_{2} = \operatorname{Arg}\left[\frac{m_{\nu ee}}{(m_{\nu}^{-1})_{\tau\tau}}\right] - 2(\rho + \sigma)$$

A formula for the final asymmetry

$$\varepsilon_{2\alpha} \simeq \overline{\varepsilon}(M_2) \frac{m_{D\alpha}^2}{m_{D3}^2 |U_{R32}|^2 + m_{D2}^2} \frac{|(m_{\nu}^{-1})_{\tau\tau}|^{-1}}{m_{\text{atm}}} \text{Im}[U_{R\alpha2}^{\star} U_{R\alpha3} U_{R32}^{\star} U_{R33}].$$

Using the approximate expression eq. (31) for U_R and the relations (4), one fin following hierarchical pattern for the $\varepsilon_{2\alpha}$'s:

$$\varepsilon_{2\tau} : \varepsilon_{2\mu} : \varepsilon_{2e} = \alpha_3^2 \, m_t^2 : \alpha_2^2 \, m_c^2 : \alpha_1^2 \, m_u^2 \, \frac{\alpha_3 m_t}{a_2 \, m_c} \, \frac{\alpha_1^2 \, m_u^2}{\alpha_2^2 \, m_c^2} \, .$$

$$N_{B-L}^{\text{lep,f}} \simeq \frac{3}{16\pi} \frac{\alpha_2^2 m_c^2}{v^2} \frac{|m_{\nu ee}| (|m_{\nu \tau \tau}^{-1}|^2 + |m_{\nu \mu \tau}^{-1}|^2)^{-1}}{m_1 m_2 m_3} \frac{|m_{\nu \tau \tau}^{-1}|^2}{|m_{\nu \mu \tau}^{-1}|^2} \sin \alpha_L$$

$$\times \kappa \left(\frac{m_1 m_2 m_3}{m_{\star}} \frac{|(m_{\nu}^{-1})_{\mu \tau}|^2}{|m_{\nu ee}| |(m_{\nu}^{-1})_{\tau \tau}|} \right)$$

$$\times e^{-\frac{3\pi}{8} \frac{|m_{\nu e \tau}|^2}{m_{\star} |m_{\nu ee}|}}.$$

Conclusions:

- > The importance of discoverying CP violation in neutrino oscillations should not be be overrated but also not undermined;
- > Highs scale leptogenesis is difficult to test but maybe not impossible: necessary to work out plausible scenarios;
- > Thermal leptogenesis: problem of the independence of the initial conditions because of flavour effects;
- \gt Solution: N_2 -dominated scenario (minimal seesaw, hierarchical N_i)
- > Deviations of neutrino masses from the hierarchical limits are expected
- \gt SO(10)-inspired models are rescued by the N₂-dominated scenario and can also realise strong thermal leptogenesis

Strong thermal SO(10)-inspired leptogenesis solution

Θ_{13}	≥ 3 °
ORDERING	NORMAL
θ ₂₃	≤ 42°
δ	~ -45°
$m_{ee} \simeq 0.8 m_1$	≃ 15 meV

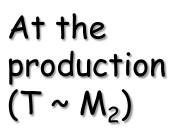
Density matrix formalism with heavy neutrino flavours

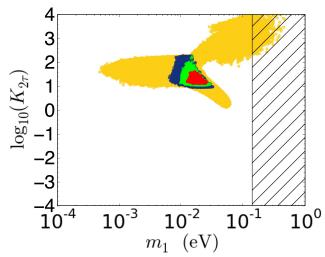
(Blanchet, PDB, Jones, Marzola '11)

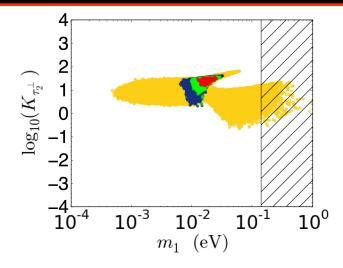
For a thorough description of all neutrino mass patterns including transition regions and all effects (flavour projection, phantom leptogenesis,...) one needs a description in Terms of a density matrix formalism The result is a "monster" equation:

$$\frac{dN_{\alpha\beta}^{B-L}}{dz} = \varepsilon_{\alpha\beta}^{(1)} D_{1} \left(N_{N_{1}} - N_{N_{1}}^{\text{eq}}\right) - \frac{1}{2} W_{1} \left\{\mathcal{P}^{0(1)}, N^{B-L}\right\}_{\alpha\beta} \\
+ \varepsilon_{\alpha\beta}^{(2)} D_{2} \left(N_{N_{2}} - N_{N_{2}}^{\text{eq}}\right) - \frac{1}{2} W_{2} \left\{\mathcal{P}^{0(2)}, N^{B-L}\right\}_{\alpha\beta} \\
+ \varepsilon_{\alpha\beta}^{(3)} D_{3} \left(N_{N_{3}} - N_{N_{3}}^{\text{eq}}\right) - \frac{1}{2} W_{3} \left\{\mathcal{P}^{0(3)}, N^{B-L}\right\}_{\alpha\beta} \\
+ i \operatorname{Re}(\Lambda_{\tau}) \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^{\ell+\bar{\ell}} \right]_{\alpha\beta} - \operatorname{Im}(\Lambda_{\tau}) \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^{B-L} \right] \right]_{\alpha\beta} \\
+ i \operatorname{Re}(\Lambda_{\mu}) \left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^{\ell+\bar{\ell}} \right]_{\alpha\beta} - \operatorname{Im}(\Lambda_{\mu}) \left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^{B-L} \right] \right]_{\alpha\beta} .$$

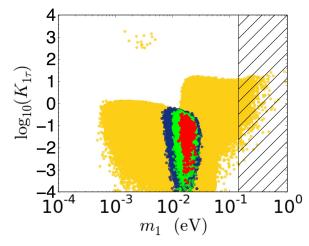
Some insight from the decay parameters

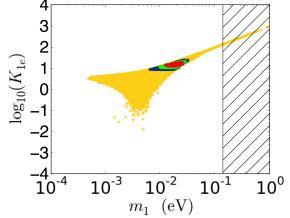


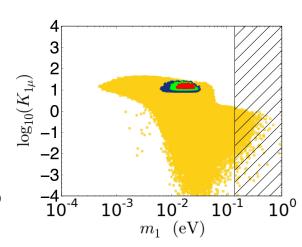




At the wash-out ($T \sim M_1$)







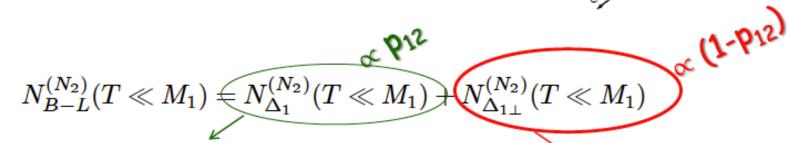
Flavour projection

(Engelhard, Nir, Nardi '08, Bertuzzo, PDB, Marzola '10)

Assume $M_{i+1} \gtrsim 3M_i$ (i=1,2)

The heavy neutrino flavour basis cannot be orthonormal otherwise the CP asymmetries would vanish: this complicates the calculation of the final asymmetry

$$p_{ij} = |\langle \ell_i | \ell_j \rangle|^2$$
 $p_{ij} = \frac{\left| (m_D^{\dagger} m_D)_{ij} \right|^2}{(m_D^{\dagger} m_D)_{ii} (m_D^{\dagger} m_D)_{jj}}.$



Component from heavier RH neutrinos parallel to l₁ and washed-out by N₁ inverse decays

Contribution from heavier RH neutrinos orthogonal to l_1 and escaping N_1 wash-out

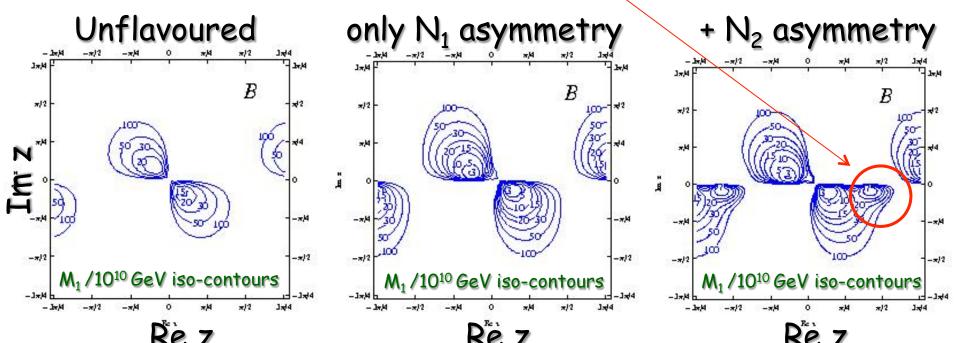
$$N_{\Delta_1}^{(N_2)}(T \ll M_1) = p_{12}e^{-rac{3\pi}{8}K_1}N_{B-L}^{(N_2)}(T \sim M_2)$$

2 RH neutrino scenario revisited

(King 2000;Frampton,Yanagida,Glashow '01,Ibarra, Ross 2003;Antusch, PDB,Jones,King '11)

In the 2 RH neutrino scenario the N_2 production has been so far considered to be safely negligible because ϵ_{2a} were supposed to be strongly suppressed and very strong N_1 wash-out. But taking into account:

- the N₂ asymmetry N₁-orthogonal component
- an additional unsuppressed term to $\epsilon_{2\alpha}$ New allowed N₂ dominated regions appear

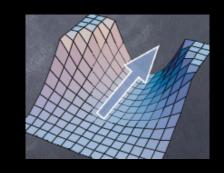


These regions are interesting because they correspond to light sequential dominated neutrino mass models realized in some grandunified models

Affleck-Dine Baryogenesis (Affleck, Dine '85)

In the Supersymmetric SM there are many "flat directions" in the space of a field composed of squarks and/or sleptons

$$V(\phi) = \sum_{i} \left| \frac{\partial W}{\partial \phi_{i}} \right|^{2} + \frac{1}{2} \sum_{A} \left(\sum_{ij} \phi_{i}^{*}(t_{A})_{ij} \phi_{j} \right)^{2}$$



F term

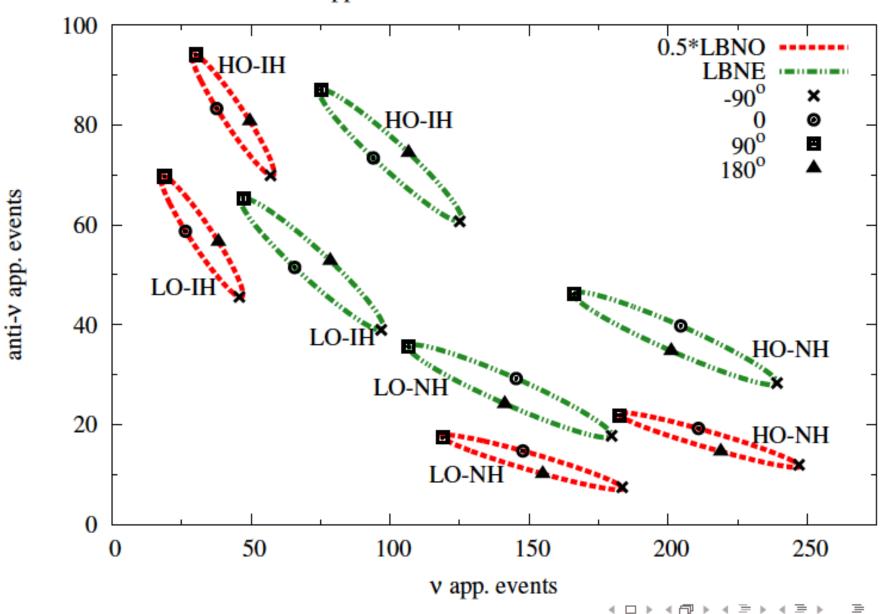
D term

A flat direction can be parametrized in terms of a complex field (AD field) that carries a baryon number that is violated dynamically during inflation

$$\frac{n_B}{s} \sim 10^{-10} \left(\frac{m_{3/2}}{m_{\Phi}}\right) \left(\frac{m_{\Phi}}{\text{TeV}}\right)^{-\frac{1}{2}} \left(\frac{M}{M_P}\right)^{\frac{3}{2}} \left(\frac{T_R}{10 \,\text{GeV}}\right)$$

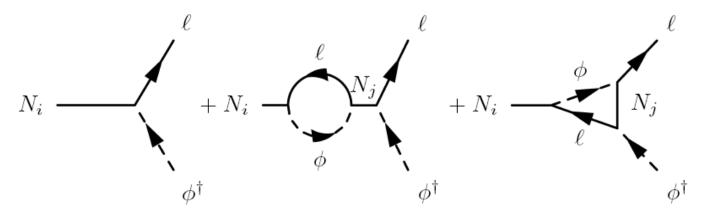
The final asymmetry is $\propto T_{RH}$ and the observed one can be reproduced $\,$ for low values $T_{RH} \sim 10$ GeV $\,!$

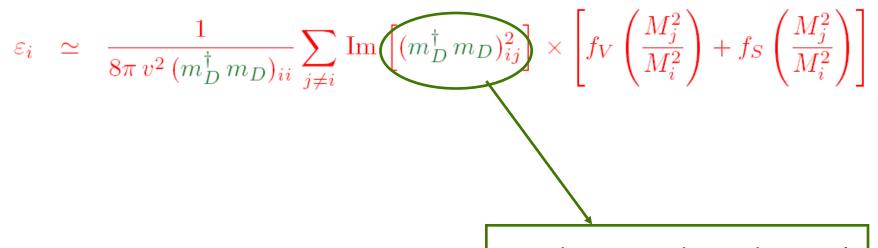
Electron appearance events for 0.5*LBNO and LBNE



Total CP asymmetries

(Flanz, Paschos, Sarkar'95; Covi, Roulet, Vissani'96; Buchmüller, Plümacher'98)



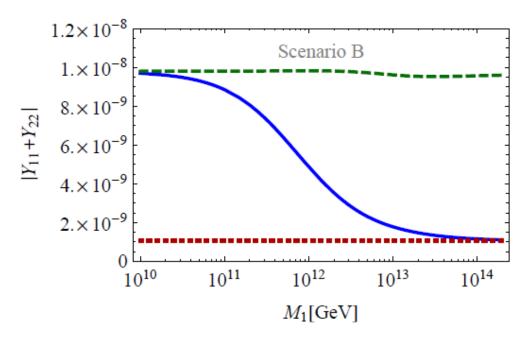


It does not depend on U!

Density matrix and CTP formalism to describe the transition regimes

(De Simone, Riotto '06; Beneke, Gabrecht, Fidler, Herranen, Schwaller '10)

$$\frac{\mathrm{d}Y_{\alpha\beta}}{\mathrm{d}z} = \frac{1}{szH(z)} \left[(\gamma_D + \gamma_{\Delta L=1}) \left(\frac{Y_{N_1}}{Y_{N_1}^{\mathrm{eq}}} - 1 \right) \epsilon_{\alpha\beta} - \frac{1}{2Y_{\ell}^{\mathrm{eq}}} \left\{ \gamma_D + \gamma_{\Delta L=1}, Y \right\}_{\alpha\beta} \right] - \left[\sigma_2 \mathrm{Re}(\Lambda) + \sigma_1 |\mathrm{Im}(\Lambda)| \right] Y_{\alpha\beta}$$



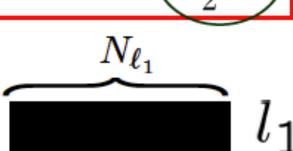
Fully two-flavoured regime limit

Unflavoured regime limit

Additional contribution to CP violation:

(Nardi, Racker, Roulet '06)

$$\varepsilon_{1\alpha} = P_{1\alpha}^0 \, \varepsilon_1 + \underbrace{\left(\frac{\Delta P_{1\alpha}}{2}\right)}_{\mathbf{N}}$$



$$lacksquare{ar{l}_{1}}$$

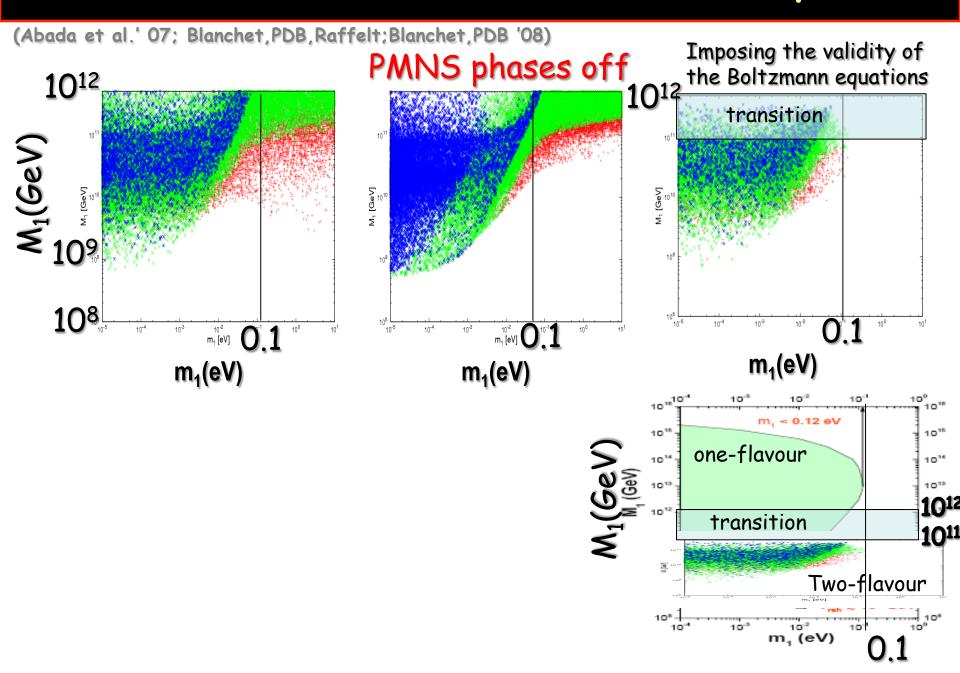
$$\Rightarrow P_{1\alpha}^0 \varepsilon_1$$

depends on U!

$$|\overline{l}_1\rangle \neq CP|l_1\rangle$$

$$|\iota_1\rangle \neq CP|\iota_1\rangle$$

Neutrino mass bounds and role of PMNS phases



Low energy phases can be the only source of CP violation

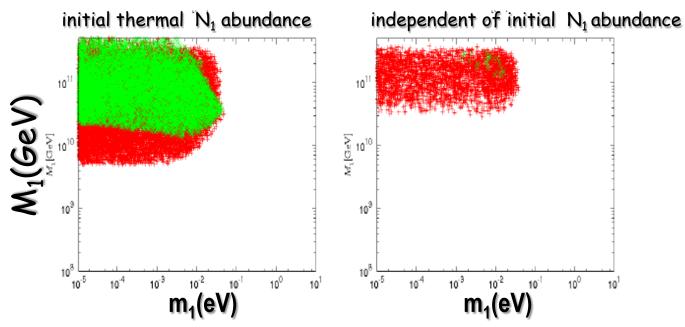
(Nardi et al. '06; Blanchet, PDB'06; Pascoli, Petcov, Riotto '06; Anisimov, Blanchet, PDB '08)

- Assume real
$$\Omega \Rightarrow \epsilon_1 = 0 \Rightarrow \qquad \varepsilon_{1\alpha} = P_{1\alpha}^{\bullet} \varepsilon_1 + \frac{\Delta P_{1\alpha}}{2}$$

$$\Rightarrow N_{B-L} \Rightarrow 2\epsilon_1 k_1^{fin} + \Delta P_{1a} (k_{1a}^{fin} - k_{1b}^{fin}) \qquad (\alpha = \tau, e+\mu)$$

- Assume even vanishing Majorana phases

$$\Rightarrow \delta$$
 with non-vanishing θ_{13} ($J_{CP} \neq 0$) would be the only source of CP violation (and testable)



Green points: only Dirac phase with $\sin \theta_{13}$ = 0.2 $|\sin \delta|$ = 1

Red points: only Majorana phases

- No reasons for these assumptions to be rigorously satisfied (Davidson,
 In general this contribution is overwhelmed by the high energy phases Rius et al. '07)
- · But they can be approximately satisfied in specific scenarios for some regions
- It is in any case by itself interesting that CP violation in neutrino mixing could be sufficient to have successful leptogenesis