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Overview

Higgs inflation paradigm.

Quantum corrections and the calculation of the effective potential:

expanding the action,

split 2-point interactions,

in-in formalism,

computing the tadpole diagrams,

putting it all together.

Work in progress:

full SM,

running of the RGEs.
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Higgs inflation paradigm

Inflation:

solves flatness and horizon
(and monopole) problems,

provides seeds for structure
formation,

is driven by an inflaton field
rolling slowly down its
potential.

The standard model Higgs field can be play the role of the inflaton
Need a single additional term: ξ|H|2R.
Bezrukov & Shaposhnikov PLB 659 703 (2008).

Such a term is expected to be generated, current bounds: ξ . 2.6× 1015

Atkins & Calmet PRL 110 051301 (2013).
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Higgs inflation — main results

S =

∫
d4x
√
−g
[
. . .+ ξH†HR+ . . .− λ

(
H†H − v2/2

)2
+ . . .

]
.

Go to Einstein frame and canonical kinetic term. In large field regime
expand the potential in δ ≡ 1/(ξφ2)� 1. Slow roll parameters:

ε = 4δ2/3, η = −4(δ − δ2)/3,

Inflation ends for ε ≈ 1, giving number of e-folds N ≈ 6
8δ∗

.
With N ≈ 60, we find δ∗ ∼ 6/8N ≈ 1/80.

Cobe normalisation gives

(V/ε)∗ = (0.027)4 ⇒ λ/ξ2 = 4× 10−10 ⇒ ξ = 5× 104
√
λ

Spectral index and tensor-to-scalar ratio are compatible with data:

ns = 1+2η−6ε ≈ 1− 8

3
δ∗−

16

3
δ2
∗ ≈ 0.967, r = 16ε = 8δ2

∗ = 0.0033.

Running of λ and stability of Higgs vacuum with mh = 126GeV??
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Quantum corrections

To test BSM physics using cosmological data must have a precise
understanding of the scalar field’s dynamics.

→ need to go beyond classical and include dominant quantum effects

One-loop effective action for a scalar field in an expanding universe.
Birrell & Davies, 1982; Candelas & Raine, 1975; Ringwald, 1987a, 1987b.

Describes the backreaction of the quantum fluctuations of the scalar field
on the time-dependent background field, calculated systematically in a
loop expansion.

Here: extend these results by including a coupling to a gauge field.
The toy model is Abelian Higgs with a U(1) gauge field in FLRW
background. Calculation found in DG, Mooij & Postma JCAP 11 043 (2012).

Generalises the Coleman-Weinberg potential to time-dependent
background fields in a curved space-time; Coleman & Weinberg 1973.

D.P. George Time dependence and the effective potential in Higgs inflation 5/36



The toy model

A U(1) gauge field Aµ and charge scalar Φ in a curved background.

ds2 = a2(τ)
(
dτ2 − d~x2

)
, Φ(xµ) =

1√
2

(
φ(τ) + h+ iθ

)
.

The action in Rξ gauge:

Stot =

∫
d4x
√
−g(L+ LGF + LFP),

with

L = −1

4
gµαgνβFµνFαβ + gµνDµΦ(DνΦ)† − V (Φ),

LGF = − 1

2ξ
G2, G = gµν∇µAν − ξg(φ+ h)θ,

LFP = η̄g
δG

δα
η. (α is a U(1) gauge transformation)

Quantum fields h, θ, Aµ, η in a time-dependent background a(τ), φ(τ).
Background metric is fixed, backreaction assumed negligible.
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Expanding the action

Expand the action up to 3rd order in the quantum fields.
The one-point vertex is

S(1) =

∫
d4x

(
−λ̂hĥ

)
,

where

λ̂h =
(
∂2
τ − (H′ +H2)

)
φ̂+ V̂φ̂ = a3

[
φ̈+ 3Hφ̇+ Vφ

]
.

Working in conformal frame with H = a′/a, φ̂ = aφ, V̂ = a4V (φ̂), etc.
Note A does not need a hat.

Easier to work in conformal time, as the resulting action has a form
similar to the Minkowski action, and all the machinery developed for this
can be used.
Mooij & Postma 2011; Heitmann, 1996.
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Quadratic expansion

S(2) =

∫
d4x

{
− 1

2
Aµ

[
−(∂2 + m̂2

(µ))η
µν +

(
1− 1

ξ

)
∂µ∂ν

]
Aν

−A0(m̂2)i0Ai − m̂2
AθA0θ̂

− 1

2
ĥ(∂2 + m̂2

h)ĥ− 1

2
θ̂(∂2 + m̂2

θ)θ̂ − ˆ̄η(∂2 + m̂2
η)η̂

}
.

2-point interactions are:

m̂2
(µ) = g2φ̂2 +

2

ξ

(
H′ − 2H2

)
δµ0,

m̂2
h = V̂hh − (H′ +H2),

m̂2
θ = V̂θθ + ξg2φ̂2 − (H′ +H2),

m̂2
η = ξg2φ̂2 − (H′ +H2).

Off-diagonal 2-point terms are:

m̂2
Aθ = 2g(∂τ −H)φ̂, (m̂2)i0 =

2

ξ
H∂i.
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Three point vertices

The 3-point interaction vertices are

S(3) =

∫
d4x
[
− 1

2
λ̂hhhĥ

3 − 1

2
λ̂hθθĥθ̂

2 − 1

2
λ̂hAAĥÂ

2

− λ̂hηηĥˆ̄ηη̂ − ĥλ̂hAθA0θ̂
]
,

where

λ̂hhh = ∂φ̂m̂
2
h = V̂φhh,

λ̂hθθ = ∂φ̂m̂
2
θ = V̂φθθ + 2ξg2φ̂,

λ̂hAA = ∂φ̂m̂
2
A = −2g2φ̂,

λ̂hηη = ∂φ̂m̂
2
η = 2ξg2φ̂,

λ̂hAθ = 2g(−∂τ −H).

Expressed in terms of 2-point interactions; formally, ∂φ̂H = 0.

Integration by parts used to get λhAθ acting on A0θ̂. Also discarded a ∂i term.
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Time dependence of interactions

The background is time-dependent: a(τ), φ(τ).
→ the “masses” (really 2-point interactions) are also time-dependent.

Split these interaction into time-independent and time-dependent parts:

m̂2(τ) = ˆ̄m2 + δm̂2(τ),

with the split defined by

δm̂2(0) = 0.

ˆ̄m2 contributes to the free Lagrangian. We call it the mass and it
determines the propagator.

δm̂2(τ) is treated as a proper 2-point interaction in Feynman
diagrams.

The loop expansion is independent of the split of the 2-point terms into a free and
interacting part.

Also demand off-diagonal 2-point interactions vanish at τ = 0.
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In-in formalism

Since we are interested in expectation values of the background field and
their evolution with time (not scattering amplitudes) we use the in-in
formalism (closed-time-path (CTP) or Schwinger-Keldysh formalism).
Schwinger, 1961; Keldysh, 1964; Jordan, 1986; Bakshi & Mahanthappa 1963a, 1963b;

Calzetta & Hu, 1987; Weinberg, 2005.

Expectation values are computed using an action

S = S[φ+
i ]− S[φ−i ]

with boundary condition φ+
i (t) = φ−i (t).

All fields, propagators and vertices are labelled by ± superscripts.

The propagator D±±(x− x′) connects vertices λ±(x) and λ±(x′).

The action of the minus-fields is defined with an overall minus sign,
so [

m2
αβ

]−
= −

[
m2
αβ

]+
, [λhαβ]− = − [λhαβ]+ .
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In-in formalism — propagators

We construct the propagators from the free, time-independent part of
the quadratic action. For example, for h the propagators are defined as
the solutions of

(
∂2
x + ˆ̄m2

h 0
0 −(∂2

x + ˆ̄m2
h)

)(
D++
h (x− y) D+−

h (x− y)
D−+
h (x− y) D−−h (x− y)

)
= −iδ(x− y)I2.

This defines D++ as the usual Feynman propagator, D−− as the
anti-Feynman propagator, and D−+ and D+− as Wightman functions.

D−+
h (xa − xb) = D+−

h (xb − xa) = Dh,ab,

D++
h (xa − xb) = Dh,abΘab +Dh,baΘba,

D−−h (xa − xb) = Dh,abΘba +Dh,baΘab,
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The one-loop equation of motion

Vanishing of the tadpole → equation of motion for φ(t).
Include 1-loop tadpoles → quantum corrected equation of motion.

〈h+(τ, ~x)〉 = 0.
Vanishing of the h−

component gives the
same result.

From first principles, expand out the path integral:

0 = 〈h+(x)〉

=

∫
Dψ+

αDψ−β h
+(x)ei(S0[ψ+

α ]+Sint[ψ
+
α ])−i(S0[ψ−β ]+Sint[ψ

−
β ])

=

∫
Dψ+

αDψ−β h
+(x)eiS0[ψ+

α ]−iS0[ψ−β ]

[
1 + i

∫
d4y(L+

int−L
−
int) + . . .

]
= −i

∫
d4y

[
D++
h (x− y)−D+−

h (x− y)
]
A(y).

Equation of motion: A(y) = 0.
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The one-loop equation of motion

For divergent terms, need to go to 3rd order in Lint.

0 = Acl +A1 +A2 +A3 + finite

= λ̂h(x) + Sαβλ̂hαβ(x)D++
αβ (0)

− iSαβγδλ̂hαβ(x)

∫
d4x′D+±

αγ (x− x′)
[
δm̂2

γδ(x
′)
]±
D±+δβ (x′ − x)

− Sαβγδρσλ̂hαβ(x)

∫
d4x′

∫
d4x′′

{
D+±
αγ (x− x′)

[
δm̂2

γδ(x
′)
]±
D±±δρ (x′ − x′′)

×
[
δm̂2

ρσ(x′′)
]±
D±+σβ (x′′ − x)

}
+ finite.

Sum over: field-type, Lorentz indices, possibilities for ±.

Sαβ... are appropriate symmetry factors.

Masses ˆ̄m2
α in propagators Dα.

δm̂2
αβ(τ) and λ̂hαβ(τ): 2- and 3-point interaction vertices.

Concerned only with the UV divergent contributions → consider
only up to three vertices.
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Tadpole diagrams

In terms of diagrams: all 1PI tadpole graphs with one external h+ leg.

Acl +A1 +A2 +A3 = h+ λ̂h
+ h+ λ̂hαβ D++

αβ

+ h+ λ̂hαβ
δm̂2

ρσ +

D±+
αρ

D±+
σβ

h+ λ̂hαβ
D±±σκ

D±+
αρ

D±+
βτ

δm̂2
ρσ

δm̂2
κτ

Computing these diagrams gives the quantum corrected equation of
motion at the 1-loop level.

Classical part: Acl = λ̂h(x).
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First order

First order diagrams as in Minkowski [Mooij & Postma, JCAP 1109, 006 (2011)].

Four diagrams contribute:
h, θ, η, Aµ in the loop.

h+ λ̂hαβ D++
αβ

Each diagram has the same structure:

A1,α =
1

2
∂φm̂

2
αD

++
α (0)

=
1

2
∂φm̂

2
α

1

4π2

∫ Λ̂

0
k2dk

[
1

k
− 1

2

ˆ̄m2
α

k3
+ ...

]
=

1

16π2
∂φm̂

2
α

[
Λ̂2 − 1

2
ˆ̄m2
α ln(Λ̂/ ˆ̄m)2 + finite

]
.

The variable k is the comoving momentum with k < Λ̂ a comoving cutoff.

Gauge loop is expressed as scalar propagators −ηµνD++
µν (0) = 3D++

A (0) + ξD++
ξ (0).
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First order diagrams

For the log-divergent part, sum of all first-order diagrams is

∑
A1,α =

[
λ̂hhh

D++
h

∂φm̂
2
h

ˆ̄m2
h

+
λ̂hθθ

D++
θ

∂φm̂
2
θ

ˆ̄m2
θ

+
λ̂hηη

D++
η

−2∂φm̂
2
η

ˆ̄m2
η

+
λ̂hAA

D++
µν

∂φm̂
2
A

ˆ̄m2
A(3 + ξ2)

]
× −1

32π2 log Λ2

Note that ∂φm̂
2
α is time-dependent and evaluated at τ

For example, ∂φm̂
2
A = −2g2φ̂(τ).

Thus, A1 is a function of τ .
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Second order

h+ λ̂hαβ
δm̂2

ρσ

D±+
αρ

D±+
σβ

At second order in Lint the loop diagrams with one 2-point insertion
contribute. We split them into three parts:

AMink
2 contains all scalar loops, and the gauge boson loop where

only the diagonal part of m̂2
(µ) is inserted. Also a mixed θA0-loop.

This part is analogous to the equivalent Minkowski calculation.

Amass
2 contains the gauge boson loop with a δm̂2

0.

Amix
2 contains the gauge boson loop with a (δm̂2)0i.

These last two diagrams are both absent in Minkowski.
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Calculating AMink
2

The scalar Higgs loop with one 2-point insertion gives

AMink
2,h = − i

2
∂φm̂

2
h(τ)

∫
d4xbδm̂

2
h(τb)

[
D++
h (xa−xb)D++

h (xb−xa)

−D+−
h (xa−xb)D−+

h (xb−xa)
]

= − i
2
∂φm̂

2
h(τ)

∫
d4xbδm̂

2
h(τb)Θab

[
D2
h,ab −D2

h,ba

]
.

Everything expressed in terms of Wightman functions. Fourier transform,
perform the d3xb integral, integrate by parts to extract the UV divergent
piece:

AMink
2,h = −∂φm̂2

h(τ)δm̂2
h(τ)

∫
d3k

64π3~k3

= −∂φm̂2
h(τ)δm̂2

h(τ)
1

32π2
ln(Λ̂/ ˆ̄m)2 + finite.
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Calculating AMink
2

The Goldstone boson loop AMink
2,θ and ghost loop AMink

2,η are similar to

AMink
2,h . Ghost has overall factor (−2).

Gauge boson loop follows the same steps but with a non-trivial Lorentz
structure:

AMink
2,A = − i

2
∂φm̂

2
A

∫
d4xbδm̂

2
A(τb)η

µνηρσ
[
D++
µρ (xa − xb)D++

σν (xb − xa)

−D+−
µρ (xa − xb)D−+

σν (xb − xa)
]

= −∂φm̂2
A

∫ τ

0
dτbδm̂

2
A(τb)

∫
d3k

(2π)3

CIJ sin [(ω̄I + ω̄J)(τ − τb)]
(2ω̄I)(2ω̄J)

= −∂φm̂2
Aδm̂

2
A(τ)

(3 + ξ2)

32π2
ln(Λ̂/ ˆ̄m)2 + finite.

CIJ encodes the structure arising from Wightman functions in Fourier space.
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Calculating AMink
2

Finally, the mixed θA0-loop gives

AMink
2,Aθ = −iλ̂hθA(τ)

∫
d4xb δm̂

2
Aθ(τb)

[
D++

00,abD
++
θ,ba −D

+−
00,abD

−+
θ,ba

]
= −2λ̂hθA(τ)

∫ τ

0
dτb δm̂

2
Aθ(τb)

∫
d3k

(2π)3

CI sin[(ω̄I + ω̄θ)(τ − τb)]
(2ω̄I)(2ω̄θ)

= 2λ̂hθA(τ)δm̂2
Aθ(τ)

(3 + ξ)

128π2
ln(Λ̂/ ˆ̄m)2 + finite.

The 3-point vertex is λ̂hθA(τ) = 2g(−∂τ −H(τ)).

Adding all the Minkowski pieces together gives

AMink
2 =

−1

32π2

∑
α

Sα∂φm̂
2
αδm̂

2
α ln(Λ̂/ ˆ̄m)2+

(3 + ξ)

64π2
λ̂hAθδm̂

2
Aθ ln(Λ̂/ ˆ̄m)2.

Symmetry factors Sα = {1, 1,−2, 3, 1} for {h, θ, η, A, ξ}; m̂2
ξ = ξm̂2

A.
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Calculating Amass
2

Next, the Lorentz violating mass m2
0 gives

Amass
2 = − i

2
∂φm̂

2
A(τ)

∫
d4xb δm̂

2
0(τb)η

µν
[
D++
µ0,abD

++
0ν,ba −D

+−
µ0,abD

−+
0ν,ba

]
= −∂φm̂2

A(τ)

∫ τ

0
dτb δm̂

2
0(τb)

∫
d3k

(2π)3

CIJ sin [(ω̄I + ω̄J)(τ − τb)]
(2ω̄I)(2ω̄J)

= −∂φm̂2
A(τ)δm̂2

0(τ)
(3 + ξ2)

4× 32π2
ln(Λ̂/ ˆ̄m)2 + finite.

This diagram is not present in Minkowski.
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Calculating Amix
2

The off-diagonal interaction (δm̂2)0i contains a spatial derivative and
brings down a factor of the momentum.

Amix
2 = i∂φm̂

2
A(τ)

∫
d4xb(δm̂

2)0i(τb)η
µν

[
D++
µ0,abD

++
iν,ba −D

+−
µ0,abD

−+
iν,ba

]
= −2

ξ
∂φm̂

2
A(τ)

∫ τ

0
dτbH(τb)

∫
d3k

(2π)3

2CIJ cos [(ω̄I + ω̄J)(τ − τb)]
(2ω̄I)(2ω̄J)

= −2

ξ
∂φm̂

2
A(τ)

∫
d3k

(2π)3

2CIJH′(τ)

(2ω̄I)(2ω̄J)(ω̄I + ω̄J)2
+ finite

= ∂φm̂
2
A(τ)

3H′(τ)(1− ξ)2

64π2ξ
ln(Λ̂/ ˆ̄m)2 + finite.

We have a cosine instead of a sine → integrate by parts twice to isolate
the leading term in the UV limit. Obtain a result proportional to H′.
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Summary of second order tadpoles

∑
A2,α =

[ Dα+
h

Dα+
h

∂φm̂
2
hδm̂

2
h

+

Dα+
θ

Dα+
θ

∂φm̂
2
θδm̂

2
θ

+

Dα+
η

Dα+
η

−2∂φm̂
2
ηδm̂

2
η

+

Dα+
µν

Dα+
ρσ

∂φm̂
2
Aδm̂

2
A(3 + ξ2)

+

Dα+
0µ

Dα+
0ν

∂φm̂
2
Aδm̂

2
0

3+ξ2

4

+

Dα+
0µ

∂(xb)iD
α+
iν

−∂φm̂2
A

3H′(ξ−1)2

2ξ

+

Dα+
θ

Dα+
00

−λ̂hAθδm̂2
Aθ

3+ξ
2

]
× −1

32π2 log Λ2

These Feynman diagrams are in (conformal) coordinate space.

All time-dependent quantities (λ̂Aθ, m̂2
α, δm̂2

α and H) are evaluated at τ .
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Third order

Not done yet!

All 3rd order diagrams with 2-point insertions are UV finite, except for
one.

Power counting:

d4k in 4d,

1/k2 per propagator,

k for a derivative from (m̂2)0i = 2
ξH∂

i.

In 4d, 3 propagators and 2 derivatives → logarithmically divergent.
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The third order diagram

x,+ y,+

z1,±

z2,±
h

D±+
αρ

D±+
βτ

D±±σκ

λ̂hAA

(m̂2)0i

(m̂2)0j

A3 =
1

2
∂φm̂

2
A(τ)

∫
d4xb

∫
d4xc(δm̂

2)0i(τb)(δm̂
2)0j(τc)η

µνDab
µρD

bc
σκD

ca
τν .

Sum over {ρ, σ, κ, τ} from {0, i, j}. Sum over {a, b, c} from ±.

End result is

A3 = ∂φm̂
2
A(τ)H2(τ)

−6(1 + ξ)

64π2ξ
ln(Λ̂/ ˆ̄m)2 + finite.
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Adding it all up

We have computed all quadratically and logarithmically divergent
contributions to the one-loop equation of motion.

The first and second order combined ÂMink = ÂMink
1 + ÂMink

2 is

ÂMink =
1

16π2

∑
α

Sα∂φ̂m̂
2
α

[
Λ̂2 − 1

2
m̂2
α ln(Λ̂/ ˆ̄m)2

]
+

(3 + ξ)

64π2
λ̂hAθm̂

2
Aθ ln(Λ̂/ ˆ̄m)2.

This is independent of how the 2-point interaction is split, since the 1st

and 2nd order pieces combine to give m̂2
α = ˆ̄m2

α + δm̂2
α.

For A0 mass insertions we have the 2nd order piece

Âmass = −∂φ̂m̂
2
Aδm̂

2
0

3 + ξ2

128π2
ln(Λ̂/ ˆ̄m)2.

For the mixed piece we have contributions from 2nd and 3rd order

Âmix = ∂φ̂m̂
2
A

(
3H′(1− ξ)2

ξ
− 6H2(1 + ξ)

ξ

)
1

64π2
ln(Λ̂/ ˆ̄m)2.
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Effective action

Have the 1-loop equation of motion Â1-loop. Corresponding Lagrangian is

Â1-loop =

(
δL̂1-loop

δφ̂′

)′
− δL̂1-loop

δφ̂
.

The action is then simply

Γ1-loop =

∫
d3x dτ L̂1-loop.

All terms polynomial in φ̂ are easily integrated to find the Lagrangian.

Only one is not polynomial; in ÂMink there is:

λ̂hAθm̂
2
Aθ = 4g2

(
−φ̂′′ +H′φ̂+H2φ̂

)
.

This comes from a Lagrangian

−1

2
m̂4
Aθ = −2g2

(
φ̂′2 − 2Hφ̂φ̂′ +H2φ̂2

)
.

D.P. George Time dependence and the effective potential in Higgs inflation 28/36



Gauge invariance

Going to coordinate time and taking off the hats, the total 1-loop
effective action is

Γ1-loop =
−1

16π2

∫
d3xdt

√
−g

{(
Vhh + Vθθ + 3m2

A

)
Λ2

−
[(
Vhh − Ḣ − 2H2

)2
+
(
Vθθ − Ḣ − 2H2

)2
+ 3m4

A

+ 2ξVθθm
2
A − (6 + 2ξ)g2φ̇2 + 6m2

A

(
Ḣ + 2H2

)] ln(Λ/m̄)2

4

}
.

Result is still gauge variant. Use the Nielsen identities

∂Veff

∂ξ
+
∂φ

∂ξ

∂Veff

∂φ
= 0.

Veff is only gauge invariant when the background field is in a minimum of
the potential, i.e. the background field satisfies its equation of motion.

Going on-shell enables us to rewrite the φ̇2 term and eliminate ξ.
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Self-contained summary of the results

FLRW metric background ds2 = dt2 − a2(t)d~x2.

Abelian Higgs model with U(1) gauge symmetry

Stot =

∫
d4x
√
−g
[
−1

4
gµαgνβFµνFαβ + gµνDµΦ(DνΦ)† − V (Φ)

]
.

Expand the Higgs around a time-dependent background

Φ(xµ) =
1√
2

(
φ(t) + h(t, ~x) + iθ(t, ~x)

)
.

UV divergent contributions at one loop are

Γ1−loop =
−1

16π2

∫
d3xdt

√
−g

[
(Ṽhh + Ṽθθ + 3m2

A)Λ2

−
(
Ṽ 2
hh + Ṽ 2

θθ + 3m4
A − 6Ṽθθm

2
A

) ln(Λ/m̄)2

4

]
,

where the time-dependent “shifted scalar mass” is

Ṽαα ≡ Vαα − Ḣ − 2H2.
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Additional scalars and fermions in the loops

If the Higgs field couples to additional scalars χα and/or fermion fields
ψβ, we get an additional contribution

δΓ1−loop = − 1

16π2

∫
d3xdt

√
−g

[∑
χα

(
ṼααΛ2 − Ṽ 2

αα

ln(Λ/m̄)2

4

)

−
∑
ψβ

(
m2
βΛ2 −

(
m4
β − Ṽθθm2

β

) ln(Λ/m̄)2

4

)]
.

The sum is over all bosonic and fermion real degrees of freedom, where a
Weyl (Dirac) fermion counts as 2 (4) degrees of freedom.

The shifted scalar mass is as before Ṽαα ≡ Vαα − Ḣ − 2H2.

For fermions, assume a Yukawa interaction mψ ∝ φ.
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Comparison with literature

The results agree with the expressions in the literature in the appropriate
limits:

Minkowski case (H = Ḣ = 0, and thus Ṽαα = Vαα) it matches
Mooij & Postma 2011.

In the de Sitter limit Ḣ = 0, and for a time-independent Higgs field
(Vθθ = 0 by Goldstone’s theorem), it agrees with Garbrecht 2007.

Taking both the Minkowski limit and a static background field we
retrieve the classic CW potential, Coleman & Weinberg 1973.
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Next steps

We only calculate the UV divergent terms, as these will generically give
the dominant contribution. Using a renormalisation prescription, these
terms (and wavefunction renormalisation) suffice to derive the RGEs and
find the RG improved action.

To apply our results to Higgs inflation we need to extend them:

1 Include back reaction from gravity.

2 Go from U(1) toy model to SM gauge group.

3 Consider non-minimal coupling to gravity.

4 To relate parameters to low energy observables need RG flow.
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Non-minimal coupling to gravity

Include non-minimal coupling to gravity, ξ|Φ|2R.

Transform to the Einstein frame, then our 1-loop results can be applied.

For the SM, not so straight forward: Higgs H has 4 degrees of freedom,
kinetic term is non-minimal in Einstein frame:

Le√
−g
⊃ 1

2
γij∂φi∂φj =

1

2

[
δij
Ω2

+
6ξ2

Ω4
φiφj

]
∂φi∂φj .

Field-space metric γij cannot be diagonalised everywhere. Instead,
diagonalise it at each point in field-space, giving a spectrum of 4 scalars
with masses a function of φBG.

Can then apply our 1-loop results.
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Running of the RGEs

To connect low energy observables (at LHC) with high energy ones
(inflation and CMB) need to run the couplings from MZ to Minfl.

Jordan versus Einstein frame:

Jordan has gravity fluctuations which should be important (can we
ignore them?). RGEs:

βλ =
9λ2

8π2
, βm2 =

3λm2

8π2
, βξ =

3λ(ξ + 1/6)

8π2
,

βκ =
m2(ξ + 1/6)

8π2
, βΛ =

m4

32π2

Einstein has non-minimal kinetic structure (diagonalise at each point
in field-space?) and non-renormalisable terms.

ξ will run, so is reintroduced in Einstein frame. Not such a problem.
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Conclusions

Higgs inflation is simple and promising, although slight tension with
mh = 126GeV.

To constrain BSM models using cosmological data need quantum
corrections to scalar potential, and running of the parameters.

We gave the effective potential with time-dependent FLRW background
and time-dependent Higgs vev, with a gauge field.

Work in progress: go to full SM with non-minimal coupling, and
determine RGEs.
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