Time dependence and the effective potential in Higgs inflation

Damien P. George

DAMTP \& The Cavendish, The Herchel Smith Fund, Cambridge, UK

University of Sussex - $25^{\text {th }}$ February 2013

Higgs inflation paradigm.
Quantum corrections and the calculation of the effective potential:

- expanding the action,
- split 2-point interactions,
- in-in formalism,
- computing the tadpole diagrams,
- putting it all together.

Work in progress:

- full SM ,
- running of the RGEs.

Higgs inflation paradigm

Inflation:

- solves flatness and horizon (and monopole) problems,

- provides seeds for structure formation,
- is driven by an inflaton field rolling slowly down its potential.

The standard model Higgs field can be play the role of the inflaton Need a single additional term: $\xi|H|^{2} R$.
Bezrukov \& Shaposhnikov PLB 659703 (2008).
Such a term is expected to be generated, current bounds: $\xi \lesssim 2.6 \times 10^{15}$ Atkins \& Calmet PRL 110051301 (2013).

$$
\mathcal{S}=\int \mathrm{d}^{4} x \sqrt{-g}\left[\ldots+\xi H^{\dagger} H R+\ldots-\lambda\left(H^{\dagger} H-v^{2} / 2\right)^{2}+\ldots\right]
$$

Go to Einstein frame and canonical kinetic term. In large field regime expand the potential in $\delta \equiv 1 /\left(\xi \phi^{2}\right) \ll 1$. Slow roll parameters:

$$
\epsilon=4 \delta^{2} / 3, \quad \eta=-4\left(\delta-\delta^{2}\right) / 3
$$

Inflation ends for $\epsilon \approx 1$, giving number of e-folds $N \approx \frac{6}{8 \delta_{*}}$. With $N \approx 60$, we find $\delta_{*} \sim 6 / 8 N \approx 1 / 80$.

Cobe normalisation gives

$$
(V / \epsilon)_{*}=(0.027)^{4} \quad \Rightarrow \quad \lambda / \xi^{2}=4 \times 10^{-10} \quad \Rightarrow \quad \xi=5 \times 10^{4} \sqrt{\lambda}
$$

Spectral index and tensor-to-scalar ratio are compatible with data:
$n_{s}=1+2 \eta-6 \epsilon \approx 1-\frac{8}{3} \delta_{*}-\frac{16}{3} \delta_{*}^{2} \approx 0.967, \quad r=16 \epsilon=8 \delta_{*}^{2}=0.0033$.
Running of λ and stability of Higgs vacuum with $m_{h}=126 \mathrm{GeV}$??

Quantum corrections

To test BSM physics using cosmological data must have a precise understanding of the scalar field's dynamics.
\rightarrow need to go beyond classical and include dominant quantum effects
One-loop effective action for a scalar field in an expanding universe. Birrell \& Davies, 1982; Candelas \& Raine, 1975; Ringwald, 1987a, 1987b.

Describes the backreaction of the quantum fluctuations of the scalar field on the time-dependent background field, calculated systematically in a loop expansion.

Here: extend these results by including a coupling to a gauge field. The toy model is Abelian Higgs with a U(1) gauge field in FLRW background. Calculation found in DG, Mooij \& Postma JCAP 11043 (2012).

Generalises the Coleman-Weinberg potential to time-dependent background fields in a curved space-time; Coleman \& Weinberg 1973.
$\mathrm{A} \mathrm{U}(1)$ gauge field A_{μ} and charge scalar Φ in a curved background.

$$
\mathrm{d} s^{2}=a^{2}(\tau)\left(\mathrm{d} \tau^{2}-\mathrm{d} \vec{x}^{2}\right), \quad \Phi\left(x^{\mu}\right)=\frac{1}{\sqrt{2}}(\phi(\tau)+h+i \theta)
$$

The action in R_{ξ} gauge:

$$
S_{\mathrm{tot}}=\int \mathrm{d}^{4} x \sqrt{-g}\left(\mathcal{L}+\mathcal{L}_{\mathrm{GF}}+\mathcal{L}_{\mathrm{FP}}\right)
$$

with

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} g^{\mu \alpha} g^{\nu \beta} F_{\mu \nu} F_{\alpha \beta}+g^{\mu \nu} D_{\mu} \Phi\left(D_{\nu} \Phi\right)^{\dagger}-V(\Phi), \\
\mathcal{L}_{\mathrm{GF}} & =-\frac{1}{2 \xi} G^{2}, \quad G=g^{\mu \nu} \nabla_{\mu} A_{\nu}-\xi g(\phi+h) \theta, \\
\mathcal{L}_{\mathrm{FP}} & =\bar{\eta} g \frac{\delta G}{\delta \alpha} \eta . \quad(\alpha \text { is a U(1) gauge transformation })
\end{aligned}
$$

Quantum fields h, θ, A_{μ}, η in a time-dependent background $a(\tau), \phi(\tau)$. Background metric is fixed, backreaction assumed negligible.

Expand the action up to $3^{\text {rd }}$ order in the quantum fields.
The one-point vertex is

$$
S^{(1)}=\int \mathrm{d}^{4} x\left(-\hat{\lambda}_{h} \hat{h}\right)
$$

where

$$
\hat{\lambda}_{h}=\left(\partial_{\tau}^{2}-\left(\mathcal{H}^{\prime}+\mathcal{H}^{2}\right)\right) \hat{\phi}+\hat{V}_{\hat{\phi}}=a^{3}\left[\ddot{\phi}+3 H \dot{\phi}+V_{\phi}\right] .
$$

Working in conformal frame with $\mathcal{H}=a^{\prime} / a, \hat{\phi}=a \phi, \hat{V}=a^{4} V(\hat{\phi})$, etc. Note A does not need a hat.

Easier to work in conformal time, as the resulting action has a form similar to the Minkowski action, and all the machinery developed for this can be used.
Mooij \& Postma 2011; Heitmann, 1996.

$$
\begin{aligned}
S^{(2)}=\int \mathrm{d}^{4} x\{ & -\frac{1}{2} A_{\mu}\left[-\left(\partial^{2}+\hat{m}_{(\mu)}^{2}\right) \eta^{\mu \nu}+\left(1-\frac{1}{\xi}\right) \partial^{\mu} \partial^{\nu}\right] A_{\nu} \\
& -A_{0}\left(\hat{m}^{2}\right)^{i 0} A_{i}-\hat{m}_{A \theta}^{2} A_{0} \hat{\theta} \\
& \left.-\frac{1}{2} \hat{h}\left(\partial^{2}+\hat{m}_{h}^{2}\right) \hat{h}-\frac{1}{2} \hat{\theta}\left(\partial^{2}+\hat{m}_{\theta}^{2}\right) \hat{\theta}-\hat{\eta}\left(\partial^{2}+\hat{m}_{\eta}^{2}\right) \hat{\eta}\right\} .
\end{aligned}
$$

2-point interactions are:

$$
\begin{aligned}
\hat{m}_{(\mu)}^{2} & =g^{2} \hat{\phi}^{2}+\frac{2}{\xi}\left(\mathcal{H}^{\prime}-2 \mathcal{H}^{2}\right) \delta_{\mu 0}, \\
\hat{m}_{h}^{2} & =\hat{V}_{h h}-\left(\mathcal{H}^{\prime}+\mathcal{H}^{2}\right), \\
\hat{m}_{\theta}^{2} & =\hat{V}_{\theta \theta}+\xi g^{2} \hat{\phi}^{2}-\left(\mathcal{H}^{\prime}+\mathcal{H}^{2}\right), \\
\hat{m}_{\eta}^{2} & =\xi g^{2} \hat{\phi}^{2}-\left(\mathcal{H}^{\prime}+\mathcal{H}^{2}\right) .
\end{aligned}
$$

Off-diagonal 2-point terms are:

$$
\hat{m}_{A \theta}^{2}=2 g\left(\partial_{\tau}-\mathcal{H}\right) \hat{\phi}, \quad\left(\hat{m}^{2}\right)^{i 0}=\frac{2}{\xi} \mathcal{H} \partial^{i} .
$$

Three point vertices

The 3-point interaction vertices are

$$
\begin{aligned}
S^{(3)}=\int \mathrm{d}^{4} x[& -\frac{1}{2} \hat{\lambda}_{h h h} \hat{h}^{3}-\frac{1}{2} \hat{\lambda}_{h \theta \theta} \hat{h} \hat{\theta}^{2}-\frac{1}{2} \hat{\lambda}_{h A A} \hat{h} \hat{A}^{2} \\
& \left.-\hat{\lambda}_{h \eta \eta} \hat{h} \hat{\eta} \hat{\eta}-\hat{h} \hat{\lambda}_{h A \theta} A_{0} \hat{\theta}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
\hat{\lambda}_{h h h} & =\partial_{\hat{\phi}} \hat{m}_{h}^{2}=\hat{V}_{\phi h h} \\
\hat{\lambda}_{h \theta \theta} & =\partial_{\hat{\phi}} \hat{m}_{\theta}^{2}=\hat{V}_{\phi \theta \theta}+2 \xi g^{2} \hat{\phi} \\
\hat{\lambda}_{h A A} & =\partial_{\hat{\phi}} \hat{m}_{A}^{2}=-2 g^{2} \hat{\phi} \\
\hat{\lambda}_{h \eta \eta} & =\partial_{\hat{\phi}} \hat{m}_{\eta}^{2}=2 \xi g^{2} \hat{\phi}, \\
\hat{\lambda}_{h A \theta} & =2 g\left(-\partial_{\tau}-\mathcal{H}\right) .
\end{aligned}
$$

Expressed in terms of 2-point interactions; formally, $\partial_{\hat{\phi}} \mathcal{H}=0$.
Integration by parts used to get $\lambda_{h A \theta}$ acting on $A_{0} \hat{\theta}$. Also discarded a ∂_{i} term.

The background is time-dependent: $a(\tau), \phi(\tau)$.
\rightarrow the "masses" (really 2-point interactions) are also time-dependent.
Split these interaction into time-independent and time-dependent parts:

$$
\hat{m}^{2}(\tau)=\hat{m}^{2}+\delta \hat{m}^{2}(\tau)
$$

with the split defined by

$$
\delta \hat{m}^{2}(0)=0 .
$$

- $\hat{\bar{m}}^{2}$ contributes to the free Lagrangian. We call it the mass and it determines the propagator.
- $\delta \hat{m}^{2}(\tau)$ is treated as a proper 2-point interaction in Feynman diagrams.

The loop expansion is independent of the split of the 2-point terms into a free and interacting part.
Also demand off-diagonal 2-point interactions vanish at $\tau=0$.

In-in formalism

Since we are interested in expectation values of the background field and their evolution with time (not scattering amplitudes) we use the in-in formalism (closed-time-path (CTP) or Schwinger-Keldysh formalism).
Schwinger, 1961; Keldysh, 1964; Jordan, 1986; Bakshi \& Mahanthappa 1963a, 1963b; Calzetta \& Hu, 1987; Weinberg, 2005.

- Expectation values are computed using an action

$$
S=S\left[\phi_{i}^{+}\right]-S\left[\phi_{i}^{-}\right]
$$

with boundary condition $\phi_{i}^{+}(t)=\phi_{i}^{-}(t)$.

- All fields, propagators and vertices are labelled by \pm superscripts.
- The propagator $D^{ \pm \pm}\left(x-x^{\prime}\right)$ connects vertices $\lambda^{ \pm}(x)$ and $\lambda^{ \pm}\left(x^{\prime}\right)$.
- The action of the minus-fields is defined with an overall minus sign, so

$$
\left[m_{\alpha \beta}^{2}\right]^{-}=-\left[m_{\alpha \beta}^{2}\right]^{+}, \quad\left[\lambda_{h \alpha \beta}\right]^{-}=-\left[\lambda_{h \alpha \beta}\right]^{+}
$$

We construct the propagators from the free, time-independent part of the quadratic action. For example, for h the propagators are defined as the solutions of

$$
\left(\begin{array}{cc}
\partial_{x}^{2}+\hat{\bar{m}}_{h}^{2} & 0 \\
0 & -\left(\partial_{x}^{2}+\hat{m}_{h}^{2}\right)
\end{array}\right)\left(\begin{array}{cc}
D_{h}^{++}(x-y) & D_{h}^{+-}(x-y) \\
D_{h}^{-+}(x-y) & D_{h}^{--}(x-y)
\end{array}\right)=-i \delta(x-y) \mathbf{I}_{2} .
$$

This defines D^{++}as the usual Feynman propagator, D^{--}as the anti-Feynman propagator, and D^{-+}and D^{+-}as Wightman functions.

$$
\begin{aligned}
& D_{h}^{-+}\left(x_{a}-x_{b}\right)=D_{h}^{+-}\left(x_{b}-x_{a}\right)=D_{h, a b} \\
& D_{h}^{++}\left(x_{a}-x_{b}\right)=D_{h, a b} \Theta_{a b}+D_{h, b a} \Theta_{b a} \\
& D_{h}^{--}\left(x_{a}-x_{b}\right)=D_{h, a b} \Theta_{b a}+D_{h, b a} \Theta_{a b}
\end{aligned}
$$

Vanishing of the tadpole \rightarrow equation of motion for $\phi(t)$. Include 1-loop tadpoles \rightarrow quantum corrected equation of motion.

$$
\left\langle h^{+}(\tau, \vec{x})\right\rangle=0 .
$$

Vanishing of the h^{-} component gives the same result.

From first principles, expand out the path integral:

$$
\begin{aligned}
0 & =\left\langle h^{+}(x)\right\rangle \\
& =\int D \psi_{\alpha}^{+} \mathcal{D} \psi_{\beta}^{-} h^{+}(x) \mathrm{e}^{i\left(S_{0}\left[\psi_{\alpha}^{+}\right]+S_{\text {int }}\left[\psi_{\alpha}^{+}\right]\right)-i\left(S_{0}\left[\psi_{\beta}^{-}\right]+S_{\text {int }}\left[\psi_{\beta}^{-}\right]\right)} \\
& =\int \mathcal{D} \psi_{\alpha}^{+} \mathcal{D} \psi_{\beta}^{-} h^{+}(x) \mathrm{e}^{i S_{0}\left[\psi_{\alpha}^{+}\right]-i S_{0}\left[\psi_{\beta}^{-}\right]}\left[1+i \int \mathrm{~d}^{4} y\left(\mathcal{L}_{\text {int }}^{+}-\mathcal{L}_{\text {int }}^{-}\right)+\ldots\right] \\
& =-i \int \mathrm{~d}^{4} y\left[D_{h}^{++}(x-y)-D_{h}^{+-}(x-y)\right] A(y) .
\end{aligned}
$$

Equation of motion: $A(y)=0$.

For divergent terms, need to go to $3^{\text {rd }}$ order in $\mathcal{L}_{\text {int }}$.

$$
\begin{aligned}
0= & A_{\mathrm{cl}}+A_{1}+A_{2}+A_{3}+\text { finite } \\
= & \hat{\lambda}_{h}(x)+S_{\alpha \beta} \hat{\lambda}_{h \alpha \beta}(x) D_{\alpha \beta}^{++}(0) \\
& -i S_{\alpha \beta \gamma \delta} \hat{\lambda}_{h \alpha \beta}(x) \int \mathrm{d}^{4} x^{\prime} D_{\alpha \gamma}^{+ \pm}\left(x-x^{\prime}\right)\left[\delta \hat{m}_{\gamma \delta}^{2}\left(x^{\prime}\right)\right]^{ \pm} D_{\delta \beta}^{ \pm+}\left(x^{\prime}-x\right) \\
& -S_{\alpha \beta \gamma \delta \rho \sigma} \hat{\lambda}_{h \alpha \beta}(x) \int \mathrm{d}^{4} x^{\prime} \int \mathrm{d}^{4} x^{\prime \prime}\left\{D_{\alpha \gamma}^{+ \pm}\left(x-x^{\prime}\right)\left[\delta \hat{m}_{\gamma \delta}^{2}\left(x^{\prime}\right)\right]^{ \pm} D_{\delta \rho}^{ \pm \pm}\left(x^{\prime}-x^{\prime \prime}\right)\right. \\
& \left.\quad \times\left[\delta \hat{m}_{\rho \sigma}^{2}\left(x^{\prime \prime}\right)\right]^{ \pm} D_{\sigma \beta}^{ \pm+}\left(x^{\prime \prime}-x\right)\right\}
\end{aligned}
$$

+ finite.
- Sum over: field-type, Lorentz indices, possibilities for \pm.
- $S_{\alpha \beta \ldots}$ are appropriate symmetry factors.
- Masses $\hat{\bar{m}}_{\alpha}^{2}$ in propagators D_{α}.
- $\delta \hat{m}_{\alpha \beta}^{2}(\tau)$ and $\hat{\lambda}_{h \alpha \beta}(\tau): 2$ - and 3-point interaction vertices.
- Concerned only with the UV divergent contributions \rightarrow consider only up to three vertices.

In terms of diagrams: all 1PI tadpole graphs with one external h^{+}leg.

Computing these diagrams gives the quantum corrected equation of motion at the 1-loop level.

Classical part: $A_{\mathrm{cl}}=\hat{\lambda}_{h}(x)$.

First order

First order diagrams as in Minkowski [Mooij \& Postma, JCAP 1109, 006 (2011)].
Four diagrams contribute: h, θ, η, A^{μ} in the loop.

Each diagram has the same structure:

$$
\begin{aligned}
A_{1, \alpha} & =\frac{1}{2} \partial_{\phi} \hat{m}_{\alpha}^{2} D_{\alpha}^{++}(0) \\
& =\frac{1}{2} \partial_{\phi} \hat{m}_{\alpha}^{2} \frac{1}{4 \pi^{2}} \int_{0}^{\hat{\Lambda}} k^{2} \mathrm{~d} k\left[\frac{1}{k}-\frac{1}{2} \frac{\hat{m}_{\alpha}^{2}}{k^{3}}+\ldots\right] \\
& =\frac{1}{16 \pi^{2}} \partial_{\phi} \hat{m}_{\alpha}^{2}\left[\hat{\Lambda}^{2}-\frac{1}{2} \hat{m}_{\alpha}^{2} \ln (\hat{\Lambda} / \hat{\bar{m}})^{2}+\text { finite }\right] .
\end{aligned}
$$

The variable k is the comoving momentum with $k<\hat{\Lambda}$ a comoving cutoff.
Gauge loop is expressed as scalar propagators $-\eta^{\mu \nu} D_{\mu \nu}^{++}(0)=3 D_{A}^{++}(0)+\xi D_{\xi}^{++}(0)$.

For the log-divergent part, sum of all first-order diagrams is

Note that $\partial_{\phi} \hat{m}_{\alpha}^{2}$ is time-dependent and evaluated at τ
For example, $\partial_{\phi} \hat{m}_{A}^{2}=-2 g^{2} \hat{\phi}(\tau)$.
Thus, A_{1} is a function of τ.

At second order in $\mathcal{L}_{\text {int }}$ the loop diagrams with one 2-point insertion contribute. We split them into three parts:

- $A_{2}^{\text {Mink }}$ contains all scalar loops, and the gauge boson loop where only the diagonal part of $\hat{m}_{(\mu)}^{2}$ is inserted. Also a mixed θA^{0}-loop. This part is analogous to the equivalent Minkowski calculation.
- $A_{2}^{\text {mass }}$ contains the gauge boson loop with a $\delta \hat{m}_{0}^{2}$.
- $A_{2}^{\text {mix }}$ contains the gauge boson loop with a $\left(\delta \hat{m}^{2}\right)^{0 i}$.

These last two diagrams are both absent in Minkowski.

Calculating $A_{2}^{\text {Mink }}$

The scalar Higgs loop with one 2-point insertion gives

$$
\begin{aligned}
A_{2, h}^{\text {Mink }}=-\frac{i}{2} \partial_{\phi} \hat{m}_{h}^{2}(\tau) \int \mathrm{d}^{4} x_{b} \delta \hat{m}_{h}^{2}\left(\tau_{b}\right) & {\left[D_{h}^{++}\left(x_{a}-x_{b}\right) D_{h}^{++}\left(x_{b}-x_{a}\right)\right.} \\
& \left.-D_{h}^{+-}\left(x_{a}-x_{b}\right) D_{h}^{-+}\left(x_{b}-x_{a}\right)\right] \\
=- & \frac{i}{2} \partial_{\phi} \hat{m}_{h}^{2}(\tau) \int \mathrm{d}^{4} x_{b} \delta \hat{m}_{h}^{2}\left(\tau_{b}\right) \Theta_{a b}\left[D_{h, a b}^{2}-D_{h, b a}^{2}\right] .
\end{aligned}
$$

Everything expressed in terms of Wightman functions. Fourier transform, perform the $\mathrm{d}^{3} x_{b}$ integral, integrate by parts to extract the UV divergent piece:

$$
\begin{aligned}
A_{2, h}^{\mathrm{Mink}} & =-\partial_{\phi} \hat{m}_{h}^{2}(\tau) \delta \hat{m}_{h}^{2}(\tau) \int \frac{\mathrm{d}^{3} k}{64 \pi^{3} \overrightarrow{k^{3}}} \\
& =-\partial_{\phi} \hat{m}_{h}^{2}(\tau) \delta \hat{m}_{h}^{2}(\tau) \frac{1}{32 \pi^{2}} \ln (\hat{\Lambda} / \hat{\bar{m}})^{2}+\text { finite }
\end{aligned}
$$

Calculating $A_{2}^{\text {Mink }}$

The Goldstone boson loop $A_{2, \theta}^{\mathrm{Mink}}$ and ghost loop $A_{2, \eta}^{\mathrm{Mink}}$ are similar to $A_{2, h}^{\text {Mink }}$. Ghost has overall factor (-2).

Gauge boson loop follows the same steps but with a non-trivial Lorentz structure:

$$
\begin{aligned}
A_{2, A}^{\mathrm{Mink}}= & -\frac{i}{2} \partial_{\phi} \hat{m}_{A}^{2} \int \mathrm{~d}^{4} x_{b} \delta \hat{m}_{A}^{2}\left(\tau_{b}\right) \eta^{\mu \nu} \eta^{\rho \sigma}\left[D_{\mu \rho}^{++}\left(x_{a}-x_{b}\right) D_{\sigma \nu}^{++}\left(x_{b}-x_{a}\right)\right. \\
& \left.-D_{\mu \rho}^{+-}\left(x_{a}-x_{b}\right) D_{\sigma \nu}^{-+}\left(x_{b}-x_{a}\right)\right] \\
= & -\partial_{\phi} \hat{m}_{A}^{2} \int_{0}^{\tau} \mathrm{d} \tau_{b} \delta \hat{m}_{A}^{2}\left(\tau_{b}\right) \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \frac{C_{I J} \sin \left[\left(\bar{\omega}_{I}+\bar{\omega}_{J}\right)\left(\tau-\tau_{b}\right)\right]}{\left(2 \bar{\omega}_{I}\right)\left(2 \bar{\omega}_{J}\right)} \\
= & -\partial_{\phi} \hat{m}_{A}^{2} \delta \hat{m}_{A}^{2}(\tau) \frac{\left(3+\xi^{2}\right)}{32 \pi^{2}} \ln (\hat{\Lambda} / \hat{\bar{m}})^{2}+\text { finite. }
\end{aligned}
$$

$C_{I J}$ encodes the structure arising from Wightman functions in Fourier space.

Calculating $A_{2}^{\text {Mink }}$

Finally, the mixed θA^{0}-loop gives

$$
\begin{aligned}
A_{2, A \theta}^{\mathrm{Mink}} & =-i \hat{\lambda}_{h \theta A}(\tau) \int \mathrm{d}^{4} x_{b} \delta \hat{m}_{A \theta}^{2}\left(\tau_{b}\right)\left[D_{00, a b}^{++} D_{\theta, b a}^{++}-D_{00, a b}^{+-} D_{\theta, b a}^{-+}\right] \\
& =-2 \hat{\lambda}_{h \theta A}(\tau) \int_{0}^{\tau} \mathrm{d} \tau_{b} \delta \hat{m}_{A \theta}^{2}\left(\tau_{b}\right) \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \frac{C_{I} \sin \left[\left(\bar{\omega}_{I}+\bar{\omega}_{\theta}\right)\left(\tau-\tau_{b}\right)\right]}{\left(2 \bar{\omega}_{I}\right)\left(2 \bar{\omega}_{\theta}\right)} \\
& =2 \hat{\lambda}_{h \theta A}(\tau) \delta \hat{m}_{A \theta}^{2}(\tau) \frac{(3+\xi)}{128 \pi^{2}} \ln (\hat{\Lambda} / \hat{m})^{2}+\text { finite. }
\end{aligned}
$$

The 3-point vertex is $\hat{\lambda}_{h \theta A}(\tau)=2 g\left(-\partial_{\tau}-\mathcal{H}(\tau)\right)$.

Adding all the Minkowski pieces together gives
$A_{2}^{\text {Mink }}=\frac{-1}{32 \pi^{2}} \sum_{\alpha} S_{\alpha} \partial_{\phi} \hat{m}_{\alpha}^{2} \delta \hat{m}_{\alpha}^{2} \ln (\hat{\Lambda} / \hat{m})^{2}+\frac{(3+\xi)}{64 \pi^{2}} \hat{\lambda}_{h A \theta} \delta \hat{m}_{A \theta}^{2} \ln (\hat{\Lambda} / \hat{m})^{2}$.
Symmetry factors $S_{\alpha}=\{1,1,-2,3,1\}$ for $\{h, \theta, \eta, A, \xi\} ; \hat{m}_{\xi}^{2}=\xi \hat{m}_{A}^{2}$.

Next, the Lorentz violating mass m_{0}^{2} gives

$$
\begin{aligned}
A_{2}^{\text {mass }} & =-\frac{i}{2} \partial_{\phi} \hat{m}_{A}^{2}(\tau) \int \mathrm{d}^{4} x_{b} \delta \hat{m}_{0}^{2}\left(\tau_{b}\right) \eta^{\mu \nu}\left[D_{\mu 0, a b}^{++} D_{0 \nu, b a}^{++}-D_{\mu 0, a b}^{+-} D_{0 \nu, b a}^{-+}\right] \\
& =-\partial_{\phi} \hat{m}_{A}^{2}(\tau) \int_{0}^{\tau} \mathrm{d} \tau_{b} \delta \hat{m}_{0}^{2}\left(\tau_{b}\right) \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \frac{C_{I J} \sin \left[\left(\bar{\omega}_{I}+\bar{\omega}_{J}\right)\left(\tau-\tau_{b}\right)\right]}{\left(2 \bar{\omega}_{I}\right)\left(2 \bar{\omega}_{J}\right)} \\
& =-\partial_{\phi} \hat{m}_{A}^{2}(\tau) \delta \hat{m}_{0}^{2}(\tau) \frac{\left(3+\xi^{2}\right)}{4 \times 32 \pi^{2}} \ln (\hat{\Lambda} / \hat{\bar{m}})^{2}+\text { finite. }
\end{aligned}
$$

This diagram is not present in Minkowski.

The off-diagonal interaction $\left(\delta \hat{m}^{2}\right)^{0 i}$ contains a spatial derivative and brings down a factor of the momentum.

$$
\begin{aligned}
A_{2}^{\text {mix }} & =i \partial_{\phi} \hat{m}_{A}^{2}(\tau) \int \mathrm{d}^{4} x_{b}\left(\delta \hat{m}^{2}\right)^{0 i}\left(\tau_{b}\right) \eta^{\mu \nu}\left[D_{\mu 0, a b}^{++} D_{i \nu, b a}^{++}-D_{\mu 0, a b}^{+-} D_{i \nu, b a}^{-+}\right] \\
& =-\frac{2}{\xi} \partial_{\phi} \hat{m}_{A}^{2}(\tau) \int_{0}^{\tau} \mathrm{d} \tau_{b} \mathcal{H}\left(\tau_{b}\right) \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \frac{2 C_{I J} \cos \left[\left(\bar{\omega}_{I}+\bar{\omega}_{J}\right)\left(\tau-\tau_{b}\right)\right]}{\left(2 \bar{\omega}_{I}\right)\left(2 \bar{\omega}_{J}\right)} \\
& =-\frac{2}{\xi} \partial_{\phi} \hat{m}_{A}^{2}(\tau) \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \frac{2 C_{I J} \mathcal{H}^{\prime}(\tau)}{\left(2 \bar{\omega}_{I}\right)\left(2 \bar{\omega}_{J}\right)\left(\bar{\omega}_{I}+\bar{\omega}_{J}\right)^{2}}+\text { finite } \\
& =\partial_{\phi} \hat{m}_{A}^{2}(\tau) \frac{3 \mathcal{H}^{\prime}(\tau)(1-\xi)^{2}}{64 \pi^{2} \xi} \ln (\hat{\Lambda} / \hat{\bar{m}})^{2}+\text { finite. }
\end{aligned}
$$

We have a cosine instead of a sine \rightarrow integrate by parts twice to isolate the leading term in the UV limit. Obtain a result proportional to \mathcal{H}^{\prime}.

These Feynman diagrams are in (conformal) coordinate space. All time-dependent quantities $\left(\hat{\lambda}_{A \theta}, \hat{m}_{\alpha}^{2}, \delta \hat{m}_{\alpha}^{2}\right.$ and $\left.\mathcal{H}\right)$ are evaluated at τ.

Not done yet!

All $3^{\text {rd }}$ order diagrams with 2-point insertions are UV finite, except for one.

Power counting:

- $\mathrm{d}^{4} k$ in 4 d ,
- $1 / k^{2}$ per propagator,
- k for a derivative from $\left(\hat{m}^{2}\right)^{0 i}=\frac{2}{\xi} \mathcal{H} \partial^{i}$.

In 4d, 3 propagators and 2 derivatives \rightarrow logarithmically divergent.

$$
A_{3}=\frac{1}{2} \partial_{\phi} \hat{m}_{A}^{2}(\tau) \int \mathrm{d}^{4} x_{b} \int \mathrm{~d}^{4} x_{c}\left(\delta \hat{m}^{2}\right)^{0 i}\left(\tau_{b}\right)\left(\delta \hat{m}^{2}\right)^{0 j}\left(\tau_{c}\right) \eta^{\mu \nu} D_{\mu \rho}^{a b} D_{\sigma \kappa}^{b c} D_{\tau \nu}^{c a} .
$$

Sum over $\{\rho, \sigma, \kappa, \tau\}$ from $\{0, i, j\}$. Sum over $\{a, b, c\}$ from \pm.
End result is

$$
A_{3}=\partial_{\phi} \hat{m}_{A}^{2}(\tau) \mathcal{H}^{2}(\tau) \frac{-6(1+\xi)}{64 \pi^{2} \xi} \ln (\hat{\Lambda} / \hat{\bar{m}})^{2}+\text { finite }
$$

Adding it all up

We have computed all quadratically and logarithmically divergent contributions to the one-loop equation of motion.

The first and second order combined $\hat{A}^{\text {Mink }}=\hat{A}_{1}^{\text {Mink }}+\hat{A}_{2}^{\text {Mink }}$ is

$$
\hat{A}^{\text {Mink }}=\frac{1}{16 \pi^{2}} \sum_{\alpha} S_{\alpha} \partial_{\hat{\phi}} \hat{m}_{\alpha}^{2}\left[\hat{\Lambda}^{2}-\frac{1}{2} \hat{m}_{\alpha}^{2} \ln (\hat{\Lambda} / \hat{m})^{2}\right]+\frac{(3+\xi)}{64 \pi^{2}} \hat{\lambda}_{h A \theta} \hat{m}_{A \theta}^{2} \ln (\hat{\Lambda} / \hat{m})^{2} .
$$

This is independent of how the 2 -point interaction is split, since the $1^{\text {st }}$ and $2^{\text {nd }}$ order pieces combine to give $\hat{m}_{\alpha}^{2}=\hat{\bar{m}}_{\alpha}^{2}+\delta \hat{m}_{\alpha}^{2}$.

For A_{0} mass insertions we have the $2^{\text {nd }}$ order piece

$$
\hat{A}^{\text {mass }}=-\partial_{\hat{\phi}} \hat{m}_{A}^{2} \delta \hat{m}_{0}^{2} \frac{3+\xi^{2}}{128 \pi^{2}} \ln (\hat{\Lambda} / \hat{m})^{2}
$$

For the mixed piece we have contributions from $2^{\text {nd }}$ and $3^{\text {rd }}$ order

$$
\hat{A}^{\text {mix }}=\partial_{\hat{\phi}} \hat{m}_{A}^{2}\left(\frac{3 \mathcal{H}^{\prime}(1-\xi)^{2}}{\xi}-\frac{6 \mathcal{H}^{2}(1+\xi)}{\xi}\right) \frac{1}{64 \pi^{2}} \ln (\hat{\Lambda} / \hat{\bar{m}})^{2} .
$$

Effective action

Have the 1-loop equation of motion $\hat{A}^{1 \text {-loop }}$. Corresponding Lagrangian is

$$
\hat{A}^{1 \text {-loop }}=\left(\frac{\delta \hat{\mathcal{L}}^{1-\text { loop }}}{\delta \hat{\phi}^{\prime}}\right)^{\prime}-\frac{\delta \hat{\mathcal{L}}^{1 \text {-loop }}}{\delta \hat{\phi}}
$$

The action is then simply

$$
\Gamma^{1 \text {-loop }}=\int \mathrm{d}^{3} x \mathrm{~d} \tau \hat{\mathcal{L}}^{1 \text {-loop }} .
$$

All terms polynomial in $\hat{\phi}$ are easily integrated to find the Lagrangian.
Only one is not polynomial; in $\hat{A}^{\text {Mink }}$ there is:

$$
\hat{\lambda}_{h A \theta} \hat{m}_{A \theta}^{2}=4 g^{2}\left(-\hat{\phi}^{\prime \prime}+\mathcal{H}^{\prime} \hat{\phi}+\mathcal{H}^{2} \hat{\phi}\right)
$$

This comes from a Lagrangian

$$
-\frac{1}{2} \hat{m}_{A \theta}^{4}=-2 g^{2}\left(\hat{\phi}^{\prime 2}-2 \mathcal{H} \hat{\phi} \hat{\phi}^{\prime}+\mathcal{H}^{2} \hat{\phi}^{2}\right) .
$$

Gauge invariance

Going to coordinate time and taking off the hats, the total 1-loop effective action is

$$
\begin{aligned}
\Gamma^{1 \text {-loop }}= & \frac{-1}{16} \pi^{2} \\
& -\left[\left(\mathrm { d } ^ { 3 } x \mathrm { d } t \sqrt { - g } \left\{\left(V_{h h}+V_{\theta \theta}+3 m_{A}^{2}\right) \Lambda^{2}\right.\right.\right. \\
& \left.\left.+2 \xi V_{\theta \theta} m_{A}^{2}-(6+2 \xi) g^{2} \dot{\phi}^{2}+6 m_{A}^{2}\left(\dot{H}+2 H^{2}\right)\right] \frac{\ln (\Lambda / \bar{m})^{2}}{4}\right\}
\end{aligned}
$$

Result is still gauge variant. Use the Nielsen identities

$$
\frac{\partial V_{\mathrm{eff}}}{\partial \xi}+\frac{\partial \phi}{\partial \xi} \frac{\partial V_{\mathrm{eff}}}{\partial \phi}=0
$$

$V_{\text {eff }}$ is only gauge invariant when the background field is in a minimum of the potential, i.e. the background field satisfies its equation of motion.
Going on-shell enables us to rewrite the $\dot{\phi}^{2}$ term and eliminate ξ.

FLRW metric background $\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t) \mathrm{d} \vec{x}^{2}$.
Abelian Higgs model with $\mathrm{U}(1)$ gauge symmetry

$$
S_{\mathrm{tot}}=\int \mathrm{d}^{4} x \sqrt{-g}\left[-\frac{1}{4} g^{\mu \alpha} g^{\nu \beta} F_{\mu \nu} F_{\alpha \beta}+g^{\mu \nu} D_{\mu} \Phi\left(D_{\nu} \Phi\right)^{\dagger}-V(\Phi)\right] .
$$

Expand the Higgs around a time-dependent background

$$
\Phi\left(x^{\mu}\right)=\frac{1}{\sqrt{2}}(\phi(t)+h(t, \vec{x})+i \theta(t, \vec{x})) .
$$

UV divergent contributions at one loop are

$$
\begin{aligned}
\Gamma^{1-\text { loop }}=\frac{-1}{16 \pi^{2}} \int \mathrm{~d}^{3} x \mathrm{~d} t \sqrt{-g}[& \left(\tilde{V}_{h h}+\tilde{V}_{\theta \theta}+3 m_{A}^{2}\right) \Lambda^{2} \\
& \left.-\left(\tilde{V}_{h h}^{2}+\tilde{V}_{\theta \theta}^{2}+3 m_{A}^{4}-6 \tilde{V}_{\theta \theta} m_{A}^{2}\right) \frac{\ln (\Lambda / \bar{m})^{2}}{4}\right]
\end{aligned}
$$

where the time-dependent "shifted scalar mass" is

$$
\tilde{V}_{\alpha \alpha} \equiv V_{\alpha \alpha}-\dot{H}-2 H^{2} .
$$

If the Higgs field couples to additional scalars χ_{α} and/or fermion fields ψ_{β}, we get an additional contribution

$$
\begin{aligned}
\delta \Gamma^{1-\text { loop }}=- & \frac{1}{16 \pi^{2}} \int \mathrm{~d}^{3} x \mathrm{~d} t \sqrt{-g}\left[\sum_{\chi_{\alpha}}\left(\tilde{V}_{\alpha \alpha} \Lambda^{2}-\tilde{V}_{\alpha \alpha}^{2} \frac{\ln (\Lambda / \bar{m})^{2}}{4}\right)\right. \\
& \left.-\sum_{\psi_{\beta}}\left(m_{\beta}^{2} \Lambda^{2}-\left(m_{\beta}^{4}-\tilde{V}_{\theta \theta} m_{\beta}^{2}\right) \frac{\ln (\Lambda / \bar{m})^{2}}{4}\right)\right]
\end{aligned}
$$

The sum is over all bosonic and fermion real degrees of freedom, where a Weyl (Dirac) fermion counts as 2 (4) degrees of freedom.

The shifted scalar mass is as before $\tilde{V}_{\alpha \alpha} \equiv V_{\alpha \alpha}-\dot{H}-2 H^{2}$.
For fermions, assume a Yukawa interaction $m_{\psi} \propto \phi$.

The results agree with the expressions in the literature in the appropriate limits:

■ Minkowski case $\left(H=\dot{H}=0\right.$, and thus $\left.\tilde{V}_{\alpha \alpha}=V_{\alpha \alpha}\right)$ it matches Mooij \& Postma 2011.

- In the de Sitter limit $\dot{H}=0$, and for a time-independent Higgs field ($V_{\theta \theta}=0$ by Goldstone's theorem), it agrees with Garbrecht 2007.
- Taking both the Minkowski limit and a static background field we retrieve the classic CW potential, Coleman \& Weinberg 1973.

We only calculate the UV divergent terms, as these will generically give the dominant contribution. Using a renormalisation prescription, these terms (and wavefunction renormalisation) suffice to derive the RGEs and find the RG improved action.

To apply our results to Higgs inflation we need to extend them:
1 Include back reaction from gravity.
2 Go from $\mathrm{U}(1)$ toy model to SM gauge group.
3 Consider non-minimal coupling to gravity.
4 To relate parameters to low energy observables need RG flow.

Include non-minimal coupling to gravity, $\xi|\Phi|^{2} R$.
Transform to the Einstein frame, then our 1-loop results can be applied.
For the SM, not so straight forward: Higgs H has 4 degrees of freedom, kinetic term is non-minimal in Einstein frame:

$$
\frac{\mathcal{L}_{e}}{\sqrt{-g}} \supset \frac{1}{2} \gamma_{i j} \partial \phi_{i} \partial \phi_{j}=\frac{1}{2}\left[\frac{\delta_{i j}}{\Omega^{2}}+\frac{6 \xi^{2}}{\Omega^{4}} \phi_{i} \phi_{j}\right] \partial \phi_{i} \partial \phi_{j} .
$$

Field-space metric $\gamma_{i j}$ cannot be diagonalised everywhere. Instead, diagonalise it at each point in field-space, giving a spectrum of 4 scalars with masses a function of ϕ_{BG}.

Can then apply our 1-loop results.

To connect low energy observables (at LHC) with high energy ones (inflation and CMB) need to run the couplings from M_{Z} to $M_{\text {infl }}$.

Jordan versus Einstein frame:

- Jordan has gravity fluctuations which should be important (can we ignore them?). RGEs:

$$
\begin{gathered}
\beta_{\lambda}=\frac{9 \lambda^{2}}{8 \pi^{2}}, \quad \beta_{m^{2}}=\frac{3 \lambda m^{2}}{8 \pi^{2}}, \quad \beta_{\xi}=\frac{3 \lambda(\xi+1 / 6)}{8 \pi^{2}} \\
\beta_{\kappa}=\frac{m^{2}(\xi+1 / 6)}{8 \pi^{2}}, \quad \beta_{\Lambda}=\frac{m^{4}}{32 \pi^{2}}
\end{gathered}
$$

■ Einstein has non-minimal kinetic structure (diagonalise at each point in field-space?) and non-renormalisable terms.
ξ will run, so is reintroduced in Einstein frame. Not such a problem.

Higgs inflation is simple and promising, although slight tension with $m_{h}=126 \mathrm{GeV}$.

To constrain BSM models using cosmological data need quantum corrections to scalar potential, and running of the parameters.

We gave the effective potential with time-dependent FLRW background and time-dependent Higgs vev, with a gauge field.

Work in progress: go to full SM with non-minimal coupling, and determine RGEs.

- S. R. Coleman, E. J. Weinberg, "Radiative Corrections as the Origin of Spontaneous Symmetry Breaking", Phys. Rev. D7 (1973) 1888-1910.

■ Bezrukov \& Shaposhnikov, "The Standard Model Higgs boson as the inflaton", PLB 659703 (2008).

■ K. Heitmann, " Thermalisierung bei kosmologischen Phasenübergängen: Eichfelder", Master's Thesis, 1996.

■ K. Heitmann, "Non-equilibirum dynamics of symmetry breaking and gauge fields in quantum field theory", PhD Thesis, 2000.

■ S. Weinberg, "Quantum contributions to cosmological correlations", Phys. Rev. D72 (2005) 043514. [hep-th/0506236].

- S. Mooij and M. Postma, JCAP 1109, 006 (2011) [arXiv:1104.4897].
- D. P. George, S. Mooij and M. Postma, "Effective action for the Abelian Higgs model in FLRW", JCAP 1211 (2012) 043 [arXiv:1207.6963].

