Naturally Aligned Two Higgs Doublet Model and its Collider Signatures

P. S. Bhupal Dev

Consortium for Fundamental Physics, The University of Manchester, United Kingdom

PSBD and A. Pilaftsis, accepted in JHEP [arXiv:1408.3405 [hep-ph]]

University of Sussex, Brighton, United Kingdom

December 01, 2014

The University of Manchester

Outline

- Introduction
- Natural Alignment
- Symmetry Justification
- Maximally Symmetric 2HDM
- Higgs Spectrum
- Collider Phenomenology
- Conclusion

'A' Higgs or 'the' Higgs?

- Measured couplings and spin-parity are consistent with the SM predictions.
- Unique opportunity in search of/constraining BSM Higgs scenarios.
 - Precision Higgs Study (Higgcision).
 - Search for additional Higgses.

Two Higgs Doublets

- Several theoretical motivations to go for an extended Higgs sector (e.g. SUSY).
- Any scalar sector in a local SU(2) \times U(1) gauge theory must be consistent with $\rho_{exp} = 1.0004^{+0.0003}_{-0.0004}$ [PDG '14]
- With *n* Higgs multiplets Φ_i (with i = 1, 2, ..., n):

$$\rho_{\text{tree}} = \frac{\sum_{i=1}^{n} \left[T_i (T_i + 1) - Y_i^2 \right] v_i}{2 \sum_{i=1}^{n} Y_i^2 v_i} \,.$$

- Simplest choice: Add multiplets with $T(T + 1) = 3Y^2$, where n = 2T + 1.
- SM: One $SU(2)_L$ doublet Φ with $Y = \frac{1}{2}$.
- A simple extension: two $SU(2)_L$ doublets $\Phi_i = \begin{pmatrix} \phi_i^+ \\ \phi_i^0 \end{pmatrix}$ (with i = 1, 2).

General 2HDM Potential

Most general 2HDM potential in doublet field space Φ_{1,2}:

$$\begin{split} V &= -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - \left[m_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \text{H.c.} \right] \\ &+ \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + \text{H.c.} \right]. \end{split}$$

- Four real mass parameters $\mu_{1,2}^2$, Re (m_{12}^2) , Im (m_{12}^2) , and 10 real quartic couplings $\lambda_{1,2,3,4}$, Re $(\lambda_{5,6,7})$, Im $(\lambda_{5,6,7})$.
- Rich vacuum structure. [Battye, Brawn, Pilaftsis; Branco et al '12]
- Consider normal vacua with real vevs $v_{1,2}$, where $\sqrt{v_1^2 + v_2^2} = v_{\text{SM}}$ and $\tan \beta = v_2/v_1$.
- Eight real scalar fields: $\phi_j = \begin{pmatrix} \phi_j^+ \\ \frac{1}{\sqrt{2}}(v_j + \rho_j + i\eta_j) \end{pmatrix}$ (with j = 1, 2).
- After EWSB, 3 Goldstone bosons (G[±], G⁰), eaten by W[±] and Z, and five physical scalar fields: two CP-even (h, H), one CP-odd (a) and two charged (h[±]).

General 2HDM Potential

Most general 2HDM potential in doublet field space Φ_{1,2}:

$$\begin{split} V &= -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - \left[m_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \text{H.c.} \right] \\ &+ \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + \text{H.c.} \right]. \end{split}$$

- Four real mass parameters $\mu_{1,2}^2$, Re (m_{12}^2) , Im (m_{12}^2) , and 10 real quartic couplings $\lambda_{1,2,3,4}$, Re $(\lambda_{5,6,7})$, Im $(\lambda_{5,6,7})$.
- Rich vacuum structure. [Battye, Brawn, Pilaftsis; Branco et al '12]
- Consider normal vacua with real vevs $v_{1,2}$, where $\sqrt{v_1^2 + v_2^2} = v_{\text{SM}}$ and $\tan \beta = v_2/v_1$.
- Eight real scalar fields: $\phi_j = \begin{pmatrix} \phi_j^+ \\ \frac{1}{\sqrt{2}}(v_j + \rho_j + i\eta_j) \end{pmatrix}$ (with j = 1, 2).
- After EWSB, 3 Goldstone bosons (G[±], G⁰), eaten by W[±] and Z, and five physical scalar fields: two CP-even (h, H), one CP-odd (a) and two charged (h[±]).

Higgs Spectrum in a General 2HDM

• In the charged sector,
$$\begin{pmatrix} G^{\pm} \\ h^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_{1}^{\pm} \\ \phi_{2}^{\pm} \end{pmatrix}$$
.
 $M_{h^{\pm}}^{2} = \frac{1}{s_{\beta}c_{\beta}} \left[\operatorname{Re}(m_{12}^{2}) - \frac{1}{2} \left(\{ \lambda_{4} + \operatorname{Re}(\lambda_{5}) \} s_{\beta}c_{\beta} + \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} \right) \right]$.
• In the *CP*-odd sector, $\begin{pmatrix} G^{0} \\ a \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix}$.
 $M_{a}^{2} = \frac{1}{s_{\beta}c_{\beta}} \left[\operatorname{Re}(m_{12}^{2}) - v^{2} \left(\operatorname{Re}(\lambda_{5})s_{\beta}c_{\beta} + \frac{1}{2} \left\{ \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} \right\} \right) \right]$
 $= M_{h^{\pm}}^{2} + \frac{1}{2} \left[\lambda_{4} - \operatorname{Re}(\lambda_{5}) \right] v^{2}$.

• In the *CP*-even sector, $\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$

$$M_{S}^{2} = M_{A}^{2} \begin{pmatrix} s_{\beta}^{2} & -s_{\beta}c_{\beta} \\ -s_{\beta}c_{\beta} & c_{\beta}^{2} \end{pmatrix} + v^{2} \begin{pmatrix} 2\lambda_{1}c_{\beta}^{2} + \operatorname{Re}(\lambda_{5})s_{\beta}^{2} + 2\operatorname{Re}(\lambda_{6})s_{\beta}c_{\beta} \\ \lambda_{34}s_{\beta}c_{\beta} + \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} \end{pmatrix}$$

with $\tan 2\alpha = 2C/(A - B)$ [*new* mixing angle]

 $\lambda_{34}s_{\beta}c_{\beta} + \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2}$ $2\lambda_{2}s_{\beta}^{2} + \operatorname{Re}(\lambda_{5})c_{\beta}^{2} + 2\operatorname{Re}(\lambda_{7})s_{\beta}c_{\beta}$

Higgs Spectrum in a General 2HDM

• In the charged sector,
$$\begin{pmatrix} G^{\pm} \\ h^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_{1}^{\pm} \\ \phi_{2}^{\pm} \end{pmatrix}$$
.
 $M_{h^{\pm}}^{2} = \frac{1}{s_{\beta}c_{\beta}} \left[\operatorname{Re}(m_{12}^{2}) - \frac{1}{2} \left(\{\lambda_{4} + \operatorname{Re}(\lambda_{5})\} s_{\beta}c_{\beta} + \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} \right) \right]$.
• In the *CP*-odd sector, $\begin{pmatrix} G^{0} \\ a \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix}$.
 $M_{a}^{2} = \frac{1}{s_{\beta}c_{\beta}} \left[\operatorname{Re}(m_{12}^{2}) - v^{2} \left(\operatorname{Re}(\lambda_{5})s_{\beta}c_{\beta} + \frac{1}{2} \left\{ \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} \right\} \right) \right]$
 $= M_{h^{\pm}}^{2} + \frac{1}{2} \left[\lambda_{4} - \operatorname{Re}(\lambda_{5}) \right] v^{2}$.

• In the CP-even sector, $\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$ $M_S^2 = M_A^2 \begin{pmatrix} s_\beta^2 & -s_\beta c_\beta \\ -s_\beta c_\beta & c_\beta^2 \end{pmatrix}$ $+ v^2 \begin{pmatrix} 2\lambda_1 c_\beta^2 + \operatorname{Re}(\lambda_5) s_\beta^2 + 2\operatorname{Re}(\lambda_6) s_\beta c_\beta & \lambda_{34} s_\beta c_\beta + \\ \lambda_{34} s_\beta c_\beta + \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 & 2\lambda_2 s_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 \end{pmatrix}$

with $\tan 2\alpha = 2C/(A - B)$ [new mixing angle].

Higgs Spectrum in a General 2HDM

• In the charged sector,
$$\begin{pmatrix} G^{\pm} \\ h^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_{1}^{\pm} \\ \phi_{2}^{\pm} \end{pmatrix}$$
.
 $M_{h^{\pm}}^{2} = \frac{1}{s_{\beta}c_{\beta}} \left[\operatorname{Re}(m_{12}^{2}) - \frac{1}{2} \left(\{ \lambda_{4} + \operatorname{Re}(\lambda_{5}) \} s_{\beta}c_{\beta} + \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} \right) \right]$.
• In the *CP*-odd sector, $\begin{pmatrix} G^{0} \\ a \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix}$.
 $M_{a}^{2} = \frac{1}{s_{\beta}c_{\beta}} \left[\operatorname{Re}(m_{12}^{2}) - v^{2} \left(\operatorname{Re}(\lambda_{5})s_{\beta}c_{\beta} + \frac{1}{2} \left\{ \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} \right\} \right) \right]$
 $= M_{h^{\pm}}^{2} + \frac{1}{2} \left[\lambda_{4} - \operatorname{Re}(\lambda_{5}) \right] v^{2}$.
• In the *CP*-even sector, $\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_{1} \\ \rho_{2} \end{pmatrix}$

$$M_{S}^{2} = M_{A}^{2} \begin{pmatrix} s_{\beta}^{2} - s_{\beta}c_{\beta} \\ -s_{\beta}c_{\beta} & c_{\beta}^{2} \end{pmatrix} + v^{2} \begin{pmatrix} 2\lambda_{1}c_{\beta}^{2} + \operatorname{Re}(\lambda_{5})s_{\beta}^{2} + 2\operatorname{Re}(\lambda_{6})s_{\beta}c_{\beta} & \lambda_{34}s_{\beta}c_{\beta} + \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} \\ \lambda_{34}s_{\beta}c_{\beta} + \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} & 2\lambda_{2}s_{\beta}^{2} + \operatorname{Re}(\lambda_{5})c_{\beta}^{2} + 2\operatorname{Re}(\lambda_{7})s_{\beta}c_{\beta} \end{pmatrix}$$

with $\tan 2\alpha = 2C/(A - B)$ [new mixing angle].

Higgs Couplings in a General 2HDM

The SM Higgs boson is given by

 $H_{\rm SM} = \rho_1 \cos \beta + \rho_2 \sin \beta = H \cos(\beta - \alpha) + h \sin(\beta - \alpha) .$

• With respect to the SM Higgs couplings $H_{SM}VV$ ($V = W^{\pm}, Z$),

 $g_{hVV} = \sin(\beta - \alpha)$, $g_{HVV} = \cos(\beta - \alpha)$.

Unitarity constraints uniquely fix other V-Higgs-Higgs couplings [Gunion, Haber, Kane, Dawson '90]

• Motivated by the LHC Higgs data, we scrutinize the SM alignment limit $\alpha \rightarrow \beta$ (or $\beta - \pi/2$).

 Usually attributed to either decoupling or accidental cancellations. [Gunion, Haber '03; Carena, Low, Shah, Wagner '13]

Explore symmetries of the 2HDM potential to naturally justify the alignment limit.

Higgs Couplings in a General 2HDM

The SM Higgs boson is given by

 $H_{\rm SM} = \rho_1 \cos \beta + \rho_2 \sin \beta = H \cos(\beta - \alpha) + h \sin(\beta - \alpha) .$

• With respect to the SM Higgs couplings $H_{SM}VV$ ($V = W^{\pm}, Z$),

 $g_{hVV} = \sin(\beta - \alpha)$, $g_{HVV} = \cos(\beta - \alpha)$.

Unitarity constraints uniquely fix other V-Higgs-Higgs couplings [Gunion, Haber, Kane, Dawson '90]

• Motivated by the LHC Higgs data, we scrutinize the SM alignment limit $\alpha \rightarrow \beta$ (or $\beta - \pi/2$).

 Usually attributed to either decoupling or accidental cancellations. [Gunion, Haber '03; Carena, Low, Shah, Wagner '13]

• Explore symmetries of the 2HDM potential to naturally justify the alignment limit.

Natural Alignment Condition

Rewrite CP-even mass matrix as

$$\begin{split} & \mathcal{M}_{S}^{2} = \begin{pmatrix} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \widehat{A}v^{2} & \widehat{C}v^{2} \\ \widehat{C}v^{2} & \mathcal{M}_{a}^{2} + \widehat{B}v^{2} \end{pmatrix} \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \equiv O\widehat{\mathcal{M}}_{S}^{2}O^{\mathsf{T}} \, . \\ & \widehat{\mathcal{A}} = 2 \Big[c_{\beta}^{4}\lambda_{1} + s_{\beta}^{2}c_{\beta}^{2}\lambda_{345} + s_{\beta}^{4}\lambda_{2} + 2s_{\beta}c_{\beta}\left(c_{\beta}^{2}\lambda_{6} + s_{\beta}^{2}\lambda_{7}\right) \Big] \, , \\ & \widehat{\mathcal{B}} = \lambda_{5} + 2 \Big[s_{\beta}^{2}c_{\beta}^{2}\left(\lambda_{1} + \lambda_{2} - \lambda_{345}\right) - s_{\beta}c_{\beta}\left(c_{\beta}^{2} - s_{\beta}^{2}\right)\left(\lambda_{6} - \lambda_{7}\right) \Big] \, , \\ & \widehat{\mathcal{C}} = s_{\beta}^{3}c_{\beta}\left(2\lambda_{2} - \lambda_{345}\right) - c_{\beta}^{3}s_{\beta}\left(2\lambda_{1} - \lambda_{345}\right) + c_{\beta}^{2}\left(1 - 4s_{\beta}^{2}\right)\lambda_{6} + s_{\beta}^{2}\left(4c_{\beta}^{2} - 1\right)\lambda_{7} \, . \end{split}$$

• Exact alignment ($\alpha = \beta$) iff $\widehat{C} = 0$, i.e.

$$\lambda_7 t_{\beta}^4 - (2\lambda_2 - \lambda_{345}) t_{\beta}^3 + 3(\lambda_6 - \lambda_7) t_{\beta}^2 + (2\lambda_1 - \lambda_{345}) t_{\beta} - \lambda_6 = 0$$

Natural alignment if happens for any value of tan β, independent of non-SM Higgs spectra:

$$\lambda_1 = \lambda_2 = \lambda_{345}/2 , \quad \lambda_6 = \lambda_7 = 0$$

CP-even Higgs masses are given by

$$\begin{array}{lll} M_{H}^{2} & = & 2 v^{2} (\lambda_{1} c_{\beta}^{4} + \lambda_{345} s_{\beta}^{2} c_{\beta}^{2} + \lambda_{2} s_{\beta}^{4}) \equiv \lambda_{\rm SM} v^{2} \; , \\ M_{h}^{2} & = & M_{a}^{2} + \lambda_{5} v^{2} + 2 v^{2} s_{\beta}^{2} c_{\beta}^{2} (\lambda_{1} + \lambda_{2} - \lambda_{345}) \; . \end{array}$$

Role of symmetries of the 2HDM potential to realize this without fine-tuning.

Natural Alignment Condition

Rewrite CP-even mass matrix as

$$\begin{split} & \mathcal{M}_{S}^{2} = \begin{pmatrix} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \widehat{A}v^{2} & \widehat{C}v^{2} \\ \widehat{C}v^{2} & \mathcal{M}_{a}^{2} + \widehat{B}v^{2} \end{pmatrix} \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \equiv O\widehat{\mathcal{M}}_{S}^{2}O^{\mathsf{T}} \, . \\ & \widehat{\mathcal{A}} = 2 \Big[c_{\beta}^{4}\lambda_{1} + s_{\beta}^{2}c_{\beta}^{2}\lambda_{345} + s_{\beta}^{4}\lambda_{2} + 2s_{\beta}c_{\beta}\left(c_{\beta}^{2}\lambda_{6} + s_{\beta}^{2}\lambda_{7}\right) \Big] \, , \\ & \widehat{\mathcal{B}} = \lambda_{5} + 2 \Big[s_{\beta}^{2}c_{\beta}^{2}\left(\lambda_{1} + \lambda_{2} - \lambda_{345}\right) - s_{\beta}c_{\beta}\left(c_{\beta}^{2} - s_{\beta}^{2}\right)\left(\lambda_{6} - \lambda_{7}\right) \Big] \, , \\ & \widehat{\mathcal{C}} = s_{\beta}^{3}c_{\beta}\left(2\lambda_{2} - \lambda_{345}\right) - c_{\beta}^{3}s_{\beta}\left(2\lambda_{1} - \lambda_{345}\right) + c_{\beta}^{2}\left(1 - 4s_{\beta}^{2}\right)\lambda_{6} + s_{\beta}^{2}\left(4c_{\beta}^{2} - 1\right)\lambda_{7} \, . \end{split}$$

• Exact alignment ($\alpha = \beta$) iff $\widehat{C} = 0$, i.e.

$$\lambda_7 t_{\beta}^4 - (2\lambda_2 - \lambda_{345}) t_{\beta}^3 + 3(\lambda_6 - \lambda_7) t_{\beta}^2 + (2\lambda_1 - \lambda_{345}) t_{\beta} - \lambda_6 = 0$$

• Natural alignment if happens for *any* value of tan β , independent of non-SM Higgs spectra: $\boxed{\lambda_1 = \lambda_2 = \lambda_{345}/2, \quad \lambda_6 = \lambda_7 = 0}$

CP-even Higgs masses are given by

$$\begin{array}{lll} M_{H}^{2} & = & 2 v^{2} (\lambda_{1} c_{\beta}^{4} + \lambda_{345} s_{\beta}^{2} c_{\beta}^{2} + \lambda_{2} s_{\beta}^{4}) \equiv \lambda_{\rm SM} v^{2} \; , \\ M_{h}^{2} & = & M_{a}^{2} + \lambda_{5} v^{2} + 2 v^{2} s_{\beta}^{2} c_{\beta}^{2} (\lambda_{1} + \lambda_{2} - \lambda_{345}) \; . \end{array}$$

Role of symmetries of the 2HDM potential to realize this without fine-tuning.

An Alternative Formulation of the 2HDM Potential

Gauge-invariant bilinear scalar-field formalism.
 [Nishi '06; Ivanov '06; Maniatis, von Manteuffel, Nachtmann, Nagel '06]

Introduce an 8-dimensional complex multiplet: [Battye, Brawn, Pilaftsis '11; Nishi '11; Pilaftsis '12]

$$\Phi = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ i\sigma^2 \Phi_1^* \\ i\sigma^2 \Phi_2^* \end{pmatrix}$$

• Φ satisfies the Majorana property: $\Phi = C\Phi^*$, where $C = \sigma^2 \otimes \sigma^0 \otimes \sigma^2 = C^{-1} = C^*$.

Define a null 6-dimensional Lorentz vector bilinear in Φ:

$$R^A = \Phi^{\dagger} \Sigma^A \Phi ,$$

(with A = 0, 1, 2, 3, 4, 5), where

$$\begin{split} \Sigma^{0} &= \frac{1}{2} \sigma^{0} \otimes \sigma^{0} \otimes \sigma^{0} \equiv \frac{1}{2} \mathbf{1}_{8}, \quad \Sigma^{1} = \frac{1}{2} \sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0}, \qquad \Sigma^{2} = \frac{1}{2} \sigma^{3} \otimes \sigma^{2} \otimes \sigma^{0}, \\ \Sigma^{3} &= \frac{1}{2} \sigma^{0} \otimes \sigma^{3} \otimes \sigma^{0}, \qquad \Sigma^{4} = -\frac{1}{2} \sigma^{2} \otimes \sigma^{2} \otimes \sigma^{0}, \quad \Sigma^{5} = -\frac{1}{2} \sigma^{1} \otimes \sigma^{2} \otimes \sigma^{0}. \end{split}$$

• Σ^A satisfy the Majorana condition: $C^{-1}\Sigma^A C = (\Sigma^A)^T$.

An Alternative Formulation of the 2HDM Potential

Gauge-invariant bilinear scalar-field formalism.
 [Nishi '06; Ivanov '06; Maniatis, von Manteuffel, Nachtmann, Nagel '06]

Introduce an 8-dimensional complex multiplet: [Battye, Brawn, Pilaftsis '11; Nishi '11; Pilaftsis '12]

$$\Phi = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ i\sigma^2 \Phi_1^* \\ i\sigma^2 \Phi_2^* \end{pmatrix}$$

• Φ satisfies the Majorana property: $\Phi = C\Phi^*$, where $C = \sigma^2 \otimes \sigma^0 \otimes \sigma^2 = C^{-1} = C^*$.

Define a null 6-dimensional Lorentz vector bilinear in Φ:

$$R^A = \Phi^{\dagger} \Sigma^A \Phi$$
,

(with A = 0, 1, 2, 3, 4, 5), where

$$\begin{split} \boldsymbol{\Sigma}^{0} &= \frac{1}{2} \boldsymbol{\sigma}^{0} \otimes \boldsymbol{\sigma}^{0} \otimes \boldsymbol{\sigma}^{0} \equiv \frac{1}{2} \mathbf{1}_{8}, \quad \boldsymbol{\Sigma}^{1} = \frac{1}{2} \boldsymbol{\sigma}^{0} \otimes \boldsymbol{\sigma}^{1} \otimes \boldsymbol{\sigma}^{0}, \qquad \boldsymbol{\Sigma}^{2} = \frac{1}{2} \boldsymbol{\sigma}^{3} \otimes \boldsymbol{\sigma}^{2} \otimes \boldsymbol{\sigma}^{0}, \\ \boldsymbol{\Sigma}^{3} &= \frac{1}{2} \boldsymbol{\sigma}^{0} \otimes \boldsymbol{\sigma}^{3} \otimes \boldsymbol{\sigma}^{0}, \qquad \boldsymbol{\Sigma}^{4} = -\frac{1}{2} \boldsymbol{\sigma}^{2} \otimes \boldsymbol{\sigma}^{2} \otimes \boldsymbol{\sigma}^{0}, \quad \boldsymbol{\Sigma}^{5} = -\frac{1}{2} \boldsymbol{\sigma}^{1} \otimes \boldsymbol{\sigma}^{2} \otimes \boldsymbol{\sigma}^{0}. \end{split}$$

• Σ^A satisfy the Majorana condition: $C^{-1}\Sigma^A C = (\Sigma^A)^T$.

2HDM Potential in Bilinear Field Space

• The general 2HDM potential takes a simple form:

• The bilinear field space spanned by the 6-vector R^A realizes an SO(1,5) symmetry.

Three classes of accidental symmetries of the 2HDM potential:

- Higgs Family (HF) Symmetries involving transformations of Φ_{1,2} only (but not Φ^{*}_{1,2}), e.g. Z₂ [Glashow, Weinberg '58], U(1)_{PQ} [Peccei, Quinn '77], SO(3)_{HF} [Deshpande, Ma '78; Ivanov '07; Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
- CP Symmetries relating $\Phi_{1,2}$ to $\Phi_{1,2}^*$, e.g. $\Phi_{1(2)} \rightarrow \Phi_{1(2)}^*$ (CP1) [Lee '73; Branco '80], $\Phi_{1(2)} \rightarrow (-)\Phi_{2(1)}^*$ (CP2) [Davidson, Haber '05], CP1 combined with SO(2)_{HF}/Z₂ (CP3) [Ivanov '07; Ferreira, Haber, Silva '09; Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
- Additional mixed HF and CP symmetries that leave the gauge-kinetic terms of Φ_{1,2} invariant [Battye, Brawn, Pilaftsis '11].
- Includes all custodial symmetries of the 2HDM potential.
- Maximum of 13 distinct accidental symmetries of the general 2HDM potential.
- Each of them imposes specific relations among the scalar parameters.

Three classes of accidental symmetries of the 2HDM potential:

- Higgs Family (HF) Symmetries involving transformations of Φ_{1,2} only (but not Φ^{*}_{1,2}),
 e.g. Z₂ [Glashow, Weinberg '58], U(1)_{PQ} [Peccei, Quinn '77], SO(3)_{HF} [Deshpande, Ma '78; Ivanov '07; Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
- CP Symmetries relating $\Phi_{1,2}$ to $\Phi_{1,2}^*$, e.g. $\Phi_{1(2)} \rightarrow \Phi_{1(2)}^*$ (CP1) [Lee '73; Branco '80], $\Phi_{1(2)} \rightarrow (-)\Phi_{2(1)}^*$ (CP2) [Davidson, Haber '05], CP1 combined with SO(2)_{HF}/Z₂ (CP3) [Ivanov '07; Ferreira, Haber, Silva '09; Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
- Additional mixed HF and CP symmetries that leave the gauge-kinetic terms of Φ_{1,2} invariant [Battye, Brawn, Pilaftsis '11].
- Includes all custodial symmetries of the 2HDM potential.
- Maximum of 13 *distinct* accidental symmetries of the general 2HDM potential.
- Each of them imposes specific relations among the scalar parameters.

[Pilaftsis '12]

Table 1

Parameter relations for the 13 accidental symmetries [1] related to the $U(1)_{Y}$ -invariant 2HDM potential in the diagonally reduced basis, where Im $\lambda_5 = 0$ and $\lambda_6 = \lambda_7$. A dash signifies the absence of a constraint.

No.	Symmetry	μ_1^2	μ_2^2	m_{12}^2	λ_1	λ_2	λ_3	λ_4	$\text{Re}\lambda_5$	$\lambda_6=\lambda_7$
1	$Z_2 \times O(2)$	-	-	Real	-	-	-	-	-	Real
2	$(Z_2)^2 \times SO(2)$	-	-	0	-	-	-	-	-	0
3	$(Z_2)^3 \times O(2)$	-	μ_{1}^{2}	0	-	λ_1	-	-	-	0
4	$0(2) \times 0(2)$	-	-	0	-	-	-	-	0	0
5	$Z_2 \times [O(2)]^2$	-	μ_{1}^{2}	0	-	λ_1	-	-	$2\lambda_1 - \lambda_{34}$	0
6	$0(3) \times 0(2)$	-	μ_{1}^{2}	0	-	λ_1	-	$2\lambda_1 - \lambda_3$	0	0
7	SO(3)	-	-	Real	-	-	-	-	λ4	Real
8	$Z_2 \times O(3)$	-	μ_{1}^{2}	Real	-	λ_1	-	-	λ4	Real
9	$(Z_2)^2 \times SO(3)$	-	μ_{1}^{2}	0	-	λ_1	-	-	$\pm\lambda_4$	0
10	$0(2) \times 0(3)$	-	μ_{1}^{2}	0	-	λ_1	$2\lambda_1$	-	0	0
11	SO(4)	-	-	0	-	-	-	0	0	0
12	$Z_2 \times O(4)$	-	μ_{1}^{2}	0	-	λ_1	-	0	0	0
13	SO(5)	-	μ_1^2	0	-	λ_1	$2\lambda_1$	0	0	0

- *Maximal* symmetry group in the bilinear field space: $G_{2HDM}^R = SO(5)$.
- In the original Φ -field space, $G_{2HDM}^{\Phi} = (Sp(4)/Z_2) \otimes SU(2)_L$ [due to SO(5) \sim Sp(4)/Z₂].
- Conjecture: In a general nHDM, $G_{nHDM}^{\Phi} = (S_p(2n)/Z_2) \otimes SU(2)_L$. [PSBD, Pilaftsis '14]
- For the SM (with n = 1), reproduces the well-known result $G_{SM}^{\Phi} = (SU(2)_C/Z_2) \otimes SU(2)_L$ [Sikivie, Susskind, Voloshin, Zakharov '80], since Sp(2) ~ SU(2)_C.

[Pilaftsis '12]

Table 1

Parameter relations for the 13 accidental symmetries [1] related to the $U(1)_{Y}$ -invariant 2HDM potential in the diagonally reduced basis, where Im $\lambda_5 = 0$ and $\lambda_6 = \lambda_7$. A dash signifies the absence of a constraint.

No.	Symmetry	μ_1^2	μ_2^2	m_{12}^2	λ_1	λ_2	λ_3	λ4	$\text{Re} \lambda_5$	$\lambda_6=\lambda_7$
1	$Z_2 \times O(2)$	-	-	Real	-	-	-	-	-	Real
2	$(Z_2)^2 \times SO(2)$	-	-	0	-	-	-	-	-	0
3	$(Z_2)^3 \times O(2)$	-	μ_{1}^{2}	0	-	λ_1	-	-	-	0
4	$0(2) \times 0(2)$	-	-	0	-	-	-	-	0	0
5	$Z_2 \times [0(2)]^2$	-	μ_{1}^{2}	0	-	λ_1	-	-	$2\lambda_1 - \lambda_{34}$	0
6	$0(3) \times 0(2)$	-	μ_{1}^{2}	0	-	λ_1	-	$2\lambda_1 - \lambda_3$	0	0
7	SO(3)	-	-	Real	-	-	-	-	λ4	Real
8	$Z_2 \times O(3)$	-	μ_{1}^{2}	Real	-	λ_1	-	-	λ4	Real
9	$(Z_2)^2 \times SO(3)$	-	μ_{1}^{2}	0	-	λ_1	-	-	$\pm\lambda_4$	0
10	$0(2) \times 0(3)$	-	μ_{1}^{2}	0	-	λ_1	$2\lambda_1$	-	0	0
11	SO(4)	-	-	0	-	-	-	0	0	0
12	$Z_2 \times O(4)$	-	μ_{1}^{2}	0	-	λ_1	-	0	0	0
13	SO(5)	-	μ_{1}^{2}	0	-	λ_1	$2\lambda_1$	0	0	0

- *Maximal* symmetry group in the bilinear field space: $G_{2HDM}^R = SO(5)$.
- In the original Φ -field space, $G_{2HDM}^{\Phi} = (Sp(4)/Z_2) \otimes SU(2)_L$ [due to SO(5) \sim Sp(4)/Z₂].
- Conjecture: In a general nHDM, $G^{\Phi}_{nHDM} = (Sp(2n)/Z_2) \otimes SU(2)_L$. [PSBD, Pilaftsis '14]
- For the SM (with n = 1), reproduces the well-known result $G_{SM}^{\Phi} = (SU(2)_C/Z_2) \otimes SU(2)_L$ [Sikivie, Susskind, Voloshin, Zakharov '80], since Sp(2) ~ SU(2)_C.

Maximally Symmetric 2HDM

In the SO(5) limit:

 $\mu_1^2 = \mu_2^2 , \quad m_{12}^2 = 0 , \quad \lambda_2 = \lambda_1 , \quad \lambda_3 = 2\lambda_1 , \quad \lambda_4 = \operatorname{Re}(\lambda_5) = \lambda_6 = \lambda_7 = 0 .$

- Satisfies the natural alignment condition: $\lambda_1 = \lambda_2 = \lambda_{345}/2$.
- MS-2HDM potential is parametrized by single mass parameter μ² and single quartic coupling λ:

$$V \;=\; -\,\mu^2 \left(|\Phi_1|^2 + |\Phi_2|^2
ight) \;+\; \lambda \left(|\Phi_1|^2 + |\Phi_2|^2
ight)^2 \;=\; -\, rac{\mu^2}{2} \, \Phi^\dagger \, \Phi \;+\; rac{\lambda}{4} \left(\Phi^\dagger \, \Phi
ight)^2 \,.$$

- More minimal than the MSSM scalar potential, which in the custodial limit g' → 0, has a smaller symmetry: O(2) ⊗ O(3) ⊂ SO(5).
- After EWSB in the MS-2HDM, one massive Higgs boson H with $M_{H}^{2} = 2\lambda_{2}v^{2}$, whilst remaining four (h, a and h^{\pm}) are massless [Goldstone theorem].
- Natural SM alignment limit with $\alpha = \beta$. [Recall $H_{SM} = H \cos(\beta \alpha) + h \sin(\beta \alpha)$]
- (Pseudo)-Goldstones can naturally pick up mass due to g' and Yukawa coupling effects.
- In Type-II 2HDM, only two other symmetries satisfy the natural alignment condition:
 (i) O(3) ⊗ O(2) and (ii) Z₂ ⊗ [O(2)]².

Maximally Symmetric 2HDM

In the SO(5) limit:

 $\mu_1^2 = \mu_2^2 , \quad m_{12}^2 = 0 , \quad \lambda_2 = \lambda_1 , \quad \lambda_3 = 2\lambda_1 , \quad \lambda_4 = \operatorname{Re}(\lambda_5) = \lambda_6 = \lambda_7 = 0 .$

- Satisfies the natural alignment condition: $\lambda_1 = \lambda_2 = \lambda_{345}/2$.
- MS-2HDM potential is parametrized by single mass parameter μ² and single quartic coupling λ:

$$V \;=\; -\,\mu^2 \left(|\Phi_1|^2 + |\Phi_2|^2
ight) \;+\; \lambda \left(|\Phi_1|^2 + |\Phi_2|^2
ight)^2 \;=\; -\, rac{\mu^2}{2} \, \Phi^\dagger \, \Phi \;+\; rac{\lambda}{4} \left(\Phi^\dagger \, \Phi
ight)^2 \,.$$

- More minimal than the MSSM scalar potential, which in the custodial limit g' → 0, has a smaller symmetry: O(2) ⊗ O(3) ⊂ SO(5).
- After EWSB in the MS-2HDM, one massive Higgs boson *H* with $M_H^2 = 2\lambda_2 v^2$, whilst remaining four (*h*, *a* and h^{\pm}) are massless [Goldstone theorem].
- Natural SM alignment limit with $\alpha = \beta$. [Recall $H_{SM} = H \cos(\beta \alpha) + h \sin(\beta \alpha)$]
- (Pseudo)-Goldstones can naturally pick up mass due to g' and Yukawa coupling effects.
- In Type-II 2HDM, only two other symmetries satisfy the natural alignment condition:
 (i) O(3) ⊗ O(2) and (ii) Z₂ ⊗ [O(2)]².

Custodial Symmetries in the MS-2HDM

Quark-sector Yukawa Lagrangian

$$\mathcal{L}_{Y}^{q} = \bar{Q}_{L}(h_{1}^{u}\Phi_{1} + h_{2}^{u}\Phi_{2})u_{R} + \bar{Q}_{L}(h_{1}^{d}\tilde{\Phi}_{1} + h_{2}^{d}\tilde{\Phi}_{2})d_{R}$$

$$= (\bar{u}_{L}, \bar{d}_{L}) (\Phi_{1}, \Phi_{2}, \tilde{\Phi}_{1}, \tilde{\Phi}_{2}) \underbrace{\begin{pmatrix} h_{1}^{u} & \mathbf{0} \\ h_{2}^{u} & \mathbf{0} \\ \mathbf{0} & h_{1}^{d} \\ \mathbf{0} & h_{2}^{d} \end{pmatrix}}_{\mathcal{H}} \begin{pmatrix} u_{R} \\ d_{R} \end{pmatrix}$$

• To find *all* custodial symmetries of this Lagrangian, consider all the Lie generators of Sp(4): $K^a = \kappa^a \otimes \sigma^0$, where [with normalization: $Tr(\kappa^a \kappa^b) = \delta^{ab}$]

$$\begin{split} \kappa^{0,1,3} &= \frac{1}{2}\,\sigma^3\otimes\sigma^{0,1,3}\,, \quad \kappa^2 \,=\, \frac{1}{2}\,\sigma^0\otimes\sigma^2\,, \quad \kappa^4 \,=\, \frac{1}{2}\,\sigma^1\otimes\sigma^0\,, \quad \kappa^5 \,=\, \frac{1}{2}\,\sigma^1\otimes\sigma^3\,, \\ \kappa^6 &=\, \frac{1}{2}\,\sigma^2\otimes\sigma^0\,, \qquad \kappa^7 \,=\, \frac{1}{2}\,\sigma^2\otimes\sigma^3\,, \quad \kappa^8 \,=\, \frac{1}{2}\,\sigma^1\otimes\sigma^1\,, \quad \kappa^9 \,=\, \frac{1}{2}\,\sigma^2\otimes\sigma^1\,. \end{split}$$

• K^0 is the hypercharge generator associated with U(1)_Y rotations.

Candidate Sp(4) generators of the custodial symmetry are those which do not commute with K⁰, i.e. K^a with a = 4, 5, 6, 7, 8, 9.

Custodial Symmetries in the MS-2HDM

Quark-sector Yukawa Lagrangian

$$\mathcal{L}_{Y}^{q} = \bar{Q}_{L}(h_{1}^{u}\Phi_{1} + h_{2}^{u}\Phi_{2})u_{R} + \bar{Q}_{L}(h_{1}^{d}\tilde{\Phi}_{1} + h_{2}^{d}\tilde{\Phi}_{2})d_{R}$$

$$= (\bar{u}_{L}, \bar{d}_{L}) (\Phi_{1}, \Phi_{2}, \tilde{\Phi}_{1}, \tilde{\Phi}_{2}) \underbrace{\begin{pmatrix} h_{1}^{u} & \mathbf{0} \\ h_{2}^{u} & \mathbf{0} \\ \mathbf{0} & h_{1}^{d} \\ \mathbf{0} & h_{2}^{d} \end{pmatrix}}_{\mathcal{H}} \begin{pmatrix} u_{R} \\ d_{R} \end{pmatrix}$$

• To find *all* custodial symmetries of this Lagrangian, consider all the Lie generators of Sp(4): $K^a = \kappa^a \otimes \sigma^0$, where [with normalization: $\text{Tr}(\kappa^a \kappa^b) = \delta^{ab}$]

$$\begin{split} \kappa^{0,1,3} \ &= \ \frac{1}{2} \, \sigma^3 \otimes \sigma^{0,1,3} \ , \quad \kappa^2 \ &= \ \frac{1}{2} \, \sigma^0 \otimes \sigma^2 \ , \quad \kappa^4 \ &= \ \frac{1}{2} \, \sigma^1 \otimes \sigma^0 \ , \quad \kappa^5 \ &= \ \frac{1}{2} \, \sigma^1 \otimes \sigma^3 \ , \\ \kappa^6 \ &= \ \frac{1}{2} \, \sigma^2 \otimes \sigma^0 \ , \qquad \kappa^7 \ &= \ \frac{1}{2} \, \sigma^2 \otimes \sigma^3 \ , \quad \kappa^8 \ &= \ \frac{1}{2} \, \sigma^1 \otimes \sigma^1 \ , \quad \kappa^9 \ &= \ \frac{1}{2} \, \sigma^2 \otimes \sigma^1 \ . \end{split}$$

- K^0 is the hypercharge generator associated with $U(1)_Y$ rotations.
- Candidate Sp(4) generators of the custodial symmetry are those which do *not* commute with K⁰, i.e. K^a with a = 4, 5, 6, 7, 8, 9.

Custodial Symmetries in the MS-2HDM

- 3 inequivalent realizations of custodial symmetry: (i) K^{0,4,6}, (ii) K^{0,5,7}, (iii) K^{0,8,9}. [Pilaftsis '12]
- Satisfy the symmetry 'commutation' relation [PSBD, Pilaftsis '14]

$$\kappa^a \mathcal{H} - \mathcal{H} t^b = \mathbf{0}_{4 \times 2} ,$$

where $t^{b} = \sigma^{b}/2$ (with b = 1, 2, 3).

3 different relations among the up- and down-sector Yukawa couplings:

(i)
$$h_1^u = e^{i\theta}h_1^d$$
 and $h_2^u = e^{i\theta}h_2^d$,
(ii) $h_1^u = e^{i\theta}h_1^d$ and $h_2^u = -e^{i\theta}h_2^d$,
(iii) $h_1^u = e^{i\theta}h_2^d$ and $h_2^u = e^{-i\theta}h_1^d$,

Equivalent only in the SO(5) limit.

g' and Yukawa Coupling Effects

Custodial symmetry broken by non-zero g' and Yukawa couplings.

$$\begin{array}{lll} \mathrm{SO}(5)\otimes\mathrm{SU}(2)_L & \xrightarrow{g'\neq 0} & \mathrm{O}(3)\otimes\mathrm{O}(2)\otimes\mathrm{SU}(2)_L \sim & \mathrm{O}(3)\otimes\mathrm{U}(1)_Y\otimes\mathrm{SU}(2)_L \\ & \xrightarrow{\mathrm{Yukawa}} & \mathrm{O}(2)\otimes\mathrm{U}(1)_Y\otimes\mathrm{SU}(2)_L \sim & \mathrm{U}(1)_{\mathrm{PQ}}\otimes\mathrm{U}(1)_Y\otimes\mathrm{SU}(2)_L \\ & \xrightarrow{\langle\Phi_{1,2}\rangle\neq 0} & \mathrm{U}(1)_{\mathrm{em}} \ . \end{array}$$

- Assume SO(5)-symmetry scale $\mu_X \gg v$, and use RG running down to the weak scale.
- Does NOT yield a viable Higgs spectrum with only g' and Yukawa coupling effects.

Soft Breaking Effects

- Include soft SO(5)-breaking effects by $\operatorname{Re}(m_{12}^2) \neq 0$.
- Does yield a viable Higgs spectrum.

In the SO(5) limit for quartic couplings,

$$M_H^2 = 2\lambda_2 v^2$$
, $M_h^2 = M_a^2 = M_{h^{\pm}}^2 = \frac{\text{Re}(m_{12}^2)}{s_\beta c_\beta}$

Still preserves natural alignment, irrespective of other 2HDM parameters.

Quartic Coupling Unification

Global Fit

- Electroweak precision observables.
- LHC signal strengths of the light *CP*-even Higgs boson.
- Limits on heavy *CP*-even scalar from $h \rightarrow WW, ZZ, \tau\tau$ searches.
- Flavor observables such as B_s mixing and $B \rightarrow X_s \gamma$.
- Stability of the potential:

$$\lambda_{1,2} > 0, \quad \lambda_3 + \sqrt{\lambda_1 \lambda_2} > 0, \quad \lambda_3 + \lambda_4 + \sqrt{\lambda_1 \lambda_2} - \operatorname{Re}(\lambda_5) > 0.$$

Perturbativity of the Higgs self-couplings: ||S_{ΦΦ→ΦΦ}|| < ¹/₈.

Misalignment Predictions

[PSBD, Pilaftsis '14]

Lower Limit on Charged Higgs Mass

[PSBD, Pilaftsis '14]

Lower and Upper Limits on Charged Higgs Mass

[PSBD, Pilaftsis '14]

Electroweak Phase Transition

- In the SO(5) limit, the heavy Higgs sector is quasi-degenerate.
- Not many solutions for strongly first-order EWPT.
- Might be possible to have M_a − M_h ≥ v in other naturally aligned scenarios with a lower symmetry group, i.e. O(3) ⊗ O(2) or Z₂ ⊗ [O(2)]².

Implications of Alignment for the LHC Searches

• Recall that $g_{hVV} = \sin(\beta - \alpha)$, $g_{HVV} = \cos(\beta - \alpha)$.

Higgs production processes:

- In the alignment limit $\alpha \rightarrow \beta$, *H* is SM-like and the heavy Higgs *h* is gaugephobic.
- Dominant production modes at the LHC: ggF and associated production with tt.

 $pp \rightarrow \phi \qquad pp \rightarrow qq\phi \qquad pp \rightarrow W\phi/Z\phi \qquad pp \rightarrow t\bar{t}\phi$ $pp \rightarrow t\bar{t}\phi$ $t\bar{t}H \text{ production}$

Branching Fractions

$\tan \beta$ Dependance

Existing LHC Searches

- Existing collider limits on the heavy Higgs sector derived from WW and ZZ modes are not applicable in the alignment limit.
- Limits from $gg \rightarrow h \rightarrow \tau^+ \tau^-$ and $gg \rightarrow b\bar{b}h \rightarrow b\bar{b}\tau^+ \tau^-$ are easily satisfied.
- Similarly for $h \rightarrow HH \rightarrow \gamma \gamma bb$.
- In the charged-Higgs sector, most of the searches focus on the low-mass regime $(M_{h^{\pm}} < M_t)$: $pp \rightarrow tt \rightarrow Wbbh^+$, $h^+ \rightarrow cs$.
- Recently, the search was extended beyond the top-threshold: [CMS-PAS-HIG-13-026]

$$gg
ightarrow h^+$$
tb $ightarrow (\ell
u bb)(\ell'
u b)b$

Predictions in the MS-2HDM

Simulations for $\sqrt{s} = 14$ TeV LHC

Used MadGraph5_aMC@NLO.

Event reconstruction using the CMS cuts:

- Jet reconstruction using the anti- k_T clustering algorithm with a distance parameter of 0.5.
- At least two b-tagged jets are required in the signal events (each has a b-tagging efficiency of about 70%).
- For charged Higgs mass reconstruction, used 'stransverse mass' variable [Lester, Summers '99]

$$M_{T2} = \min_{\{\mathbf{p}_{T_1} + \mathbf{p}_{T_2} = \mathbf{p}_T\}} \left[\max\{m_{T_1}, m_{T_2}\} \right]$$

Mass Reconstruction using M_{T2}

[PSBD, Pilaftsis '14]

Reach at 14 TeV LHC

[PSBD, Pilaftsis '14]

New Signal in the Neutral Higgs Sector

$$gg \rightarrow t\bar{t}h \rightarrow t\bar{t}t\bar{t}$$

- Existing 95% CL experimental upper limit on σ_{tttt} is 32 fb (CMS).
- SM prediction for $\sigma(pp \rightarrow t\bar{t}t\bar{t} + X) \simeq$ 10–15 fb at NLO. [Bevilacqua, Worek '12]
- Still lot of room for BSM contribution.

Mass Reconstruction using M_{T2}

[PSBD, Pilaftsis '14]

Reach at 14 TeV LHC

[PSBD, Pilaftsis '14]

Towards a Full Analysis of the 4t Signal

35 final states, grouped into five channels:

- Fully hadronic: 12 jets, with 4 *b*-jets.
- Semi-leptonic/hadronic: 4 light jets, 4 b-jets, 2 charged leptons and ∉_T.
- Mostly leptonic: 2 light jets, 4 *b*-jets, 3 charged leptons and $\not\!\!\!E_T$.
- Fully leptonic: 4 *b*-jets, 4 charged leptons and $\not\!\!E_T$.

Figure 1.4: Branching fractions for the different decays of the four top quarks, depending on whether the W boson decays hadronically (h) or leptonically (ℓ) . [Figure Courtesy: D. P. Hernández (ATLAS)]

Towards a Full Analysis of the 4t Signal

35 final states, grouped into five channels:

- Fully hadronic: 12 jets, with 4 *b*-jets.
- Mostly hadronic: 6 light jets, 4 b-jets, one charged lepton and ∉_T.
- Semi-leptonic/hadronic: 4 light jets, 4 *b*-jets, 2 charged leptons and $\not\!\!\!E_T$.
- Mostly leptonic: 2 light jets, 4 *b*-jets, 3 charged leptons and $\not\!\!\!E_T$.
- Fully leptonic: 4 *b*-jets, 4 charged leptons and $\not\!\!E_T$.

Figure 1.4: Branching fractions for the different decays of the four top quarks, depending on whether the W boson decays hadronically (h) or leptonically (ℓ). [Figure Courtesy: D. P. Hernández (ATLAS)]

- Analyzed the symmetry classifications and custodial symmetries of the general 2HDM scalar potential.
- Maximal reparametrization group is SO(5).
- Maximally Symmetric 2HDM potential has a single quartic coupling.
- SM alignment limit is realized naturally, *independently* of the heavy Higgs spectrum and the value of tan *β*.
- Deviations from alignment limit can be naturally induced by RG effects due to g' and Yukawa couplings.
- In addition, non-zero soft SO(5)-breaking mass parameter is required to yield a viable Higgs spectrum.
- Using the current Higgs data, we derive important constraints on the MS-2HDM parameter space.
- Predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide range of parameter space.
- Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs masses, which could be completely probed during LHC run-II.
- We propose a new collider signal with four top quarks in the final state, which can become a valuable observational tool to directly probe the heavy Higgs sector in the alignment limit.

THANK YOU.

- Analyzed the symmetry classifications and custodial symmetries of the general 2HDM scalar potential.
- Maximal reparametrization group is SO(5).
- Maximally Symmetric 2HDM potential has a single quartic coupling.
- SM alignment limit is realized naturally, *independently* of the heavy Higgs spectrum and the value of tan β .
- Deviations from alignment limit can be naturally induced by RG effects due to g' and Yukawa couplings.
- In addition, non-zero soft SO(5)-breaking mass parameter is required to yield a viable Higgs spectrum.
- Using the current Higgs data, we derive important constraints on the MS-2HDM parameter space.
- Predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide range of parameter space.
- Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs masses, which could be completely probed during LHC run-II.
- We propose a new collider signal with four top quarks in the final state, which can become a valuable observational tool to directly probe the heavy Higgs sector in the alignment limit.

THANK YOU.

- Analyzed the symmetry classifications and custodial symmetries of the general 2HDM scalar potential.
- Maximal reparametrization group is SO(5).
- Maximally Symmetric 2HDM potential has a single quartic coupling.
- SM alignment limit is realized naturally, *independently* of the heavy Higgs spectrum and the value of tan β .
- Deviations from alignment limit can be naturally induced by RG effects due to g' and Yukawa couplings.
- In addition, non-zero soft SO(5)-breaking mass parameter is required to yield a viable Higgs spectrum.
- Using the current Higgs data, we derive important constraints on the MS-2HDM parameter space.
- Predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide range of parameter space.
- Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs masses, which could be completely probed during LHC run-II.
- We propose a new collider signal with four top quarks in the final state, which can become a valuable observational tool to directly probe the heavy Higgs sector in the alignment limit.

- Analyzed the symmetry classifications and custodial symmetries of the general 2HDM scalar potential.
- Maximal reparametrization group is SO(5).
- Maximally Symmetric 2HDM potential has a single quartic coupling.
- SM alignment limit is realized naturally, *independently* of the heavy Higgs spectrum and the value of tan β .
- Deviations from alignment limit can be naturally induced by RG effects due to g' and Yukawa couplings.
- In addition, non-zero soft SO(5)-breaking mass parameter is required to yield a viable Higgs spectrum.
- Using the current Higgs data, we derive important constraints on the MS-2HDM parameter space.
- Predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide range of parameter space.
- Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs masses, which could be completely probed during LHC run-II.
- We propose a new collider signal with four top quarks in the final state, which can become a valuable observational tool to directly probe the heavy Higgs sector in the alignment limit.

THANK YOU.

Symmetry Generators

Table 2

Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)₂-invariant 2HDM potential. For each symmetry, the maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the Goldstone theorem.

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D 22	-	0
3	$(Z_2)^3 \times O(2)$	T^0	D _{CP2}	-	0
4	$O(2) \times O(2)$	T^{3}, T^{0}	-	T ³	1 (a)
5	$Z_2 \times [0(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	$O(3) \times O(2)$	$T^{1,2,3}, T^0$	-	T ^{1,2}	2 (h, a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	$O(2) \times O(3)$	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

[Pilaftsis '12]

- T^a and K^a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).
- T^0 is the hypercharge generator in *R*-space, which is equivalent to the electromagnetic generator $Q_{\rm em} = \frac{1}{2}\sigma^0 \otimes \sigma^0 \otimes \sigma^3 + K^0$ in Φ -space.
- Sp(4) contains the custodial symmetry group $SU(2)_C$.
- Three *independent* realizations of custodial symmetry induced by
 (i) K^{0,4,6}, (ii) K^{0,5,7}, (iii) K^{0,8,9}.

Symmetry Generators

Table 2

Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)+-invariant 2HDM potential. For each symmetry, the maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the Goldstone theorem.

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D 22	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	0(2) × 0(2)	T^{3}, T^{0}	-	T ³	1 (a)
5	$Z_2 \times [0(2)]^2$	T^{2}, T^{0}	D _{CP1}	T^2	1 (h)
6	0(3) × 0(2)	T ^{1,2,3} , T ⁰	-	T ^{1,2}	2 (h,a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	0(2) × 0(3)	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

[Pilaftsis '12]

- T^a and K^a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).
- T^0 is the hypercharge generator in *R*-space, which is equivalent to the electromagnetic generator $Q_{\rm em} = \frac{1}{2}\sigma^0 \otimes \sigma^0 \otimes \sigma^3 + K^0$ in Φ -space.

Quark Yukawa Couplings

- By convention, choose $h_1^u = 0$. For Type-I (Type-II) 2HDM, $h_1^d(h_2^d) = 0$.
- Quark yukawa couplings w.r.t. the SM are given by

Coupling	Type-I	Type-II	
$g_{ht\overline{t}}$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	
$g_{hbar{b}}$	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	
$g_{Ht\overline{t}}$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	
$g_{Hbar{b}}$	$\sin lpha / \sin eta$	$\cos\alpha/\cos\beta$	
$g_{at\overline{t}}$	$\cot \beta$	$\cot \beta$	
$g_{abar{b}}$	$-\cot\beta$	$\tan \beta$	

g' Effect

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D 22	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	$O(2) \times O(2)$	T ³ , T ⁰	-	T ³	1 (a)
5	$Z_2 \times [0(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	0(3) × 0(2)	$T^{1,2,3}, T^0$	-	T ^{1,2}	2 (h,a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	$0(2) \times 0(3)$	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	$T^{0,1,2,,9}$	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

Yukawa Coupling Effects

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D _{Z2}	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	$O(2) \times O(2)$	T ³ , T ⁰	-	T ³	1 (a)
5	$Z_2 \times [O(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	0(3) × 0(2)	$T^{1,2,3}, T^0$	-	T ^{1,2}	2 (h, a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	$0(2) \times 0(3)$	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

With SO(5) Boundary Conditions at μ_X

[PSBD, Pilaftsis (preliminary)]

With SO(5) Boundary Conditions at μ_X

[PSBD, Pilaftsis (preliminary)]

With SO(5) Boundary Conditions at μ_X

[PSBD, Pilaftsis (preliminary)]

Production of 4 tops in the SM

Production of 4 tops in BSM

