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1. Quantum theories, amplitudes and boundary data

This paper describes work done with Andrew Farley in his 1997-2002 Cambridge PhD
[1] on quantum states in black–hole evaporation. This concerns the quantum–mechanical
decay of a Schwarzschild–like black hole, formed by gravitational collapse, into almost–flat
space and weak radiation at a very late time [2,3]. One has to make a realistic assumption
about the Lagrangian for the combined gravitational and matter fields, which here (for
the sake of definiteness) we take to include at least Einstein gravity with a massless scalar
field.

If one works with Feynman–diagram amplitudes, based on particle–number in– and
out–states, then, with such boundary data, almost all interacting 4–dimensional quantum
field theories yield irremovable divergences or infinities. Alternatively, one may work with
Dirac’s Hamiltonian–based approach to the quantisation of theories with continuous sym-
metries — such as local co–ordinate transformations in general relativity or local gauge
transformations in gauge theory [4]. The quantity naturally calculated in Dirac’s approach
is the quantum amplitude to go from initial ’co–ordinate’ data, such as the intrinsic spatial
metric hij(xI) (i, j = 1, 2, 3) and scalar field φ(xI) on the space–like hypersurface, ΣI ,
to final ’co–ordinate’ data, (hij(xF ), φ(xF )) on ΣF . Here, the space–like hypersurfaces ΣI

and ΣF are asymptotically flat, and T > 0 denotes the time–interval between ΣI and ΣF ,
measured at spatial infinity.

The quantum amplitudes which naturally arise from the Dirac constrained–
quantisation approach are in a field representation. A more detailed investigation sug-
gests that, in the present context, the Feynman–diagram particle representation and the
present field representation may be unitarily inequivalent [5]; that is, one may have
an example of Haag’s theorem [6]. Given the above difficulty with infinities in Feynman
diagrams, which are based on particle–number eigenstates, it would seem sensible to inves-
tigate the alternative Dirac canonical approach, with boundary data given on space–like
hypersurfaces.

To find examples of 4–dimensional quantum field theories which are, at least, well be-
haved, with calculable quantum amplitudes, via the Dirac approach in the field representa-
tion, one naturally looks for models with the largest amount of local symmetry. These are
locally–supersymmetric theories such as simple supergravity or gauge–invariant supergrav-
ity [7]. The latter consists of supermatter coupled to supergravity in such a way that the
whole theory is invariant under local supersymmetry, local co–ordinate transformations and
local gauge transformations (SU(n), say). Remarkably, it turns out that quantum ampli-
tudes in these locally–supersymmetric models are, in a certain sense, semi–classical, be-
ing of the form exp(− Iclass) times a delta–functional of the fermionic supersymmetry con-
straints at the boundaries. This last factor enforces the classical supersymmetry constraints

1



at ΣI,F . Here, Iclass denotes the Euclidean action, I , evaluated at the classical infilling
solution which joins the initial data on ΣI to the final data on ΣF , again separated from ΣI

by a time–interval T , measured at spatial infinity. One can verify more directly that the
above ’semi–classical’ form for the quantum amplitude does hold, in a calculable but non–
trivial locally–supersymmetric example: One starts from Witten’s supersymmetric quan-
tum mechanics [8], extended to local supersymmetry by Alvarez [9], and describes quantum
amplitudes in terms of a boundary–value problem, by analogy with the field–theory version
above. Working within this Dirac framework, one arrives at precisely the form of the ampli-
tude described above, namely, Amplitude = δ(supersymmetry constraints) exp(−Iclass)
[5].

2. Complex time–separation

From Sec.1, in a locally–supersymmetric theory, the quantum amplitude to go from
initial to final purely–bosonic data on ΣI ,ΣF , separated by a time–interval T at spatial
infinity, is

Amplitude = δ(supersymmetry constraints on boundaries) exp(− Iclass), (2.1)

in units with ~ = 1 . This holds provided that there exists a (unique) classical solution,
joining the initial to final data in time T at infinity. Existence is precisely most difficult
when T is a real Lorentzian time–interval. Conversely, existence results are known to hold
in a range of cases for which T = iτ is purely imaginary, giving an elliptic boundary–
value problem. In such a case, τ denotes the ’Euclidean time–interval’ between ΣI and
ΣF , as measured at spatial infinity. The classical infilling 4–geometry, gµν , will typically
be Riemannian (equivalently positive–definite). At the opposite extreme, consider, for
example, the boundary–value problem for a massless scalar field φ in flat Minkowski space–
time, with data posed on parallel flat space–like hypersurfaces, ΣI and ΣF , separated by
a Lorentzian time–interval T . Such a Lorentzian boundary–value problem for the wave
equation is badly posed, with neither existence nor uniqueness in general [10,11].

We study the intermediate case,

T = |T | exp(− iθ), 0 < θ ≤ π/2 , (2.2)

with complex time–interval, as measured at spatial infinity. The limiting case θ = π/2
gives the ’Riemannian boundary–value problem’, above. The opposite limit, θ−→ 0+ ,
approaches the badly–posed Lorentzian case, θ = 0 , but is expected to remain well-posed
for θ > 0 . Feynman [12] has taught us that Lorentzian quantum amplitudes are given
by taking this limit of the complex–θ amplitude; equivalently, in Feynman diagrams, one
takes the ’+ iε prescription’.

The complex case, 0 < θ < π/2 , studied in this work, is expected to lead to a
strongly elliptic boundary–value problem, which has good existence and uniqueness
properties [13]. For example, in the simple case of a complexified flat metric, gµν , one
can solve the classical field equation (linear wave equation) for a typical boundary–value
problem, provided θ > 0 . In this case, one can construct the classical φ(x) explicitly, and
examine the singular behaviour as θ−→ 0+ [11].
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This leads to a prescription for calculating quantum amplitudes in our locally–
supersymmetric case: evaluate the action, Iclass , for a classical solution given (say) non–
trivial initial and final weak–field scalar data, φ , with time–interval T = |T | exp(− iθ) and
0 < θ≤π/2 , then take the limit of exp(− Iclass) as θ−→ 0+ .

3. Weak perturbations

Consider the approximate solution of the boundary–value problem, given our La-
grangian. One takes the classical background (bosonic) fields, the metric gµν and real
scalar field φ , each to have a ’large’ time–dependent spherically–symmetric part, g

(0)
µν and

Φ(t, r), plus a ’small’ perturbative part, h
(1)
µν and φ(1). The ’large’ or background Lorentzian

space–time metric can be written in the form

ds2 = − eb(t,r)dt2 + ea(t,r)dr2 + r2(dθ2 + sin2θ dϕ2). (3.1)

The spherically–symmetric part of the classical Einstein and scalar–field equations
will be as for exact spherical symmetry [2,3], except for an additional effective energy–
momentum contribution, TEFF

µν , resulting from local space–time averaging of the contribu-
tion to the Einstein equations of perturbation terms quadratic and higher.

The perturbative part of (for example) the scalar field can be expanded in spherical
harmonics,

φ(1)(t, r, θ, ϕ) =
1
r

∑∞

`=0

∑`

m=−`
Y`m(Ω) R`m(t, r). (3.2)

We are assuming that the scalar boundary data on the final surface, ΣF , are ’generic’,
in that extremely high multipoles, labelled by (`,m), are present in a stochastic manner,
suitably weighted. One expects that the resulting infilling perturbative scalar solution,
φ(1), corresponds to a distribution stochastic in time, and that the effective quantity TEFF

µν

above will be spherically symmetric.
At late times following the (assumed) gravitational collapse, the perturbed scalar

equation is
∇µ∇µ φ(1) = 0 . (3.3)

When decomposed into the harmonics of Eq.(3.2), this gives the (`,m) mode equation,

[
e(b−a)/2∂r

]2
R`m − R̈`m − 1

2
(
ȧ− ḃ

)
Ṙ`m − V`(t, r)R`m = 0 , (3.4)

where

V`(t, r) =
eb(t,r)

r2

(
`(` + 1) +

2m(t, r)
r

)
. (3.5)

Here, m(t, r) is defined by

exp[− a(t, r)] = 1− [2m(t, r)/r]. (3.6)

For simplicity, consider the case in which the only non–zero perturbative boundary
data are the spatial metric h

(1)
ij and scalar field φ(1) on ΣF . The corresponding data on
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ΣI are taken to be zero; equivalently, the full initial data on ΣI are taken to be exactly
spherically symmetric. The Lorentzian action of the infilling classical solution is found, in
Hamiltonian language, to be [2,3]

Sclass[h
(1)
ij , φ(1)] =

1
32π

∫
ΣF

d3x π(1)ij h
(1)
ij +

1
2

∫
ΣF

d3x φ(1) πφ(1) −MT . (3.7)

It is typical, for a theory not containing a mass, that Iclass should take such a ’boundary’
form. The linearised quantities, π(1)ij and

πφ(1) = e− b(t,r) ∂φ(1)

∂t
, .(3.8)

are the momenta canonically conjugate to h
(1)
ij and φ(1), and M is the ADM mass of the

classical space–time.
The bosonic factor in the ’semi–classical’ amplitude, Eq.(2.1), can thence be evaluated

to give the quantum amplitude to go (say) from spherically–symmetric initial data on ΣI

to non–spherical final data, h
(1)
ij , φ(1), on ΣF . The final scalar data, φ(1) on ΣF , can be

expanded in spherical harmonics as in Eq.(3.2); correspondingly for the ’gravitational–
wave data’, h

(1)
ij on ΣF . The above quantum amplitude in our field representation can

thus be related to quantum amplitudes in a particle description.

4. Quantum amplitude for weak scalar fields

We simplify the final boundary data of Sec.3 still further, allowing non–trivial scalar
perturbations, φ(1) 6=0 , but no gravitational perturbations: h

(1)
ij = 0 on ΣF . From

Eqs.(3.2–6), the infilling linearised scalar field is a sum over angular modes, (`,m), weighted
by a solution, R`(t, r), of the radial wave equation (3.4,5) — note that the radial function,
R`m(t, r), is, in fact, independent of the quantum number m .

On or near the final surface, ΣF , long after the black hole has evaporated, one again
expects a nearly–Schwarzschild background, more or less static when compared with the
oscillations in the scalar field. In this case, the radial wave functions, R`(t, r), can be
decomposed harmonically with respect to t . Given a suitable normalisation, one can write
[3], at least near ΣF ,

φ(1) =
1
r

∑
`m

∫ ∞

0

dk ak`m Rk`(t, r) Y`m(Ω), (4.1)

where the ak`m are real quantities. The harmonic decomposition (4.1) should become more
and more accurate near spatial infinity (r−→∞), where the space–time metric tends to
the flat Minkowski metric. Hence, the eigenfrequencies k are discrete, of the form

k = kn =
nπ

|T |
(n = 1, 2, 3, . . . ). (4.2)

One studies the radial wave equation for Rk`(r) near r = 0 and as r−→∞ . One finds
that

Rk`(r) ∼ zk` eikr∗S + z̄k` e−ikr∗S (4.3)
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as r−→∞ , where, for large r ,

r∗S ∼ r + 2M log
((

r/2M
)
− 1

)
(4.4)

is the Regge–Wheeler ’tortoise’ co–ordinate in the Schwarzschild geometry [14]. The zk`

are dimensionless complex coefficients, determined by regularity at r = 0 . These zk` are
related to the Bogoliubov coefficients, thus making contact with the original formulation
of black–hole evaporation [15,16,17].

Given the perturbative final scalar data, φ(1), specified by the mode quantities an`m

above, one computes the (classical scalar contribution to the) Lorentzian action, Sclass[φ(1)]
of Eq.(3.7), in the case that the time–interval T = τ exp(− iθ) [Eq.(2.2)] at spatial infinity
is rotated slightly into the complex, with θ > 0 . This classical scalar contribution to Sclass

will in general be complex. The Euclidean and Lorentzian actions are related by

Iclass = − i Sclass . (4.5)

As described in Sec.2, if one is working within a locally–supersymmetric theory, one
has a semi–classical amplitude, given by Eq.(2.1), to go from φ(1) = 0 on ΣI to the
prescribed non–zero φ(1) above on ΣF .

This amplitude, a function of the angle θ , where one eventually takes the limit
θ−→ 0+ , is exponential in form. It has a (computable) oscillating part in each mode,
multiplied by a product of Gaussians,

|Amplitude| ∝ exp
(
− 4π3

|T |2
∑∞

n=1

∑∞

`=0

∑`

m=−`
n |zn`|2 |an`m|2

)
. (4.6)

in terms of the co–ordinates {an`m} of Eqs.(4.1,2) for the perturbed final data. The
corresponding late–time scalar radiation can be interpreted in terms of thermal Hawking
radiation.

5. Comments

By following Dirac’s approach for constrained Hamiltonian systems and working with
locally–supersymmetric models, we have seen how quantum amplitudes (not just proba-
bilities) may be found for transitions involving black holes to go from initial data on a
space–like hypersurface, ΣI , to final data on ΣF . The semi–classical result (2.1) only ap-
plies in the case of a locally–supersymmetric Lagrangian. Further, this result was derived
in the field representation, with data given on ΣI and ΣF . A basis for states in quantum
field thory, natural to the above field representation, may well be unitarily inequivalent
to a basis of the kind typically taken for particle scattering in particle physics, involving
incoming or outgoing particle–number states.

Among bosonic fields, results analogous to Eq.(4.6) have also been derived for spin–1
Maxwell theory and for the spin–2 linearised gravitational field [18,19]. The corresponding
quantum amplitude for the fermionic spin– 1

2 field has also been derived [20].
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