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Renormalisation Group
The RG, as applied to fluctuating systems extended in space or
space-time (‘quantum or statistical field theories’) is one of the
great organising principles of modern physics:
I suppose the physics at a given length scale `0 (= inverse

energy or momentum scale) is specified by dimensionless
parameters {g1(`0),g2(`0), . . .} (= masses, coupling
constants)

I then the physics at some other length scale ` is the same
as if we stay at `0 but allow the couplings {g(`)} to flow
according to

`
dgj(`)

d`
= −βj({g(`)})

I in particular, as `→∞ (IR limit) or as `→ 0 (but still� any
UV cut-off) (UV limit) we expect that {g} → {g∗} where
βj({g∗}) = 0 – a RG fixed point



RG fixed points and and conformal field theories

I RG fixed points correspond to scale-invariant systems: e.g.
massless QFTs or statistical models at a critical point

I when such systems are in addition Lorentz (rotationally)
invariant scale invariance is enlarged to conformal
symmetry: we have a conformal field theory (CFT)

I so all such systems are characterised by their possible
fixed points (= CFTs) and the allowed flows between them

CFTUV −→ CFTIR

Is there a general principle constraining such flows?



Two dimensions: Zamolodchikov’s c-theorem

In d = 2, each CFT is characterised by its conformal anomaly
number c (for a free scalar or Dirac fermion, c = 1, but in
general c can be non-integer.)
In 1987 A. Zamolodchikov showed that:
I there exists a function C({g}) on the space of all 2d QFTs

which is
I decreasing along RG flows
I stationary at each RG fixed point (CFT), where its value is

the appropriate c
I in particular this implies

cUV > cIR

I in 2d RG flows ‘go downhill’



A landscape of CFTs



Higher Dimensional Generalisations
I in 1988 JC proposed a generalisation to all even

dimensions d , which came to be known as the ‘a-theorem’:

I there exists a pure number a characterising d-dimensional
CFTs, such that, along RG flows

aUV > aIR

I this was shown to be true for ‘weakly relevant flows’ (when
CFTIR is close to CFTUV ) and seemed to be satisfied by all
known examples

I for free field theories, a measures the diversity of species
of massless particles: in four dimensions

a = # scalars+11 # Dirac fermions+62 # gauge fields+· · ·



Example
QCD with Nc colours and Nf massless fermions:
I asymptotic freedom implies that

aUV = 11NcNf + 62(N2
c − 1)

I in the IR we expect chiral symmetry breaking to leave
N2

f − 1 Goldstone bosons, so

aIR = N2
f − 1

I the conjectured a-theorem is therefore violated if

Nf >
11
2 Nc +

[
(11

2 )2N2
c + 62(N2

c − 1) + 1
]1/2

I however, asymptotic freedom is already lost if Nf >
11
2 Nc ,

so there is no contradiction
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A little history of the ‘a-theorem’
I Osborn (1989) showed that a decreases to all orders in

perturbation theory
I as knowledge of strongly coupled gauge theories

increased (especially because of Seiberg duality (1995))
the conjecture passed ever more rigorous tests

I for example, if the numbers (11,62, . . .) are modified there
exist counterexamples

I in supersymmetric theories it is related to R-symmetry and
a version was proved (Intriligator and Wecht, 2003)

I holographic version proposed in 1999 (Freedman et al)
I related to entanglement entropy (Myers and Sinha, 2011)
I in 2008 Shapere and Tachikawa claimed a

counterexample, however this was rebutted by Gaiotto,
Seiberg and Tachikawa (2010)

I in July 2011 Komargodski and Schwimmer posted
arXiv:1107.3987 which provides a ‘proof’ of the a-theorem
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Outline of the rest of the talk

I the role of the stress tensor in CFT
I Zamolodchikov’s argument in 2d and why it doesn’t work

for d > 2
I the a-theorem proposal
I Komargodski and Schwimmer’s argument
I open questions



The stress tensor
I suppose the action of a QFT with a set of fields {φ}, in

curved space with metric gµν , is

S =

∫
ddx
√

g L({φ},gµν)

I classically, the stress tensor (= stress-energy tensor,
(improved) energy-momentum tensor) is

Tµν(x) =
δS

δgµν(x)

I this is what appears on the RHS of Einstein’s equation
I in flat space, up to a total derivative it is the same as the

Noether current corresponding to translational symmetry
I it is symmetric and conserved: ∂νTµν = 0
I scale invariance under xµ → eb xµ implies Tµ

µ = 0



I in the quantum theory, Tµν must be regularised, leading to
possible anomalies. In general there is a trace anomaly in
flat space:

Tµ
µ ∝

∑
j

βj({g}) Φj

I so in a CFT, Tµ
µ = 0 in flat space

I however in curved space there are further c-number
anomalies and Tµ

µ 6= 0



Two dimensions

In 2d CFT there is only one anomaly number called c, which
plays various equivalent roles:
I the 2-point function of the stress tensor in flat space

〈Tµν(x)Tλσ(0)〉 =
c
x4 × index structure

I the entropy density at finite temperature s = πcT/3
I the von Neumann (entanglement) entropy of an interval A

of length L at zero temperature: SA ∼ (c/3) log L
I the anomaly in curved space:

〈Tµ
µ 〉 = −cR

12

where R is the scalar (gaussian) curvature



Zamolodchikov’s argument in 2d

I in general Tµν has a spin-2 traceless symmetric part and a
spin-0 part (the trace), so in 2d there are only 3
independent components T , T and Θ = Tµ

µ

I rotational invariance implies (r2 = zz̄)

〈T (z, z̄)T (0)〉 = F (r)/z4

〈T (z, z̄)Θ(0)〉 = G(r)/z3z̄2

〈Θ(z, z̄)Θ(0)〉 = H(r)/z2z̄2

Conservation ∂µTµν = 0 then gives

r(d/dr)C = −3
8H where C ≡ F − 1

2G − 3
16H

But H ∝ 〈ΘΘ〉 > 0 by reflection positivity (= unitarity).
I this fails for d > 2 because there are too many amplitudes



The 1988 proposal

I in 2d we also have 〈Tµ
µ 〉 = −cR/12

I note that by the Gauss-Bonnet theorem this implies∫
M
〈Tµ
µ 〉
√

g d2x = −(c/12)

∫
M

R
√

g d2x = −c χ/12

where χ is the Euler character ofM
I so let us define a candidate C-function for even d ≥ 2

C = αd

∫
M
〈Tµ
µ 〉
√

g ddx

where αd is fixed by C = 1 for a free scalar boson
I for calculational purposes it seemed easiest to choose
M = the sphere Sd

I the conjecture: C decreases along RG flows and
CUV > CIR



I although this can be checked in perturbation theory (either
‘weakly relevant’ or Banks-Zaks flows), a general proof has
up to now been absent

I one of the problems is that 〈Tµ
µ 〉 contains quartic and

quadratic diverges in 4d which must be subtracted, and
these spoil naive positivity arguments

I one needs to relate the anomaly to something else
physical and finite



Curved space anomalies in four dimensions
In fact in a general curved background there are two separate
anomalies in a CFT in d = 4:

〈Tµ
µ 〉 = −aE4 + cW 2

where

E4 = RµνλσRµνλσ − 4RµνRµν + R2 (Euler density)
W 2 = WµνλσWµνλσ

= RµνλσRµνλσ − 2RµνRµν + 1
3R2 (Weyl tensor)2

I the first integrates up to be proportional to the Euler
character, so the 1988 conjecture should properly be
called the ‘a-theorem’

I in principle there could also be a c-theorem, but there are
known counter-examples



Outline of Komargodski-Schwimmer’s proof

I consider the UV CFT perturbed by relevant operators: in
flat space

S = SCFTUV +
∑

j

λj

∫
Φj(x)d4x

where Φj has dimension δj < 4
I dimensionless coupling gj = λj`

4−δj , so −βj = (4− δj)gj

I under the RG flow gj →∞ and S → SCFTIR

Is aUV > aIR ?



Adding the dilaton

Consider a modified theory in which the fields are coupled to an
additional scalar τ , known as the dilaton: in flat space

S = SCFTUV +
∑

j

λj

∫
Φj(x) e(δj−4)τd4x + f 2

∫
e−2τ (∂τ)2d4x

I under a scale transformation xµ → ebxµ, Φj → e−bδj , but
τ → τ + b, so the whole action is scale invariant

I in fact it is conformally invariant: Tµ
µ |total = 0

I the last term is the action for a free scalar φ = 1− e−τ in
disguise

I f has the dimensions of mass: if we take f →∞ this picks
out a VEV for τ (say τ = 0) and we get back to the original
theory

I the O(τ) term then couples to Tµ
µ of the original theory



I in practice, all we need is to take f � any mass scale of
the theory to see the UV→IR crossover

I as this crossover happens, some of the degrees of
freedom of CFTUV will become massive

I integrating these out will leave CFTIR plus an effective
low-energy theory Sdilaton for the dilaton, which decouples
at large f

I since the total theory is conformally invariant

aCFTUV = atotal
UV = atotal

IR = aCFTIR + adilaton

so we need to argue that adilaton > 0.



Determining the dilaton effective action

I in curved space the coupling to the dilaton takes the form∑
j

λj

∫
Φj(x) e(δj−4)τ√g d4x

I the scale invariance in flat space now shows up as
invariance under Weyl transformations of the metric:

gµν → e2σgµν , τ → τ + σ

so the effective action should respect this, up to the
anomaly

I KS (based on earlier work by Schwimmer and Theisen)
determined the effective action Sdilaton for the dilaton up to
four derivatives



Anomalous terms in Sdilaton

We need to construct an action Sanomaly such that its Weyl
variation takes the form

δSanomaly/δσ = cdilW 2 − adilE4

The result, up to 4 derivatives, is

Sanomaly =

∫
τ(cdilW 2 − adilE4)

√
gd4x −

adil

∫ [
4(Rµν− 1

2gµνR)∂µτ∂ντ− 4(∂τ)2�τ+2(∂τ)4
]√

gd4x

I adil couples linearly to the Euler density as expected but
also to terms which survive in flat space

I there are also non-anomalous, Weyl-invariant, terms in
Sdilaton at this order, but in flat space they vanish by the
equation of motion �τ = (∂τ)2



Dilaton-dilaton scattering
I the terms proportional to adilaton which survive in flat space,

after using the equation of motion, are

Sanomaly → 2adilaton

∫
(∂τ)4d4x

I so adilaton determines the on-shell low-energy elastic
dilaton-dilaton scattering amplitude:

A(s, t ,u) =
adilaton

f 4 (s2 + t2 + u2) + · · ·

I going to the forward direction t = 0, u = −s we can write a
dispersion relation for A(s)/s3

adilaton =
f 4

π

∫
σtot(s′)

s′2
ds′

where σtot is the total cross-section for dilaton+dilaton→
heavy particles

I since this is > 0, QED.



Comments and open questions
I relating aUV − aIR to something physical (dilaton

scattering) neatly sidesteps all the problems about
subtractions, etc. (which are in fact buried in the
non-universal, non-anomalous terms)

I the ‘proof’ uses classic and commonly accepted ideas of
quantum field theory: anomaly matching, dispersion
relations, etc., but is not as clean as Zamolodchikov’s in
2d: perhaps it can be more directly related to the 〈TTTT 〉
4-point function in flat space

I are RG flows gradients of an interpolating function A({g})?
I the proof extends to all even d but something else is

needed for odd dimensions – important for condensed
matter applications

I but in the interesting case d = 4 we have a new principle
governing all QFTs which might be used, for example, to
constrain strongly coupled physics at the TeV scale
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Thanks to Zohar Komargodski and Slava Rychkov for many
helpful clarifications
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