Renormalisation Group Flows in Four Dimensions and the 'a-theorem'

John Cardy

University of Oxford

University of Sussex, January 2012

Renormalisation Group

The RG, as applied to fluctuating systems extended in space or space-time ('quantum or statistical field theories') is one of the great organising principles of modern physics:

- ▶ suppose the physics at a given length scale ℓ_0 (= inverse energy or momentum scale) is specified by dimensionless parameters $\{g_1(\ell_0),g_2(\ell_0),\ldots\}$ (= masses, coupling constants)
- ▶ then the physics at some other length scale ℓ is the same as if we stay at ℓ_0 but allow the couplings $\{g(\ell)\}$ to flow according to

$$\ell \frac{dg_j(\ell)}{d\ell} = -\beta_j(\{g(\ell)\})$$

• in particular, as $\ell \to \infty$ (IR limit) or as $\ell \to 0$ (but still \gg any UV cut-off) (UV limit) we expect that $\{g\} \to \{g^*\}$ where $\beta_i(\{g^*\}) = 0$ – a RG fixed point

RG fixed points and and conformal field theories

- RG fixed points correspond to scale-invariant systems: e.g. massless QFTs or statistical models at a critical point
- when such systems are in addition Lorentz (rotationally) invariant scale invariance is enlarged to conformal symmetry: we have a conformal field theory (CFT)
- so all such systems are characterised by their possible fixed points (= CFTs) and the allowed flows between them

$$CFT_{UV} \longrightarrow CFT_{IR}$$

Is there a general principle constraining such flows?

Two dimensions: Zamolodchikov's c-theorem

In d=2, each CFT is characterised by its conformal anomaly number c (for a free scalar or Dirac fermion, c=1, but in general c can be non-integer.)

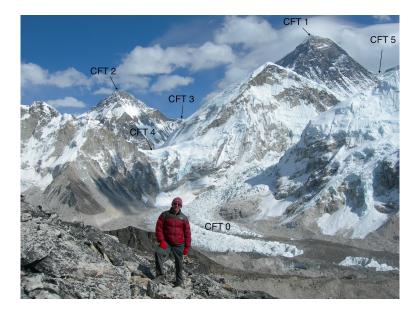
In 1987 A. Zamolodchikov showed that:

- ▶ there exists a function $C(\{g\})$ on the space of all 2d QFTs which is
 - decreasing along RG flows
 - stationary at each RG fixed point (CFT), where its value is the appropriate c
- in particular this implies

$$c_{UV} > c_{IR}$$

in 2d RG flows 'go downhill'

A landscape of CFTs



Higher Dimensional Generalisations

- in 1988 JC proposed a generalisation to all even dimensions d, which came to be known as the 'a-theorem':
 - ▶ there exists a pure number a characterising d-dimensional CFTs, such that, along RG flows

$$a_{UV} > a_{IR}$$

- this was shown to be true for 'weakly relevant flows' (when CFT_{IR} is close to CFT_{UV}) and seemed to be satisfied by all known examples
- for free field theories, a measures the diversity of species of massless particles: in four dimensions

```
a = \# scalars+11 \# Dirac fermions+62 \# gauge fields+...
```


Example

QCD with N_c colours and N_f massless fermions:

asymptotic freedom implies that

$$a_{UV} = 11N_cN_f + 62(N_c^2 - 1)$$

 in the IR we expect chiral symmetry breaking to leave N_f² − 1 Goldstone bosons, so

$$a_{IR}=N_f^2-1$$

the conjectured a-theorem is therefore violated if

$$N_f > \frac{11}{2}N_c + \left[\left(\frac{11}{2}\right)^2 N_c^2 + 62(N_c^2 - 1) + 1 \right]^{1/2}$$

Example

QCD with N_c colours and N_f massless fermions:

asymptotic freedom implies that

$$a_{UV} = 11N_cN_f + 62(N_c^2 - 1)$$

 in the IR we expect chiral symmetry breaking to leave N_f² - 1 Goldstone bosons, so

$$a_{IR}=N_f^2-1$$

▶ the conjectured *a*-theorem is therefore violated if

$$N_f > \frac{11}{2}N_c + \left[\left(\frac{11}{2}\right)^2 N_c^2 + 62(N_c^2 - 1) + 1 \right]^{1/2}$$

► however, asymptotic freedom is already lost if $N_f > \frac{11}{2}N_c$, so there is no contradiction

A little history of the 'a-theorem'

- Osborn (1989) showed that a decreases to all orders in perturbation theory
- as knowledge of strongly coupled gauge theories increased (especially because of Seiberg duality (1995)) the conjecture passed ever more rigorous tests
- ▶ for example, if the numbers (11,62,...) are modified there exist counterexamples
- in supersymmetric theories it is related to R-symmetry and a version was proved (Intriligator and Wecht, 2003)
- holographic version proposed in 1999 (Freedman et al)
- related to entanglement entropy (Myers and Sinha, 2011)
- in 2008 Shapere and Tachikawa claimed a counterexample, however this was rebutted by Gaiotto, Seiberg and Tachikawa (2010)

A little history of the 'a-theorem'

- Osborn (1989) showed that a decreases to all orders in perturbation theory
- as knowledge of strongly coupled gauge theories increased (especially because of Seiberg duality (1995)) the conjecture passed ever more rigorous tests
- ▶ for example, if the numbers (11,62,...) are modified there exist counterexamples
- in supersymmetric theories it is related to R-symmetry and a version was proved (Intriligator and Wecht, 2003)
- holographic version proposed in 1999 (Freedman et al)
- related to entanglement entropy (Myers and Sinha, 2011)
- in 2008 Shapere and Tachikawa claimed a counterexample, however this was rebutted by Gaiotto, Seiberg and Tachikawa (2010)
- ▶ in July 2011 Komargodski and Schwimmer posted arXiv:1107.3987 which provides a 'proof' of the a-theorem

Outline of the rest of the talk

- the role of the stress tensor in CFT
- Zamolodchikov's argument in 2d and why it doesn't work for d > 2
- the a-theorem proposal
- Komargodski and Schwimmer's argument
- open questions

The stress tensor

• suppose the action of a QFT with a set of fields $\{\phi\}$, in curved space with metric $g_{\mu\nu}$, is

$$\mathcal{S} = \int d^d x \sqrt{g} \, \mathcal{L}(\{\phi\}, g_{\mu
u})$$

 classically, the stress tensor (= stress-energy tensor, (improved) energy-momentum tensor) is

$$T^{\mu\nu}(x) = rac{\delta S}{\delta g_{\mu
u}(x)}$$

- this is what appears on the RHS of Einstein's equation
- in flat space, up to a total derivative it is the same as the Noether current corresponding to translational symmetry
- it is symmetric and conserved: $\partial_{\nu} T^{\mu\nu} = 0$
- ▶ scale invariance under $x^{\mu} \rightarrow e^{b} x^{\mu}$ implies $T^{\mu}_{\mu} = 0$

• in the quantum theory, $T_{\mu\nu}$ must be regularised, leading to possible anomalies. In general there is a trace anomaly in flat space:

$$T^{\mu}_{\mu} \propto \sum_{j} \beta_{j}(\{g\}) \Phi_{j}$$

- ▶ so in a CFT, $T^{\mu}_{\mu} = 0$ in flat space
- ▶ however in curved space there are further c-number anomalies and $T^{\mu}_{\mu} \neq 0$

Two dimensions

In 2d CFT there is only one anomaly number called *c*, which plays various equivalent roles:

the 2-point function of the stress tensor in flat space

$$\langle T_{\mu\nu}(x)T_{\lambda\sigma}(0)
angle = rac{c}{x^4} imes ext{index structure}$$

- the entropy density at finite temperature $s = \pi cT/3$
- ▶ the von Neumann (entanglement) entropy of an interval A of length L at zero temperature: $S_A \sim (c/3) \log L$
- the anomaly in curved space:

$$\langle T^{\mu}_{\mu} \rangle = -\frac{cR}{12}$$

where R is the scalar (gaussian) curvature

Zamolodchikov's argument in 2d

- in general $T_{\mu\nu}$ has a spin-2 traceless symmetric part and a spin-0 part (the trace), so in 2d there are only 3 independent components T, \overline{T} and $\Theta = T^{\mu}_{\mu}$
- ► rotational invariance implies $(r^2 = z\overline{z})$

$$\langle T(z,\bar{z})T(0)\rangle = F(r)/z^4$$

 $\langle T(z,\bar{z})\Theta(0)\rangle = G(r)/z^3\bar{z}^2$
 $\langle \Theta(z,\bar{z})\Theta(0)\rangle = H(r)/z^2\bar{z}^2$

Conservation $\partial_{\mu} T^{\mu\nu} = 0$ then gives

$$r(d/dr)C = -\frac{3}{8}H$$
 where $C \equiv F - \frac{1}{2}G - \frac{3}{16}H$

But $H \propto \langle \Theta \Theta \rangle > 0$ by reflection positivity (= unitarity).

▶ this fails for $\frac{d}{d}$ > 2 because there are too many amplitudes

The 1988 proposal

- in 2d we also have $\langle T^{\mu}_{\mu} \rangle = -cR/12$
- note that by the Gauss-Bonnet theorem this implies

$$\int_{\mathcal{M}} \langle T_{\mu}^{\mu} \rangle \sqrt{g} \, d^2 x = -(c/12) \int_{\mathcal{M}} R \sqrt{g} \, d^2 x = -c \, \chi/12$$

where χ is the Euler character of \mathcal{M}

▶ so let us define a candidate C-function for even $d \ge 2$

$$C = lpha_d \int_{\mathcal{M}} \langle T^{\mu}_{\mu} \rangle \sqrt{g} \, d^d x$$

where α_d is fixed by C = 1 for a free scalar boson

- ▶ for calculational purposes it seemed easiest to choose
 M = the sphere S^d
- the conjecture: C decreases along RG flows and C_{UV} > C_{IB}

- although this can be checked in perturbation theory (either 'weakly relevant' or Banks-Zaks flows), a general proof has up to now been absent
- one of the problems is that $\langle T^{\mu}_{\mu} \rangle$ contains quartic and quadratic diverges in 4d which must be subtracted, and these spoil naive positivity arguments
- one needs to relate the anomaly to something else physical and finite

Curved space anomalies in four dimensions

In fact in a general curved background there are two separate anomalies in a CFT in d = 4:

$$\langle T^{\mu}_{\mu} \rangle = -aE_4 + cW^2$$

where

$$\begin{array}{lll} E_4 & = & R_{\mu\nu\lambda\sigma}R^{\mu\nu\lambda\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2 & \text{(Euler density)} \\ W^2 & = & W_{\mu\nu\lambda\sigma}W^{\mu\nu\lambda\sigma} \\ & = & R_{\mu\nu\lambda\sigma}R^{\mu\nu\lambda\sigma} - 2R_{\mu\nu}R^{\mu\nu} + \frac{1}{3}R^2 & \text{(Weyl tensor)}^2 \end{array}$$

- the first integrates up to be proportional to the Euler character, so the 1988 conjecture should properly be called the 'a-theorem'
- ▶ in principle there could also be a c-theorem, but there are known counter-examples

Outline of Komargodski-Schwimmer's proof

consider the UV CFT perturbed by relevant operators: in flat space

$$S = S_{CFT_{UV}} + \sum_{j} \lambda_{j} \int \Phi_{j}(x) d^{4}x$$

where Φ_i has dimension $\delta_i < 4$

- ▶ dimensionless coupling $g_j = \lambda_j \ell^{4-\delta_j}$, so $-\beta_j = (4-\delta_j)g_j$
- ▶ under the RG flow $g_j \to \infty$ and $S \to S_{CFT_{IR}}$

Is
$$a_{UV} > a_{IR}$$
 ?

Adding the dilaton

Consider a modified theory in which the fields are coupled to an additional scalar au, known as the dilaton: in flat space

$$S = S_{CFT_{UV}} + \sum_{j} \lambda_{j} \int \Phi_{j}(x) e^{(\delta_{j} - 4)\tau} d^{4}x + f^{2} \int e^{-2\tau} (\partial \tau)^{2} d^{4}x$$

- under a scale transformation $x^{\mu} \to e^b x^{\mu}$, $\Phi_j \to e^{-b\delta_j}$, but $\tau \to \tau + b$, so the whole action is scale invariant
- in fact it is conformally invariant: $T^{\mu}_{\mu}|^{\text{total}} = 0$
- ▶ the last term is the action for a free scalar $\phi = 1 e^{-\tau}$ in disguise
- ▶ f has the dimensions of mass: if we take $f \to \infty$ this picks out a VEV for τ (say $\tau = 0$) and we get back to the original theory
- the $O(\tau)$ term then couples to T^{μ}_{μ} of the original theory

- in practice, all we need is to take f ≫ any mass scale of the theory to see the UV→IR crossover
- as this crossover happens, some of the degrees of freedom of CFT_{UV} will become massive
- integrating these out will leave CFT_{IR} plus an effective low-energy theory S_{dilaton} for the dilaton, which decouples at large f
- since the total theory is conformally invariant

$$a_{CFT_{UV}} = a_{UV}^{\text{total}} = a_{IR}^{\text{total}} = a_{CFT_{IR}} + a_{\text{dilaton}}$$

so we need to argue that $a_{dilaton} > 0$.

Determining the dilaton effective action

in curved space the coupling to the dilaton takes the form

$$\sum_{j} \lambda_{j} \int \Phi_{j}(x) \, e^{(\delta_{j} - 4)\tau} \sqrt{g} \, d^{4}x$$

the scale invariance in flat space now shows up as invariance under Weyl transformations of the metric:

$$g_{\mu
u}
ightarrow e^{2\sigma}g_{\mu
u}, \qquad au
ightarrow au+\sigma$$

so the effective action should respect this, up to the anomaly

KS (based on earlier work by Schwimmer and Theisen)
 determined the effective action S_{dilaton} for the dilaton up to four derivatives

Anomalous terms in $S_{dilaton}$

We need to construct an action $S_{anomaly}$ such that its Weyl variation takes the form

$$\delta S_{\text{anomaly}}/\delta \sigma = c_{\text{dil}} W^2 - a_{\text{dil}} E_4$$

The result, up to 4 derivatives, is

$$\begin{split} S_{\text{anomaly}} &= \int \tau (c_{\text{dil}} W^2 - a_{\text{dil}} E_4) \sqrt{g} d^4 x \, - \\ a_{\text{dil}} &\int \left[4 (R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R) \partial_{\mu} \tau \partial_{\nu} \tau - 4 (\partial \tau)^2 \Box \tau + 2 (\partial \tau)^4 \right] \sqrt{g} d^4 x \end{split}$$

- a_{dil} couples linearly to the Euler density as expected but also to terms which survive in flat space
- ▶ there are also non-anomalous, Weyl-invariant, terms in S_{dilaton} at this order, but in flat space they vanish by the equation of motion $\Box \tau = (\partial \tau)^2$

Dilaton-dilaton scattering

▶ the terms proportional to a_{dilaton} which survive in flat space, after using the equation of motion, are

$$S_{
m anomaly}
ightarrow 2a_{
m dilaton} \int (\partial au)^4 d^4 x$$

▶ so a_{dilaton} determines the on-shell low-energy elastic dilaton-dilaton scattering amplitude:

$$A(s,t,u) = \frac{a_{\text{dilaton}}}{f^4}(s^2 + t^2 + u^2) + \cdots$$

▶ going to the forward direction t = 0, u = -s we can write a dispersion relation for $A(s)/s^3$

$$a_{\text{dilaton}} = \frac{f^4}{\pi} \int \frac{\sigma^{\text{tot}}(s')}{s'^2} ds'$$

where $\sigma^{\rm tot}$ is the total cross-section for dilaton+dilaton \to heavy particles

▶ since this is > 0. QED.

Comments and open questions

- relating a_{UV} a_{IR} to something physical (dilaton scattering) neatly sidesteps all the problems about subtractions, etc. (which are in fact buried in the non-universal, non-anomalous terms)
- the 'proof' uses classic and commonly accepted ideas of quantum field theory: anomaly matching, dispersion relations, etc., but is not as clean as Zamolodchikov's in 2d: perhaps it can be more directly related to the \(\frac{TTTT}\) 4-point function in flat space
- ▶ are RG flows gradients of an interpolating function $A(\{g\})$?
- the proof extends to all even d but something else is needed for odd dimensions – important for condensed matter applications

Comments and open questions

- relating a_{UV} a_{IR} to something physical (dilaton scattering) neatly sidesteps all the problems about subtractions, etc. (which are in fact buried in the non-universal, non-anomalous terms)
- the 'proof' uses classic and commonly accepted ideas of quantum field theory: anomaly matching, dispersion relations, etc., but is not as clean as Zamolodchikov's in 2d: perhaps it can be more directly related to the \(\(\frac{TTTT}\)\) 4-point function in flat space
- ▶ are RG flows gradients of an interpolating function $A(\{g\})$?
- the proof extends to all even d but something else is needed for odd dimensions – important for condensed matter applications
- but in the interesting case d = 4 we have a new principle governing all QFTs which might be used, for example, to constrain strongly coupled physics at the TeV scale

Thanks to Zohar Komargodski and Slava Rychkov for many helpful clarifications

References:

- A B Zamolodchikov, "Irreversibility of the Flux of the RG in a 2d Field Theory," JETP Lett. 43, 730 (1987)
- ▶ JC, "Is there a c-theorem in Four Dimensions?" Phys. Lett. **B215**, 749 (1988)
- Z Komargodski and A Schwimmer, "On RG Flows in Four Dimensions", arXiv:1107.3987; JHEP 1112 (2011) 099
- Z Komargodski, "The Constraints of Conformal Symmetry on RG Flows". arXiv:1112.4538
- ► "Proof found for unifying quantum principle," Nature News 14 Nov 2011, www.nature.com/news/ proof-found-for-unifying-quantum-principle-1. 9352