SOFT WALLS: STABILIZATION AND EWSB

Gero von Gersdorff (École Polytechnique) University of Sussex, October 2010

Collaboration with J.A.Cabrer and M.Quirós

arXiv:1005.5134,0907.5361, w.i.p.

OUTLINE

- Features of Warped Extra Dimensions
- Stabilizing Models with 2 branes
- Soft Wall models (Models with I brane)
- Stabilizing the Soft Wall
- Simulating Soft Walls with IR branes
- EWSB and EWPT in warped spaces

OPEN QUESTIONS IN THE SM (AND BEYOND)

- What is the origin of Electroweak Symmetry Breaking?
- Why is the scale of the Z and W bosons 10¹⁷ times smaller than the Planck mass? (Hierarchy Problem)
- Why is there such a huge hierarchy in the masses of the Standard Model fermions?
- What is the origin of neutrino masses?
- If there is Supersymmetry, how is it broken?
- If there is a Grand Unified Theory, how is it broken to the SM, and why are there no colored Higgses?

All these issues can be addressed in models with Extra Dimensions

RS MODELS

Randall & Sundrum '99

RS MODELS

Randall & Sundrum '99

Fifth Dimension

RS MODELS

Randall & Sundrum '99

Fundamental cutoff scale is redshifted

Fundamental cutoff scale is redshifted

Fundamental cutoff scale is redshifted

Arkani-Hamed & Schmalz '00, Huber & Shafi '00, Shifman & Dvali '00, Gherghetta & Pomarol '00

SUMMARY RS MODELS

SUMMARY RS MODELS

- Extra Dimensions with WARPED background successful for
 - Explaining electroweak hierarchy
 - Explaining fermion mass hierarchy

SUMMARY RS MODELS

- Extra Dimensions with WARPED background successful for
 - Explaining electroweak hierarchy
 - Explaining fermion mass hierarchy
- Other features
 - Distinctive Collider Signature (KK gravitons)
 - Dual to strongly coupled gauge theories in 4D
 - "Modelling QCD"

PROBLEMS

- Pure 5D Gravity with negative Cosmological constant (and appropriate brane tensions) has RS as a solution.
- BUT: Interbrane distance is UNDETERMINED
- There is an extra massless mode (RADION)

$$g_{MN} = g_{MN}^{RS} + \begin{pmatrix} h_{\mu\nu} & \\ & h_{55} \end{pmatrix}$$

Both brane tensions need to be fine tuned

- The question of Radius stabilization
 - What determines **DISTANCE** between UV and IR brane?
 - How can I generate a POTENTIAL and a MASS for the Radion?
 - What ensures that the 4D metric is FLAT?
 - How NATURAL is it?

SUPERPOTENTIAL METHOD

SUPERPOTENTIAL METHOD

 $\lambda_0(\phi$

 $V(\phi)$

 $\lambda_1(\phi)$

- $ds^{2} = e^{-2A(y)} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dy^{2}$ • Gravity + scalar field with bulk and brane potential
- Solve Einstein equations coupled to scalar

SUPERPOTENTIAL METHOD

- Gravity + scalar field $ds^2 = e^{-2A(y)} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dy^2$ with bulk and brane potential $\lambda_0(\phi)$
- Solve Einstein equations coupled to scalar

 $\lambda_0(\varphi$

- Define a "Superpotential" $V(\phi) = 3W'(\phi)^2 12W^2(\phi)$ NO SUSY INVOLVED
- Einstein equations become $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$
- Boundary values from minimizing the 4D potentials

 $V_i(\phi) = \lambda_i(\phi) - 6 W(\phi)$

DeWolfe et al '99, Brandhuber & Sfetsos '99

- Solve to get bulk profiles $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$ - Minimize to get brane values $V_i(\phi_i) = \lambda_i(\phi_i) - 6W(\phi_i)$

- Solve to get bulk profiles $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$ - Minimize to get brane values $V_i(\phi_i) = \lambda_i(\phi_i) - 6W(\phi_i)$
 - Notice that $e^{k y_1} = 10^{16} \implies k y_1 \approx 37$ - Choose some suitable W such that $k y_1 = \int_{\phi_0}^{\phi_1} \frac{1}{W'} \approx 37$ - Now shift superpotential $W \rightarrow W + k$ $A(y) \rightarrow A(y) + k y$ - Adds warping without changing the value of $k y_1$

DeWolfe et al '00, Cabrer, GG & Quirós '09

GOLDBERGER WISE

Goldberger & Wise '99

Do we need two branes?

GAUGE/GRAVITY DUALITY

GAUGE/GRAVITY DUALITY

- Gravity/Gauge theory correspondence stipulates that the 5D theory is dual to a strongly coupled 4D gauge theory that
 - is approximately conformal in the UV
 - has large number of colors
 - describes the same physics as 5D theory

GAUGE/GRAVITY DUALITY

- Gravity/Gauge theory correspondence stipulates that the 5D theory is dual to a strongly coupled 4D gauge theory that
 - is approximately conformal in the UV
 - has large number of colors
 - describes the same physics as 5D theory
- KK modes correspond to resonances of gauge theory
 - RS with two branes: KK spectrum is roughly $m_n^2 \sim n^2$
 - 4D strongly coupled gauge theories have many more possibilities.

IR brane can be replaced by SOFT WALL
Soft Walls models only possess a single (UV) brane, but nevertheless exhibit a finite length in the 5th dimension. The IR brane is replaced by a curvature singularity at which the metric vanishes.

Soft Walls models only possess a single (UV) brane, but nevertheless exhibit a finite length in the 5th dimension. The IR brane is replaced by a curvature singularity at which the metric vanishes.

Soft Walls models only possess a single (UV) brane, but nevertheless exhibit a finite length in the 5th dimension. The IR brane is replaced by a curvature singularity at which the metric vanishes.

Profiles diverge at finite y if $W(\phi) \sim \phi^2$ or faster!

APPLICATIONS

APPLICATIONS

- Things that CAN be done with Soft Walls
 - Electroweak Breaking
 - Strong interactions (AdS/QCD)
 - Flavour physics

Batell, Gherghetta & Sword '08, Falkowski & Perez-V. '08, Cabrer, GG & Quiros (in progr.)

Karch et al '06, Gursoy et al '07, Batell & Gherghetta '08,

Atkins & Huber '10

APPLICATIONS

- Things that CAN be done with Soft Walls
 - Electroweak Breaking
 - Strong interactions (AdS/QCD)
 - Flavour physics

Batell, Gherghetta & Sword '08, Falkowski & Perez-V. '08, Cabrer, GG & Quiros (in progr.)

Karch et al '06, Gursoy et al '07, Batell & Gherghetta '08,

Atkins & Huber '10

- Things that CANNOT be done with Soft Walls
 - Solve Cosmological Constant problem

Arkani-Hamed et al '00, Kachru, Schulz & Silverstein '00 , Csaki et al '00

Forste et al '00, Cabrer, GG & Quirós '09

SPECTRA WITH SOFT WALLS

SPECTRA WITH SOFT WALLS

• Even though the physical length is finite, the conformal length might be either finite or infinite:

 $\begin{array}{ll} \mbox{Proper Length coordinates} & \mbox{Conformally flat coordinates} \\ ds^2 &= e^{-2A(y)} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dy^2 & ds^2 &= e^{-2A(z)} (dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dz^2) \\ y_s &< \infty, \qquad z_s &= z(y_s) & \mbox{can be finite or infinite} \end{array}$

SPECTRA WITH SOFT WALLS

• Even though the physical length is finite, the conformal length might be either finite or infinite:

Proper Length coordinatesConformally flat coordinates $ds^2 = e^{-2A(y)} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dy^2$ $ds^2 = e^{-2A(z)} (dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dz^2)$ $y_s < \infty$, $z_s = z(y_s)$ can be finite or infinite

 In the conformally flat frame, the KK spectrum of any bulk field follows a Schrödinger Equation

$$-\psi''(z) + \hat{V}(z)\psi(z) = m^2\psi(z)$$

Depends on the background

NON CONFINING POTENTIALS Conformal length infinite

$W(\phi)$	$\leq \phi^2$	$> \phi^2 \\ < e^{\phi}$	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$> e^{\phi} \phi^{\frac{1}{2}}$ $< e^{2\phi}$	$\geq e^{2\phi}$
y_s	∞		A State of the second second			
z_s			∞	finite		
mass	continuous		continuous	discrete		
spectrum			w/ mass gap	$m_n \sim n^{2\beta}$ $m_n \sim r$		$\sim n$
consistent			VOS			no
solution	yes					110

$W(\phi)$	$\leq \phi^2$	$> \phi^2$	e^{ϕ}	$e^{\phi}\phi^{eta}$	$> e^{\phi}\phi^{\frac{1}{2}}$	$\geq e^{2\phi}$		
$vv(\phi)$		$< e^{\phi}$		$0 < \beta \le \frac{1}{2}$	$< e^{2\phi}$			
y_s	∞		A State of the second second					
z_s			∞	finite				
mass	conti	0110119	continuous	discrete				
spectrum	continuous		w/ mass gap	$ m_n \sim n^{2\beta} $ $m_n \sim r$		$\sim n$		
consistent				no				
solution		yes						

-Asymptotic behaviour of W

Γ	$W(\phi)$	$\leq \phi^2$	$> \phi^2 \\ < e^{\phi}$	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$> e^{\phi} \phi^{\frac{1}{2}}$ $< e^{2\phi}$	$\geq e^{2\phi}$		
+	y_s	∞		finite					
	z_s			∞	finite				
	mass	continuous		continuous	discrete				
	spectrum			w/ mass gap	$m_n \sim n^{2\beta}$	$m_n \sim$	$\sim n$		
	consistent solution			yes			no		

Asymptotic behaviour of W
 Singularity in "proper distance"

Γ	$W(\phi)$	$\leq \phi^2$	$> \phi^2 \\ < e^{\phi}$	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$> e^{\phi} \phi^{\frac{1}{2}}$ $< e^{2\phi}$	$\geq e^{2\phi}$	
	y_s	∞		A State of the second s	finite			
	z_s			∞		finite		
	mass	continuous		continuous	discrete			
	spectrum		liuous	w/ mass gap	$m_n \sim n^{2\beta}$	$m_n \sim$	$\sim n$	
	consistent solution			yes			no	

Asymptotic behaviour of W
Singularity in "proper distance"
Singularity in "conformal distance"

Г	$W(\phi)$	$\leq \phi^2$	$> \phi^2 \\ < e^{\phi}$	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$> e^{\phi} \phi^{\frac{1}{2}}$ $< e^{2\phi}$	$\geq e^{2\phi}$
	y_s	∞			finite		
	z_s			∞	finite		
	mass	continuous		continuous	discrete		
	spectrum		luous	w/ mass gap	$m_n \sim n^{2\beta}$	$m_n \sim$	$\sim n$
	consistent solution			yes			no

Asymptotic behaviour of W
 Singularity in "proper distance"
 Singularity in "conformal distance"
 Asymptotic form of the spectrum

	$W(\phi)$	$\leq \phi^2$	$> \phi^2$	e^{ϕ}	$e^{\phi}\phi^{\beta}$	$> e^{\phi} \phi^{\frac{1}{2}}$	$\geq e^{2\phi}$	
			$< e^{\varphi}$		$0 < \beta \le \frac{1}{2}$	$ $ < $e^{2\phi}$		
	y_s	∞			finite			
	z_s			∞		fini	te	
	mass	conti	2110110	continuous	d	liscrete		
	spectrum	continuous		w/ mass gap	$m_n \sim n^{2\beta}$	$m_n \sim$	$\sim n$	
	consistent			VOS			no	
	solution			ycs				
Asymptotic behaviour of W — Finite Length								
——Singularity in "conformal distance"								
——Asymptotic form of the spectrum Gursoy et al '07.								

Cabrer, GG & Quirós '09

		$W(\phi)$	$\leq \phi^2$	$> \phi^2 \\ < e^{\phi}$	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$ \begin{array}{ c c c } > e^{\phi} \phi^{\frac{1}{2}} \\ < e^{2\phi} \end{array} $	$\geq e^{2\phi}$				
		y_s	∞			finite						
+		Z_S			∞		fini	te				
		mass	conti	0110115	continuous	discrete						
		spectrum	continuous		w/ mass gap	$m_n \sim n^{2\beta}$	$m_n \sim$	$\sim n$				
		consistent solution			yes		no					
Asymptotic behaviour of W — Finite Leng								Finite Length Mass gap appears				

		$W(\phi)$	$\leq \phi^2$	$> \phi^2$	e^{ϕ}	$e^{\phi}\phi^{\beta}$	$> e^{\phi}\phi^{\frac{1}{2}}$	$\geq e^{2\phi}$	
				$< e^{\varphi}$		$0 < \beta \leq \frac{1}{2}$	$< e^{-\varphi}$		
		y_s	∞			finite			
		Z_S			∞		fini	te	
		mass	conti	110115	continuous	d	liscrete		
		spectrum	continuous		w/ mass gap	$m_n \sim n^{2\beta}$	$m_n \sim$	$\sim n$	
		consistent						12.0	
		solution			yes			IIO	
						1			
	L	Asymptoti	c beha	viour	ofW	- Finite Length			
L		Singularity	in "pro	istance''	– Mass gap appears				
		Singularity	in "cor	Spectrum discrete					
		Asymptoti	c form	Gursoy et al '07, Cabrer GG & Quirós '09					

SOFT WALL STABILIZATION

SOFT WALL STABILIZATION

- Stabilization works similar as before
- Choose some suitable W such that

$$ky_s = \int_{\phi_0}^{\infty} \frac{1}{W'(\phi)} \approx 37$$

- Now shift superpotential $W \to W + k$ $A(y) \to A(y) + k y$

- Shift does not change position of singularity

SOFT WALL STABILIZATION

- Stabilization works similar as before - Choose some suitable W such that $ky_s = \int_{\phi_0}^{\infty} \frac{1}{W'(\phi)} \approx 37$ - Now shift superpotential $W \to W + k$ $A(y) \to A(y) + k y$ - Shift does not change position of singularity

The Warping affects the Mass scale: - The Unparticle mass gap - The level spacing in the discrete case

Cabrer, GG & Quirós '09

PARTICULAR MODELS

Consider the class of models $W(\phi) = k(1 + e^{\nu\phi})$ $ky_s = \frac{1}{\nu^2} e^{-\nu\phi_0} \approx 37$ for O(1) negative values for ϕ_0

gap + continuous

gap+very densely spaced discretuum

Discrete, hard-wall like

WAVE FUNCTIONS

 z/z_s

THE RADION SPECTRUM

THE RADION SPECTRUM

m/
ho(
u)

THE RADION SPECTRUM

m/
ho(
u)

 \mathcal{V}

NO ZERO MODE AND NO TACHYON (STABLE)

EFFECTIVE IR BRANES

SOFT WALLS more general than HARD WALLS (IR branes)
 IR branes are far simpler to deal with analytically
 Can one "simulate" soft wall effects with IR branes?

PLAN

Integrate over the region near the singularity

$$S = \int_{0}^{y_{s}} d^{5}x \,\mathcal{L}_{\text{bulk}} \longrightarrow S = \int_{0}^{y_{1}} d^{5}x \,[\mathcal{L}_{\text{bulk}} + \mathcal{L}_{\text{SW}} \,\delta(y - y_{1})]$$

Equivalent description of SW in terms of IR brane

PI AN

Integrate over the region near the singularity

$$S = \int_{0}^{y_{s}} d^{5}x \,\mathcal{L}_{\text{bulk}} \longrightarrow S = \int_{0}^{y_{1}} d^{5}x \,[\mathcal{L}_{\text{bulk}} + \mathcal{L}_{\text{SW}} \,\delta(y - y_{1})]$$

Equivalent description of SW in terms of IR brane

• For y_1 close to y_s close IR Lagrangian "universal" Facilitates comparison with standard 2 brane compactif. IR Lagrangian makes sense even for p>TeV Useful approximation scheme: Approximate "new" bulk by RS metric

()
EFFECTIVE IR LAGRANGIANS

EFFECTIVE IR LAGRANGIANS

→ Generates IR kinetic terms with form factors

 $\mathcal{L}_{SW} \supset p^2 \mathcal{F}(p) \psi(p)^2$

→ RS with IR form factors included reproduce SW spectrum

EFFECTIVE IR LAGRANGIANS

→ Generates IR kinetic terms with form factors

 $\mathcal{L}_{SW} \supset p^2 \mathcal{F}(p) \psi(p)^2$

→ RS with IR form factors included reproduce SW spectrum

→ Bulk potentials generate IR brane potentials

 $\mathcal{L}_{bulk} \supset V(\psi) \longrightarrow \mathcal{L}_{SW} \supset \lambda_1(\psi)$

→ Can lead to symmetry breaking BC

→ Electroweak precision observables concern in RS

Huber & Shafi '00, Delgado et al '04

★ Require KK masses of gauge bosons to be 3-10 TeV

→ Electroweak precision observables concern in RS

Huber & Shafi '00, Delgado et al '04

★ Require KK masses of gauge bosons to be 3-10 TeV

→ Before turning on EWSB typical modes look like this:

→ Electroweak precision observables concern in RS

Huber & Shafi '00, Delgado et al '04

★ Require KK masses of gauge bosons to be 3-10 TeV

→ Before turning on EWSB typical modes look like this:

Breaking localized in UV
 little mixing between
 zero and KK modes.
 hierarchy problem

→ Electroweak precision observables concern in RS

Huber & Shafi '00, Delgado et al '04

★ Require KK masses of gauge bosons to be 3-10 TeV

→ Before turning on EWSB typical modes look like this:

Breaking localized in UV
 Iittle mixing between
 zero and KK modes.
 hierarchy problem

SANDT PARAMETERS

SW or HW, For generic backgrounds
$$A(y)$$
, $h(y)$

$$\alpha T = s_W^2 m_Z^2 y_1 \int e^{2A(y)} \left(\Omega(y) - \frac{y}{y_1}\right)^2$$

$$\alpha S = m_Z^2 y_1 \int e^{2A(y)} \left(\Omega(y) - \frac{y}{y_1}\right) \left(\frac{y}{y_1} - 1\right)$$

$$\Omega(y) = \int h^2(y) e^{-2A(y)} \quad \text{Higgs on UV brane: } \Omega = 1$$

$$\text{Higgs on IR brane: } \Omega = 0$$

Bounds from T go away with Bulk Custodial Symmetry

X Bounds from S remain at $m_{KK} = 3 \, {
m TeV}$ Agashe et al '04

Bounds from T go away with Bulk Custodial Symmetry

X Bounds from S remain at $m_{KK} = 3 \text{ TeV}$ Agashe et al '04

Sounds from S can improve slightly for bulk Higgs $m_{KK} \to 2 \,\, {\rm TeV}$ Agashe et al '07

Bounds from T go away with Bulk Custodial Symmetry

X Bounds from S remain at $m_{KK} = 3 \text{ TeV}$ Agashe et al '04

Bounds from S can improve slightly for bulk Higgs $m_{KK} \to 2 \,\, {\rm TeV}$ Agashe et al '07

 Bounds on S and T do not improve significantly for generic
 metric (IR localized Higgs)
 Delgado & Falkowski '07, Archer & Huber '10

Bounds from T go away with Bulk Custodial Symmetry

X Bounds from S remain at $m_{KK} = 3 \text{ TeV}$ Agashe et al '04

Bounds from S can improve slightly for bulk Higgs $m_{KK} \to 2 \,\, {\rm TeV}$ Agashe et al '07

 Bounds on S and T do not improve significantly for generic
 metric (IR localized Higgs)
 Delgado & Falkowski '07, Archer & Huber '10

✓ Bounds from S and T can improve by changing metric (SW) and putting Higgs in the bulk. (gravitational fine-tuning?)

Cabrer, GG & Quiros w.i.p.

CONCLUSIONS

- RS models provide neat way of obtaining EW and fermion mass hierarchy
- IR brane can be consistently replaced by Soft Walls
- Spectra of Soft Wall models richer than in usual RS (gapped continuum, gapped, discretuum, Regge-like, etc.)
- Stabilization can be achieved without ANY fine tuning
- Soft Walls effects can be "simulated" by IR branes with appropriate brane Lagrangians (spectrum, symmetry breaking...)
- EW precision parameters can improve with SW's