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OUTLINE

* Features of Warped Extra Dimensions
» Stabilizing Models with 2 branes

» Soft Wall models (Models with | brane)
» Stabilizing the Soft Wall

- Simulating Soft Walls with IR branes

* EWSB and EWPT In warped spaces



OPEN QUESTIONS IN THE SM
(AND BEYOND)

* What 1s the origin of Electroweak Symmetry Breaking!

* Why is the scale of the Z and W bosons 10!/ times smaller than the
Planck mass! (Hierarchy Problem)

* Why Is there such a huge hierarchy in the masses of the Standard
Model fermions!

* What Is the origin of neutrino masses!?
* If there I1s Supersymmetry, how Is it broken!?

* If there I1s a Grand Unified Theory, how Is It broken to the SM, and
why are there no colored Higgses!?



All these issues can be addressed in models
with Extra Dimensions
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FERMION MASSES

Wave functions

\ 4D fields
o 1@ = QW ae

fields (+ KK modes)

HIggs

/ Fermions: 5D mass > 1/2k
wave function peaked in IR

UV Brane

=

Arkani-Hamed & Schmalz
’00, Huber & Shafi ’00,
Shifman & Dvali ’00,
Gherghetta & Pomarol ‘00

IR brane

i i Control strength of Yukawa Couplings
Y4D G Y5d QO (yl) UO (yl) with bulk mass parameter
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SUMMARY RS MODELS

» Extra Dimensions with WARPED background successtul for
* Explaining electroweak hierarchy

* Explaining fermion mass hierarchy

- Ol eenllges

» Distinctive Collider Signature (KK gravitons)

» Dual to strongly coupled gauge theories in 4D

B Mede|ing QCD"



PROBLEMS

* Pure 5D Gravity with negative Cosmological constant (and
appropriate brane tensions) has RS as a solution.

 BUT: Interbrane distance 1s UNDETERMINED

* [here Is an extra massless mode (RADION)

R
gMN:gﬁ%V+( : 7 >
15%5)

« Both brane tensions need to be fine tuned



STABILIZATION

* [he question of Radius stabilization

* What determines DISTANCE between UV and IR brane!

* How can | generate a POTENTIAL and a MASS for the
Radion!?

* What ensures that the 4D metric 1s FLAT?

@sle T INAITURAL |s It
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SUPERPOTENTIAL METHOD

» Gravity + scalar field
with bulk and brane potential

» Solve Einstein equations
coupled to scalar

Ao (9)
N'€

A

ds® = 6_2A(y)daz“daz’/nw -+ dy2/

V(o)

¥




SUPERPOTENTIAL METHOD

f 2 2A 2 1
» Gravity + scalar field ds® = e dat da"n,, + dy/
with bulk and brane potential Ao\(@ />\1(¢)
N
* Solve Einstein equations V(o) :
led to scalar
\ cCoup » / )
f >
. (f ey e / D, 2
Define a “Superpotential” V(¢) = 3W'(¢)* — 12W=(¢) I:SS&SE\I!)

» Einstein equations become ¢'(y) = W'(¢) A'(y) = W(¢)

* Boundary values from minimizing the 4D potentials
Vi(@) = Ai(¢) — 6 W (o)
DeWolfe et al 99, Brandhuber & Sfetsos 99

- v
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STABILIZATION

[~ Solve to set bulk profiles  ¢'(y) = W'(¢) A'(y) = W(o)
- Minimize to get brane values V;(¢;) = Ai(¢i) — 6 W(¢;)

=,

\ _/

4 )
- Notice that e*¥ = 101 — ky; ~ 37

- Choose some suitable W such that

b1
kyp = ) W ~ 37
- Now shift superpotential W — W + k&

Aly) — Aly) +ky
- Adds warping without changing the value of k3

\ 4

DeWolfe et al ’00,
Cabrer, GG & Quiros 09




GOLDBERGER WISE

Goldberger & Wise 99

N

Take W'(¢) =kb¢
“Then ky1 = b~ 'log ¢1/¢o = 37

- Moderate fine tuning necessary

- Metric A(y) = ky + &g @8 _ 1)

A \

Warping Exact Backreaction
- Backreaction small:
i_yR <.01 for b71=237 ¢g= 5w = |




Do we need two branes?
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GAUGE/GRAVITY DUALITY

» Gravity/Gauge theory correspondence stipulates that the 5D
theory Is dual to a strongly coupled 4D gauge theory that

* IS approximately conformal in the UV

* has large number of colors

» describes the same physics as 5D theory

» KK modes correspond to resonances of gauge theory

* RS with two branes: KK spectrum Is roughly m; ~n’

* 4D strongly coupled gauge theories have many more
possibilities.



POSSIBLE SPECTRA

Regge M° ~n

Conformal

p(M

2

)

RS M? ~ n?

>M2

Conformal + Gap (Unparticles)

(\) M2




IR brane can be replaced by SOFT WALL
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SOFT WALLS

Soft Walls models only possess a single (U\/)\
brane, but nevertheless exhibit a finrte length in the
SiaNcimmERsion. he R brane sk replacEEmse A
_curvature singularity at which the metric vanishes.

J

Profiles diverge at finite y )
W (¢) ~ ¢* or faster!

\ _/
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* Electroweak Breaking
» Strong Interactions (AdS/QCD)

* Flavour physics
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APPLICATIONS

* Things that CAN be done with Soft Walls

» Electroweak Breaking
» Strong Interactions (AdS/QCD)

* Flavour physics

Batell, Gherghetta & Sword ’08,
Falkowski & Perez-V.’08,
Cabrer, GG & Quiros (in progr.)

Karch et al '06, Gursoy et al
'07, Batell & Gherghetta ’08,

Atkins & Huber’10

* Things that CANNOT be done with Soft Walls

» Solve Cosmological Constant problem

Arkani-Hamed et al ’00,

Kachru, Schulz & Silverstein
00 , Csaki et al ’00

Forste et al ’00,
Cabrer, GG & Quiros 09
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* Even though the physical length Is finite, the conformal length
might be erther finite or Infinite:
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Proper Length coordinates Conformally flat coordinates
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SPECTRAWITH SOFI WALLS

* Even though the physical length Is finite, the conformal length
might be erther finite or Infinite:

7 . . )
Proper Length coordinates Conformally flat coordinates
ds® = e_QA(y)dx“dx”nW + dy” ds2 —len 2l el

ys <00,  zs=2(ys) can be finite or infinite j

.

* In the conformally flat frame, the KK spectrum of any bulk field
follows a Schrodinger Equation

4 ™

A

—¢"(2) + V(2)p(2) = m*9(2)

|

Depends on the background
\. 4




NON CONFNING POTENTIALS
Conformal length infinite

Conformal (continuous)

%

\ Unparticle (continuous

+ gap)

~
~
~
s
s
...-
bl .
------------------------

CONFINING POTENTIALS
Conformal length finite or infinite

RS like: M2 ~ n?
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BOF T VWALL SPECTRS

W | S¢|>¢ e e?d® | >efpz | > e
< e? O <05 F B
UYs o' finite
% o0 finite
mass . continuous discrete
continuous 53
spectrum w/ mass gap | m, ~n My, ~ T
consistent " ki
solution Y
— Asymptotic behaviour of W -inrte Length
—Singularity In “proper distance” — Mass gap appears
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Cabrer, GG & Quiros ’09
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- Choose some suitable W such that
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- Now shift superpotential W — W + &k
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- Shift does not change position of singularity




SOFT WALL STABILIZATION

-

\

- Stabilization works similar as before

- Choose some suitable W such that

e |
kys = ~ 37
g0 W'(9)

- Now shift superpotential W — W + &k

Aly) — Aly) +ky

- Shift does not change position of singularity

~

The Warping affects the Mass scale:

he

he

Unparticle mass gap
level spacing In the discrete case

wal"ped down

Cabrer, GG & Quiros ’09



PARTICULAR MODELS

@ -
Consider the class of models W(¢) = k(1 + €*?)
1 .
kys = — e V% ~ 37 for O(1) negative values for ¢o
\ 4

7 -

Spectrum can be
- Continuous
- Continuous+gap

= Discrete
\_ ’
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THE GRAVITON SPECTRUM
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THE GRAVITON SPECTRUM
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THE RADION SPECTRUM
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cFFECTIVE IR BRANES

-

\ ¥

v/ SOFT WALLS more general than HARD WALLS (IR branes)

R R branes are far simpler to deal with analytically

=»Can one "‘'simulate’ soft wall effects with IR branes?

N
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e . . .
Integrate over the region near the singularity

quuivalent description of SWV in terms of IR brane

Ys Y1
o — / d°x i SO — / d°z [»Cbulk Bl 5(9 =3 yl)]
0 0

~

UV brane eff. IR ”brane” ’
z
Aly) =
Vo
it =
7

Y1 Ys



PLAN

@ . . : -
Integrate over the region near the singularity
Ys Y1
o — / d5$ [fbulk S — / d533 [»Cbulk s 'CSW 5(9 = yl)]
0 0
\Equivalent description of SWV in terms of IR brane
J

y

R
UV brane eff. IR "brane” [~ & For y;j close to ysclose IR
? Lagrangian “universal”
Aly) - & Facilitates comparison with
el standard 2 brane compacti.
e = -
£ = ¢ [R Lagrangian makes sense
=
4 even for p>TleV

2 o Useful approximation
scheme: Approximate “new"
- fbulk by RS metric

Y1 Ys (N v
GG’I10
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EFFECTIVE IR LAGRANGIANS

&

=» Generates IR kinetic terms with form factors

Lsw D p”F(p)y(p)’
=» RS with IR form factors included reproduce SWV spectrum

\ §

&

=» Bulk potentials generate IR brane potentials

Lowik O V() = Lsw D A ()
=» Can lead to symmetry breaking BC
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[

\ 8

=¥ Electroweak precision observables concern in RS

R Require KK masses of gauge bosons to be 3-10 TeV

N
Huber & Shafi 00,

Delgado et al '04
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ELEC TROWEAK BREAKING

f )

. - Huber & Shafi "00,
=¥ Electroweak precision observables concern in RS pejoado et al 04

R Require KK masses of gauge bosons to be 3-10 TeV

. 4

=¥ Before turning on EWSB
typical modes look like this:

=¥ Breaking localized in UV | T
v little mixing between =¥ Breaking localized in IR

zero and KK modes. v hierarchy. problem
R hierarchy problem ® large mixing



S AND | PARAME TERS

y

SW or HW, For generic backgrounds A(y), h(y)

2
ol = S%/VmQZ?/l /€2A(y) (Q(y) i i)
91

25— i [0 (- 2) (2 1)
Y1 U1

My) = / h2(y)e—2Aw Higes on UV brane: @ =1
iggs on IR brane: €2 =0
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BOUNDS FROM S AND T

¢/ Bounds from T go away with Bulk Custodial Symmetry

® Bounds from S remain at Mmrgrg = 3 TeV  Agashe etal 04

v/ Bounds from S can improve slightly for bulk Higgs
MKK — 2 TeV Agashe et al 07

® Bounds on S and T do not improve significantly for generic

metric (IR localized Higgs) Delgado & Falkowski 07,
Archer & Huber ’10

v/ Bounds from S and T can improve by changing metric (SW)
and putting Higgs in the bulk. (gravitational fine-tuning?)

Cabrer, GG & Quiros w.i.p.



CONCLUSIONS

* RS models provide neat way of obtaining EVV and fermion mass
hierarchy

* IR brane can be consistently replaced by Soft Walls

» Spectra of Soft Wall models richer than in usual RS (gapped
continuum, gapped, discretuum, Regge-like, etc.)

- Stabilization can be achieved without ANY fine tuning

» Soft Walls effects can be “simulated” by IR branes with
appropriate brane Lagrangians (spectrum, symmetry breaking...)

* EWV precision parameters can improve with SVW's



