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About this talk

Quantum Gravity is perturbatively nonrenormalizable.

One way to deal with it is to treat QG as an effective field

theory. Alternatively QG may have a UV fixed point

(Asymptotic Safety). There is growing evidence that the

latter scenario might indeed be realized.

So far all evidence comes from functional renormalization

group techniques. In this talk I describe our attempts to

address the question of the existence of a UV fixed point

from an orthogonal point of view, using Causal Dynamical

Triangulations.
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Content of this talk

Motivation and review of the CDT framework

Detailed investigation of the phase transitions

Moving towards the continuum limit

Outlook

Based on:

J. Ambjorn, S. Jordan, J. Jurkiewicz, and R. Loll, “A Second-order

phase transition in CDT”, arXiv:1108.3932
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The relativistic particle

Standard action for the relativistic particle:

S[x(ξ)] = m

∫

Path

dl = m

∫ 1

0

dξ

√

(

dxµ

dξ

)2

A classically equivalent alternative action:

S[x(ξ), g(ξ)] =

∫ 1

0

dξ
√−g

(

g−1 ∂xµ

∂ξ

∂xµ

∂ξ
+ m2

)

g is an internal metric on the one-dimensional manifold

given by the parametrization ξ. It is varied together with x

to get the equations of motion.
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Quantizing the relativistic particle

Using periodic boundary conditions in time direction, the

covariant quantization leads to the path integral

Z =

∫ Dg

Vol(diff)

∫

Dx exp(−S[x [ξ], g[ξ]]).

To work with this expression we need to do the following

steps:

Discretize the particle paths by introducing a minimal

length scale a.

Calculate observables of interest, taking care of

renormalization wherever necessary.

Take the continuum limit a → 0.
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A path integral of gravity

In analogy to the relativistic particle, a pure gravity path

integral can be defined as follows:

Z =

∫

geometries

D[g] exp(iSEH [[g]])

Discretization can be done in a coordinate free way

by introducing a simplicial complex. The sum is then

effectively over equivalence classes of metrics.

SEH is the Einstein-Hilbert action.

Which geometries should be summed over?
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Causal Dynamical Triangulations (CDT)

CDT proposes to sum over causal triangulations, which

are Lorentzian triangulations with a foliated structure.

Each leaf of the foliation is labeled by a time parameter.

Blue links are

spacelike

Red links are

timelike
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The Regge action

The discretized and Wick-rotated version of the

Einstein-Hilbert action is called the Euclidean Regge

action. In 3+1 dimensions it has the following form:

Seucl
Regge = −(κ0 + 6∆)N0 + κ4N4 + ∆N

(4,1)
4

κ0: linearly related to the bare inverse Newton

constant

κ4: linearly related to the bare cosmological constant

∆: defines the space/time anisotropy

N0,N4,N
(4,1)
4 : number of simplices of various types
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The CDT path integral

The CDT prescription allows us to convert the formal

expression for the continuum path integral into a form

which is suitable to be explored using Monte Carlo

simulations:

Z (G, Λ) =

∫

geometries

D[g] exp(iSEH [[g]])

⇓

Z (κ0, κ4, ∆) =
∑

T∈T

1

C(T )
exp(−Seucl

Regge(T ))

1/C(T ) is the measure on the space of triangulations,

with C(T ) being the order of the automorphism group of

the triangulation T .

Ambjørn,Jurkiewicz,Jordan and Loll A second order phase transition in CDT



The CDT phase diagram
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Emergent de Sitter spacetime

The emergent geometries in Phase C have been

successfully matched with an Euclidean de Sitter

spacetime!
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Does a continuum limit exist?

CDT has had remarkable successes in its infrared sector,

by making connection to deSitter minisuperspace models.

But is CDT really a regularization of a continuum theory of

Quantum Gravity? In other words: can we, in analogy to

the relativistic particle, take a continuum limit by sending

the lattice spacing to zero?

A continuum limit is typically expected to be found at a

critical point in the phase diagram. We need to look for a

second-order phase transition in the CDT phase diagram.
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Choosing the points of investigation
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Monte Carlo evolution at the A-C transition

These plots show the characteristic signal of a phase

transition inside the Monte Carlo simulation, namely the

flipping between both phases.

 0

 100

 200

 300

 400

 500

 600
N0/N4

 0.154
 0.155
 0.156
 0.157
 0.158
 0.159
 0.16

 0.161
 0.162
 0.163

N0/N4

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0

 10

 20

 30

 40

 50

 60

 70

 80

Ambjørn,Jurkiewicz,Jordan and Loll A second order phase transition in CDT



Histogram analysis at the A-C transition

We have measured the number of vertices at the A-C

transition point, for various system sizes. The histograms

develop a double peak signature with increasing

4-volume, thus signaling a first-order transition.
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Monte Carlo evolution at the B-C transition

At the B-C transition we also observe the flipping of

phases. The time extension is small even in phase C,

which is the physically interesting phase.
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Histogram analysis at the B-C transition

The histograms for the observable conj(∆) = N
(4,1)
4 − 6N0

at the B-C transition show a double peak signature, but its

strength decreases with increasing 4-volume. No definite

conclusions can be made based on this plot.

Ν
4
=40000 conj(∆)

Ν
4
=80000 conj(∆)

Ν
4
=160000 conj(∆)

Ambjørn,Jurkiewicz,Jordan and Loll A second order phase transition in CDT



Methods to determine the transition order

The histogram analysis left the order of the B-C transition

open. Therefore we use two additional methods to clarify

this issue:

Measurement of the critical exponent which governs

the shift of the phase transition with 4-volume.

Analysis of the minima of Binder cumulants.

We will explain both methods and the associated results

in detail on the following slides.

Ambjørn,Jurkiewicz,Jordan and Loll A second order phase transition in CDT



Transition points for finite 4-volume

The notion of a transition point is ambiguous for finite

lattices. We consider the susceptibility

χconj(∆) =
〈

conj(∆)2
〉

− 〈conj(∆)〉2

as a function of ∆ and use the location of the maximum to

define the transition point for that system size.
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Susceptibility curves for various 4-volumes
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The shift exponent

For sufficiently large system sizes, the location of the

phase transition (denoted by ∆c) as a function of system

size is governed by a power-law:

∆c(N4) = ∆c(∞) − CN
−1/ν̃
4

The shift exponent ν̃ tells us about the order of the phase

transition:

ν̃ = 1 : first order transition

ν̃ 6= 1 : second order transition
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Measuring the power-law function
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The shift exponent for the B-C transition

A careful analysis shows that the two data points with the

smallest 4-volume lie outside the scaling region. A fit

through the remaining data points yields:

ν̃ = 2.51 ± 0.03

This result makes a strong case for a second order

transition, since the prediction ν̃ = 1 for a first order

transition is clearly violated.
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Binder cumulants

Now we consider the Binder cumulant

BO =
1

3

(

1 −
〈

O4
〉

〈O2〉2

)

as function of ∆, which has a minimum at the transition.
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Binder cumulants for various 4-volumes
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Convergence of Binder cumulant minima

The behaviour of the Binder cumulant minima in the

infinite volume limit decides about the order of the phase

transition:

If the transition is first order, the BC minima either

converge to a nonzero value or they don’t converge

at all.

If the transition is second order, the BC minima

converge to zero.

Thus we need to plot the Binder cumulant minima versus

system size and extrapolate the curve (which for

sufficiently large system sizes follows a power-law) to

N4 → ∞.
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Measuring the Binder cumulant minima
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Extrapolation of the Binder cumulant minima

Performing the extrapolation of the Binder cumulant

minima for various observables, we find very good

agreement with a value of zero, supporting the second

order nature of the transition.

Observable O Bmin
O (N4 → ∞)

conj(∆) (−3 ± 4) · 10−3

N
(4,1)
4 (−1 ± 3) · 10−3

N2 (−1 ± 3) · 10−7

N1 (−3 ± 7) · 10−6

N0 (0 ± 3) · 10−4

Ambjørn,Jurkiewicz,Jordan and Loll A second order phase transition in CDT



Summary of the numerical results

The analysis of the histograms at the A-C transition

showed the emergence of a double-peak signal at large

4-volumes. Thus the A-C transition is clearly first order.

The B-C transition has been analyzed by measuring the

shift exponent and by extrapolating Binder cumulant

minima. The results strongly support the second order

nature of the B-C transition.
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Looking for a continuum limit

The second order result motivates us to look for a

continuum limit. Thus we would like to send the lattice

spacing to zero while holding physical quantities fixed.

In previous works on CDT a connection was established

between the lattice spacing and the Planck length, by

analysing the fluctuations of the volume profile:

ℓ2
P ∼ a2

k1(κ0, ∆, a)

k1(κ0, ∆, a) is a quantity measured in the simulations.
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Zooming into the UV

As we move around in the phase diagram, the lattice

becomes coarser or finer when we keep the Planck length

fixed. Thus we can study RG trajectories of the form

(k0, ∆)(a, ℓP fixed), a being the lattice spacing. To find a

continuum limit we need to find such RG trajectories with

a → 0.
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Measuring the Planck length

In order to measure the Planck length as a function of the

lattice spacing we need to have emergent geometries with

a significant time extension. Far away from the phase

transition this is indeed the case:
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Where to look for a continuum limit?

Close to the B-C transition the situation is much worse:

Ambjørn,Jurkiewicz,Jordan and Loll A second order phase transition in CDT



Outlook

The following lines of research are currently being

pursued:

Attempt to construct RG flow segments, starting

away from the transition to avoid the complications

discussed above (A. Kreienbuehl, J. Ambjørn, SJ).

The enormous finite size effects at the BC transition

are maybe due to the large rigidity imposed on the

geometry by the foliation constraint. A generalization

of CDT is currently being developed, which lacks the

foliation constraint, but retains the notion of causality

(SJ).

Thank you for your attention!

Ambjørn,Jurkiewicz,Jordan and Loll A second order phase transition in CDT


