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Motivation: two problems to do with scalars
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Candidate symmetries:

© Higgs 1s a Goldstone mode of some broken global symmetry (like the pions in chiral
symmetry breaking) with breaking scale of a few TeV

o Supersymmetry - relates boson to fermions. Divergences cancel level by level.
Phenomenology requires soft (a.k.a. dimensionful) breaking.

o Scaling symmetry - Higgs 1s the Goldstone mode of a broken scale invariance (a.k.a.
dilaton) (a trivial perturbative example of this 1s the Standard Model with vanishing higgs
mass, but it can occur in nonperturbative models based on AdS/CFT).

o Misaligned Supersymmetry - even non-supersymmetric non-tachyonic strings are finite.
(Alternative route to naturalness) (Dienes, Moshe, Myers (90’s), SAA+Dienes+Mavroudi)
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The triviality problem:

Scalars lead to Landau poles:
=> the theory 1s UV incomplete

But trying to UV complete it results in the hierarchy problem again! (see previous
comments)
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Q%

Note the philosophy of QCD: we do not mind running masses because they do not upset the
Gaussian UV fixed point. We simply measure them and let them run. Or to put 1t another way:
they are “relevant” operators that are effectively zero in the UV. They do not need to run to
zero 1n the UV! (We also don’t care too much about couplings blowing up in the IR.)



RG flows and the asymptotic safety idea



Gastmans et al 78

Weinberg 79
Peskin ’80
Gawedski, Kupiainen 85

o o Kawai et al ‘9o
The Basic idea de Calan et al ‘91
Litim ’03
Morris o4

Weinberg used this as a basis for his proposal of UV complete theories

Gaussian IR fixed point ='pertative

Interacting UV fixed pint => finite anomalous dimensions

In a field theory replace 1/€ with 1/ => divergences of marginal

operators (which affect the fixed point) cured



Categorise the possible content of a theory as follows:

Irrelevant operators: would disrupt the fixed point - therefore asymptotically safe theories
have to emanate precisely from UV fixed point where they are assumed zero (exactly
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have to emanate precisely from UV fixed point where they are assumed zero (exactly
renormalizable trajectory)

Marginal operators: can be involved 1n determining the UV fixed point where they become
exactly marginal. Or can be marginally relevant (asymptotically free) or irrelevant.

Relevant operators: become “irrelevant” in the UV but may determine the IR fixed point.
Dangerously irrelevant operators: grow in both the UV and IR (common in e.g. SUSY)

Harmless relevant operators: shrink in the UV and IR (not common)

Note relevant or marginally relevant operators still have “infinities” at the FP - just as
quark masses, they still run at the FP just like any other relevant operator: but being
relevant they do not affect the FP. (And by definition they become less important the
higher you go in energy.)



UV. v.1I.R. EP.

Caswell-Banks-Zaks fixed point:

Take QCD with SU(N¢) and N fermions but very large numbers of colours+flavours

Turns out C>0, B>0: theory has stable IR fixed point at o = B/C and unstable one in UV o =0

Otoz

\/&9/0 8

Note perturbativity: — Bl (C
requires many fields (Veneziano limit) with Np =~ 11N / 2

Familiar from Seiberg duality and weakly coupled N < 3N¢ N =1 supersymmetry



Cartoon of a would-be Interacting UV FP:

Again would have ...

O,oc = —Ba? + Cao?
But requires C<0, B<O0, this theory has stable IR fixed point at @ = 0 and unstable UV one at a = B/C

67504

At t -> infinity the coupling|ends up here (and fields have finite anomalous dimensions)

Again perturbativity would require Np =~ 11Npo / 2



Asymptotic safety in 4D QFT



Real situation requires several couplings to realise

Litim & Sannino ’14

Need to add scalars and Yukawa couplings:

L =T P+ Te (QiDQ) +y'Tr (QH Q) + Tr (9, H' 0" H)

—uTr [(HTH)?) — o (Tx [HTH))?,

H is an Nrp x N scalar

Initially have U(Ng)r, X U(Np)gr flavour symmetry



Effect of Yukawa ....
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Four ’t Hooft-like couplings - flow could 1n principle be four dimensional

N :g2NC N y? N¢ N u Np W v N2
Po(m? Y m)2 Tt m)2t Y (4n)?

but ...




Four ’t Hooft-like couplings - flow could 1n principle be four dimensional

N :g2NC N :y2NC N :uNF N :vN%
T Am2 Y (4m2 T (dm)2t Y (4m)2
but ...
UV fixed point

1D exactly renormalisable trajectory!

0.020 a'h

Gaussian IR fixed point



Along the critical-curve/exact-trajectory can parameterise the flow in terms of (t)

@y

0.020y ;5

oy (t) = 15 (1)

V23 -1
an(t) =3 2% ag(l)

3v/20 +6v/23 — 6v/23
B 26 !

0.03

(1)

0.015
0.020 a'h
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At the fixed point it 1s arbitrarily weakly coupled, ;= 0.4561¢, where €=



Quiver diagram for this model: SU(N¢) || SUNF)L | SU(Np)r | spin
Qai O O 1 1/2
Q| O 1 0 1/2
H 1 O 0 0
Q Q
H

SU(Np), o= SU(Np)g
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The non-predictive free parameters




Organize relevant operators in terms of the U(Np) x U(Np) flavour symmetry
that we break with the mass-squareds (closed under RG):

(ho + 2po) .
H = 1« h, 7T
\/m NpXNFp T ( TP )
Nz -1
Lsope = —mp, Tr[HTH] — Y AXTr[HT*| Tr [H'T*]

a=1



Organize relevant operators in terms of the U(Np) x U(Ng) flavour symmetry
that we break with the mass-squareds (closed under RG):

(ho + ipo) .
H = I vy x hq a)la
IN NpxNp T ( T D )
Nz -1
Lsope = —mp, Tr[HTH] — Y AXTr[HT*| Tr [H'T*]
a=1

Then solve Callan Symanszik eqn for them as usual =>

n (n)
d\"™(t) Oy nAAM
dt ot &

N\ \ Anomalous dimension of fields

t-dependence in one-loop calculation of V

B —




Non-trivial simple example...

Consider case where the trace component has a slightly smaller mass-squared:

class

V2 = mdTe(H H) + 242N Te(T,HY) (T, H)

2
m
— m%a — mia — m(z) + A?
A2{
i, =, = m
mg




Non-trivial simple example...

After some work find the following answer 1n terms of two RG invariants, one for
each independent (non-predicted) relevant operator  (where v=(1-1/NF"2)):

N _3fm0 N _3fA
9 -2 [ Yy e 2 g e
mg = My — — o A* vl — — )
Qg Qg
3me 3fA

fmo > T \

Dies away quickly in the IR Dies away slowly in the IR



Starting values get relatively closer in UV (note the masses are all shrinking in absolute
i terms in the IR) - full flavour symmetry restored precisely at fixed point

m

The sum of the mass-squareds quickly dies to zero in IR

>
S
N




Induces radiative breaking...

m02/ m*Z
0.010} :;'
0.005¢ ,";!
— ~22 =20 - ;?f'i t=log(p/ po)
ows e
—-0.010¢




Generally in IR find flavour bierarchies grow ...

V — Z A2 {Trn (h* +p°) —n ((Trnh)2 + (Trnp)Q)}

n>1

where 1T,, is the trace over the SU(n) sub-matrix



The ASSM via radiative breaking...
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© To embed the SM - focus on breaking SU(Nc) to SU(3) colour with new scalars ...

c.f. Pelaggi, Sannino Strumia Vigiani; Bond, Litim; Bond, Hiller, Kowalska, Litim

SU(Nr)L D SU(Nr)r D SU(Ng) = .
SU(N¢g) Spin
SU(2)L ® SU(ng)L SU(2), ® SU(ng), SU(N¢ — 4)r @ SU(2)s
Qai N 0D (O,0) 1 1 1/2
Q" (] 1 0D (0,0) 1 1/2
IZE 1 0D (0,0 0D (0,0) 1 0
Sa,t=1..Ng O 1 1 0 =0ONg—a ®h 0
ay 1 05 G0 1 O0=0One_4 ® s 1/2
q; 1 1 0> (O,0) 0 =N, 4 DLk 1/2

Tab. 2: Fields in the Asymptotically Safe SM, where Ng = N¢ — 2. The top 2n, = 6 components
of flavour SU(Np) correspond to SU(2) multiplets, where ng is the generation number.
There is a mass-term mqqqG that respects the SU(N¢g — 4) in addition to the gauging for
the usual Pati-Salam SU(2)g , given by SU(2)r = [SU(2), ® SU(2) 5] diag-
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Extension of Pati-Salam - breaks to SU(3) if we choose Ng = Ngo — 2
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Before:

SU(NF)L,

SU(NF)R




After:

SU(]:\fg) D)

SU(Ng —2)s ® SU(2)s

SU(Nf)LD H SU(Nf)RD

SU(N¢ —2ng)r @ (SU(ng)r ® SU(2)1) SU(N¢ —2ng)r ® (SU(ng), ® SU(2),)




- Explicit embedding looks like P-S
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> Assignment implies 9 pairs of Higgses one for each Yukawa coupling
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~ Need ...

A’

COlOUI‘_, g’ y

Electroweak, g’

Coupling
/

Flavour, g’

Colour, g,y

Mass squared



© What about AS for the SU(2)xSU(2) electroweak gauge groups?
These see a large number of flavours (Nf (small f) of order order Nc)?

© This gives UVFP behaviour with a fixed point at ’t Hooft couple ~ 1 ... if Nf >>16:

Gracey, Holdom, Shrock, Antipin, Pica, Sannino

Resum first terms gives

3 Da H(a
30y, HY)
40&2 Nf

1
H(a) = 1 log |3 — 2&| + constant

+ O(Nf—2)

Coupling
A

L C€_4Nf

(LI [OV)

Flavour, g’ a, =

//'::: Colour, g,y

\2

Mass squared



- The difficult part: Showing that the two kinds of UVFP decouple.

~ Can show in the Veneziano limit the corrections to the weak FP go like epsilon. Can

neglect everything but gauge couplings when determining the SU(2) fixed points.

O ADA Y

L Gr-1)
f f Ny

>>

DD -

€ 5(L-1) € 5(L-1)
Ny & Ny &

Qg ~ € QX ~ €A



- By simple power-counting, the SU(2) gauge couplings are subdominant (by 1/Nc¢) in the
original “strong” UVFP ==> Can neglect the weak gauging for this UVFP.

> Likewise ...

O o o(Dm >> =D

~ £ <
rpoy Tp o ~ € TR Qo ~ € NfNO‘O‘g N]%O‘ ¢’ 55




Does this make sense without gravity?




What can we learn from string theory?
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Consider what bappens in field theory

C1 given by 2-point function in background-field method:

167 22C 4 1 /L2
(Pupy pQQW/) P Aéi)uge(s) B (Pupv — p2gw) (E — vg + log 4w + log (—? ) :
1672 9 4N 1 ,u2
(pupu — p2g;w) 92 ‘Af-'el?m(s) — 3f (pupy — p2g/,w) (E —YE + log 4 + log W + 1+
f

2N,

2 1 p
(pppy — P2 g) —5— AL (5) = T(pupz/ —p’9uv) (; —7E +logdm +log —5 + {1 -
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Consider what bappens in field theory

C1 given by 2-point function in background-field method:

2204

1 2
(Pupv = P*Gyur) (——7E+1034W+10g , ) :
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g2 3 € / ms 7S

1 1672
Biex2 (8) = — (s)

g2 T g

" When s>>m get extra imaginary part
==> running beta function



Example: KK Towers  m? = "t

¢ Where Ab is the coefficient from a single KK level - doesn’t care about level splitting
¢ Note A(s) is able to preserve all stringy symmetries that may be needed for finiteness
¢ This 1s an entirely non-Wilsonian definition

¢ Conjecture — string theory multiplets will fall into “misaligned” N=4 towers
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1 [1672 ~
S ) = = [T mA)
Ab r(d+3)/2 d

S TGrdp 2 W)

¢ Where Ab is the coefficient from a single KK level - doesn’t care about level splitting
¢ Note A(s) is able to preserve all stringy symmetries that may be needed for finiteness
€ This is an entirely non-Wilsonian definition

¢ Conjecture — string theory multiplets will fall into “misaligned” N=4 towers



e Considered perturbative asymptotically safe QFTs (gauge-Yukawa theories)

* Positive mass-squareds can be driven negative in the IR, akin to radiative symmetry
breaking in MSSM => radiative symmetry breaking

* A minimal embedding of the SM within this set-up relatively straightforward

* Opverall now has the “feel of” other RG systems with large numbers of degrees of
freedom in the UV such as duality cascade.

* (an this picture be “blended” in to a stringy version of AS— Misaligned N=4 SUSY.



