Identifying Conformal Gauge Theories (CGT)

Roman Zwicky (Southampton) 17.1.2011, University of Sussex

Overview

 \Rightarrow BSM, Technicolor, Walking-TC \Rightarrow study strongly coupled gauge theories (3)

 \overleftrightarrow General remarks gauge theories - conformal window SUSY & non-SUSY (4)

 \Leftrightarrow conformal gauge theories (CGT) -- observables? (1)

 \cancel{x} observables in mass-deformed CGT (8)

- hyperscaling laws from RG
- mass scaling from Feynmann-Hellmann thm
- another look at β -function from trace anomaly
- trajectory mass & decay constants
- remarks on S-parameter

 \bigstar Lattice results (3)

🚖 Epilogue

$$\Delta_{\bar{q}q} = 3 - \gamma_*$$

where γ_* mass anomalous dimension

Del Debbio & RZ PRD'10 & arXiv:1009.2894

centered around the Higgs mechanism of SSB \Rightarrow W,Z masses; technical hierarchy problem?*

Is the Higgs (object that unitarizes W_LW_L -scattering) fundamental or composite?

fundamental particle small width

Supersymmetry

opposite statistics partner

∔ н [₹], У[₹] н

composite particle large width

strong dynamics

Technicolour Higgs sector \Rightarrow Gauge theory

 $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \otimes G_{TC}$

* Flavour sector, where real hierarchies are present, harder for model building

prototype

 \checkmark χ -symmetry breaking: $\langle \bar{Q}_L Q_R \rangle \sim N_{TC} \Lambda_{TC}^3$ masses W,Z bosons through SSB (as in SM!)

gauge theory

Fermion masses -> Extended TC $G_{SM} \times G_{TC} \subset G_{ETC}$

Dimopoulus Susskind'79 Eichten Lane'80

 $\Lambda_{TC} \sim 4\pi F_T$

 $F_T = v$

* OCD broaks SLI(2), spontaneously and gives mass to M becon (orders of mag too small) Tuesday, 18 January 2011

Pheno improvement via Walking TC*

 \cancel{x} Issues: 1. electroweak precision parameter S ~'95 Lep

2. dynamical generation of fermion masses and FCNC Extended-TC

⇒ need to know more about strongly coupled near-conformal gauge theories ..

* Also a scheme called Conformal Technicolor on the market (Luty'04)

Gauge theories

 N_c N_F representation

 \bigstar one coupling theory:

The second

what theorists can adjust:

 $g^* = 0$ either IR (QED-like) or UV (QCD-like asymptotic freedom) fixed-point

 \Rightarrow focus AF-theories (- $\beta_0 < 0$) we know how to handle

Facts non-SUSY Conformal Window

 \swarrow QCD chiral symmetry is broken (empirical) \Rightarrow not in CW! Prile Pr

SUSY Conformal Window

- $\beta(g) = -\frac{1}{16\pi^2} \frac{3t_2(A) \sum_i t_2(i)(1-\gamma_i)}{1 t_2(A)g^2/8\pi^2}.$ \Rightarrow Exact NSVZ'83 β-fct: lower bdry unitarity bound from $\beta = 0$ get γ^*
 - 1. Unitarity bound on squark-bound state $\Delta_{QQ} = 2 \gamma^* \ge 1 \implies \gamma^* \le 1$
 - 2. Electric magnetic duality $N^{dual} = N_F N$

perturbative <u>electric BZ-fixed point</u> upper boundary (like QCD) perturbative magnetic BZ-fixed point lower boundary !!

 \Rightarrow weak-strong coupling duality \Rightarrow exist strongly coupled CGT (also from γ^*)

Two objectives (almost repetition)

4 AF gauge theories $\approx 1/2$ non-CFT + 1/2 CFT (SUSY) (N.B. only known CFT in 4D are GT, coheres with Coleman-Gross Thm)

 Υ strong coupling -- value of γ_*

- SUSY $\mathcal{N} = 1$ tells $\Delta_{\bar{q}q} = 3 \gamma_* \geq 2$
- Dyson Schwinger eqn: chiral symmetry breaks $\Delta_{\bar{q}q} \simeq 2$
- unitarity bound (Mack'77) $\Delta_{\bar{q}q} \geq 1$

Is the unitarity bound ever reached?

- 1. SUSY its because of the squark $\Delta_{QQ} = 2 \gamma$
- 2. DS-eqs. truncation -- ladder approximation ... NJL
- 3. N.B. Δ =1 free field (very strong force)

$$\Rightarrow$$
 we want answers \Rightarrow lattice simulations

Observables in a CFT?

Or how to identify a CFT

- I. Observables: vanishing β -function & $\langle O(x)O(0) \rangle \sim (x^2)^{-\Delta}$; $\Delta = d + \gamma_*$
- 2. Lattice computation finite m_{quark} (& volume anyway)

 \Rightarrow look mass-deformed conformal gauge theories (mCGT)^{*}

$$\mathcal{L} = \mathcal{L}_{\rm CGT} - m\bar{q}q$$

* hardly related to 2D CFT mass deformation a part of algebra and 'therefore' integrability is maintained

Observables in mCGT

Goal: analytic guidance for lattice (parametric laws)

finite m_q quarks decouple \Rightarrow pure YM confines (string tension confirmed lattice)

⇒ hadronic spectrum ⇒beloved hadronic observables

signature of such a theory: each hadronic observable

$$\mathcal{O} \sim m^{\eta_{\mathcal{O}}}$$
, $\eta_{\mathcal{O}} > 0$, $\eta = f(\gamma_*)$

 \bigstar Let's settle some notation:

 $\Delta_{\mathcal{O}} = d_{\mathcal{O}} + \gamma_{\mathcal{O}}$, scaling = physical + anomalous dimension $\gamma_m = -\gamma_{\bar{q}q}$, denoted by γ_* at fixed-point

$$\Rightarrow \Delta_{\bar{q}q} = 3 - \gamma_*$$

Hyperscaling laws

no anomalous dim Consider matrix element: $\mathcal{O}_{12}(g, \hat{m}, \mu) \equiv \langle \varphi_2 | \mathcal{O} | \varphi_1 \rangle$

1. $\mathcal{O}_{12}(g, \hat{m}, \mu) = b^{-\gamma_{\mathcal{O}}} \mathcal{O}_{12}(g', \hat{m}', \mu')$,

RG-transformation* $g' = b^{y_g} g \quad \hat{m}' = b^{y_m} \hat{m} , \quad y_m = 1 + \gamma_* , \quad y_g < 0 \text{ (irrelevant)}$

2.
$$\mathcal{O}_{12}(\hat{m}',\mu') = b^{-(d_{\mathcal{O}}+d_{\varphi_1}+d_{\varphi_2})}\mathcal{O}_{12}(\hat{m}',\mu)$$

Physical states

Choose b s.t. $\hat{m}' = 1$ 3.

Hyperscaling relations

$$\Rightarrow \left(\mathcal{O}_{12}(\hat{m},\mu) \sim (\hat{m})^{(\Delta_{\mathcal{O}} + d_{\varphi_1} + d_{\varphi_2})/y_m} \right)$$

* From Weinberg-like RNG eqs on correlation functions (widely used in critical phenomena)

Applications: $\eta_{\mathcal{O}_{12}} = (\Delta_{\mathcal{O}} + d_{\varphi_1} + d_{\varphi_2})/y_m$

$$\langle \bar{q}q \rangle \sim m^{\frac{3-\gamma_*}{1+\gamma_*}} , \qquad \langle G^2 \rangle \sim m^{\frac{4}{1+\gamma_*}}$$

 \Rightarrow decay constants: $|\phi\rangle = |H(adronic)\rangle$

vacuum condensates:

N.B. ($\Delta_H = d_H = -1$ choice)

O	def	$\langle 0 \mathcal{O} J^{\mathrm{P(C)}}(p) angle$	$J^{\rm P(C)}$	$\Delta_{\mathcal{O}}$	$\eta_{G[F]}$
S	$\bar{q}q$	G_S	0++	$3 - \gamma_*$	$(2 - \gamma_{*})/y_{m}$
S^a	$\bar{q}\lambda^a q$	G_{S^a}	0+	$3-\gamma_*$	$(2 - \gamma_*)/y_m$
P^{a}	$\bar{q}i\gamma_5 q$	G_{P^a}	0-	$3-\gamma_*$	$(2 - \gamma_*)/y_m$
V	$\bar{q}\gamma_{\mu}q$	$\epsilon_{\mu}(p)M_VF_V$	1	3	$1/y_m$
V^a	$ar q \gamma_\mu \lambda^a q$	$\epsilon_{\mu}(p)M_VF_{V^a}$	1-	3	$1/y_m$
A^a	$ar q \gamma_\mu \gamma_5 \lambda^a q$	$\epsilon_{\mu}(p)M_AF_{A^a}$	1+	3	$1/y_m$
		$ip_{\mu}F_{P^a}$	0-	3	$1/y_m$

masses from **trace anomaly**:

Adler et al, Collins et al N.Nielsen '77 Fujikawa '81 $\theta_{\alpha}^{\alpha}|_{\text{on-shell}}^{q \neq 0} = \frac{1}{2}\beta G^2 + N_f m (1+\gamma_m)\bar{q}q$ $\beta = 0 \quad \& \quad \langle H(p)|H(k)\rangle = 2E_p \delta^{(3)}(p-k) \Rightarrow$

$$2M_h^2 = N_f (1 + \gamma_*) m \langle H | \bar{q}q | H \rangle$$

$$\sim m^{rac{2}{(1+\gamma_*)}}$$

relation reminiscent GMOR-relation

☆ Summarizing:

scaling laws for <u>entire</u> spectrum, decay constants & condensates No SSB of χ -symmetry breaking (no goldstone boson) since condensate triggered by explicit χ -breaking

There is no chiral perturbation theory

Credits (presentation focused last paper):
 lowest mass state Miransky '98
 quark condensate (just stated) DeGrand'09
 all lowest state results DelDebbio RZ'10 May (large time euclidian correlators)
 all state results DelDebbio RZ'10 Sep

 \bigstar A point that can be clarified:

 $M_H \sim m^{1/(1+\gamma^*)}$ looks a bit like heavy quark physics The definite signature is $f_{P(B-meson)} \sim m^{-1/2}$ whereas $f_{P(mCGT)} \sim m^{(2-\gamma^*)/(1+\gamma^*)}$

Mass scaling without RG

Hellmann-Feynman-Thm

$$\frac{\partial E_{\lambda}}{\partial \lambda} = \langle \psi(\lambda) | \frac{\partial \hat{H}(\lambda)}{\partial \lambda} | \psi(\lambda) \rangle$$

idea:
$$\frac{\partial \langle \psi(\lambda) | \psi(\lambda) \rangle}{\partial \lambda} = 0$$

 \cancel{x} applied to our case:

$$m\frac{\partial M_h^2}{\partial m} = N_f m \langle H | \bar{q}q | H \rangle$$

 $\bigstar \text{ combined with GMOR-like ...}$ $2M_H^2 = N_f (1 + \gamma_*) m \langle H | \bar{q} q | H \rangle$

$$m\frac{\partial M_H}{\partial m} = \frac{1}{1+\gamma_*}M_H$$

Generalized Banks-Casher relation

A Banks & Casher '80 a la Leutwyler & Smilga 92':

Green's function: $\langle q(x)\bar{q}(y)\rangle = \sum_{n} \frac{u_n(x)u_n^{\dagger}(y)}{m-i\lambda_n}$, where $D \!\!\!\!/ u_n = \lambda_n u_n$

$$\langle \bar{q}q \rangle_V = \frac{1}{V} \int dx \, \langle \bar{q}(x)q(x) \rangle = -\frac{2m}{V} \sum_{\lambda_n > 0} \frac{1}{m^2 + \lambda_n^2} \stackrel{V \to \infty}{=} -2m \int_0^\infty d\lambda \frac{\rho(\lambda)}{m^2 + \lambda^2}$$

VV-divergences later -- focus IR-physics

$$\langle \bar{q}q \rangle \stackrel{m \to 0}{\sim} m^{\eta_{\bar{q}q}} \quad \Leftrightarrow \quad \rho(\lambda) \stackrel{\lambda \to 0}{\sim} \lambda^{\eta_{\bar{q}q}}$$

$$\simeq QCD : \eta_{\bar{q}q} = 0 \Rightarrow \rho(0) = -\pi \langle \bar{q}q \rangle$$

Banks, Casher'80

mCGT: another way to measure anomalous dimension

DeGrand'09 DelDebbio RZ'10 May

Heuristic look

☆ Deconstruct the continuous spectrum of a two point function
Stephanov'07
Infinite sum of adjusted particles can mimick continuous spectrum

$$\bar{q}q(x) \sim \sum_{n} f_n \varphi_n(x); \qquad \langle \varphi_n | \bar{q}q | 0 \rangle \sim f_n ,$$

$$\left\{egin{array}{l} f_n^2 = \delta^2\,(M_n^2)^{\Delta_{ar q q}-2}\ M_n^2 = n\delta^2 \end{array}
ight.$$

☆ Adding mass term looks like tadpole. ⇒ find new minimum -- add M_n to potential

$$\mathcal{L} = -m \sum_{n} f_n \varphi_n - 1/2 \sum_{n} M_n^2 \varphi_n^2$$

Delgado, Espinoso, Quiros'07

Solve
$$mf_n + M_n^2 \varphi_n = 0 \Rightarrow \langle \varphi_n \rangle = -mf_n/M_n^2$$
 and reinsert:

$$\langle ar{q}q
angle \sim \sum_n f_n \langle arphi_n
angle = -m \sum_n rac{f_n^2}{M_n^2} \ \stackrel{\delta o 0}{ o} \ -m \int_{\Lambda_{
m IR}^2}^{\Lambda_{
m UV}^2} s^{\Delta_{ar{q}q} - 3} ds$$

 Λ_{UV} : $\Delta_{qq} = 3$ find quadratic divergence known from Leutwyler-Smilga rep.

A few additional topics

Another look at the β -function

 \bigstar Consider the again the trace (scale) anomaly:

$$\theta_{\alpha}^{\ \alpha}|_{\text{on-shell}} = \frac{1}{2g}\beta G^2 + N_f m(1+\gamma_m)\bar{q}q$$

 \Rightarrow Evaluate it on any hadronic state |H> and solve for β:

$$eta = rac{A_H + \gamma_m B_H}{G_H}$$

$$egin{aligned} A_H &= 2M_H^2 - mN_f \langle H | ar{q} q | H
angle \,, \ B_H &= mN_f \langle H | ar{q} q | H
angle \,, \ G_H &= \langle H | G^2 | H
angle \,. \end{aligned}$$

Ratios of $A_H/G_H \& B_H/G_H$ independent

Solution Form β-function close to NSVZ β (for N=1 SUSY gauge theories)

$$eta(g) = -rac{1}{16\pi^2} rac{3t_2(A) - \sum_i t_2(i)(1-\gamma_i)}{1 - t_2(A)g^2/8\pi^2}.$$

Mass & decay constant trajectory

At large-N_c neglect width
$$g_{H_n} \equiv \langle 0|\mathcal{O}|H_n \rangle$$
 (decay constant)
$$\Delta(q^2) \sim \int_x e^{ixq} \langle 0|\mathcal{O}(x)\mathcal{O}(0)|0 \rangle = \sum_n \frac{|g_{H_n}|^2}{q^2 + M_{H_n}^2}$$

 \Rightarrow In limit m \rightarrow 0 (scale invariant correlator)

$$\Delta(q^2) = \int_0^\infty \frac{ds \, s^{1-\gamma_*}}{q^2+s} + \text{s.t} \propto (q^2)^{1-\gamma_*}$$

 \bigstar Solution are given by:

$$M_{H_n}^2 \sim \alpha_n m^{\frac{2}{1+\gamma_*}}, \quad g_{H_n}^2 \sim \alpha'_n (\alpha_n)^{1-\gamma_*} m^{\frac{2(2-\gamma_*)}{1+\gamma_*}}$$

where α_n arbitrary function (corresponds freedom change of variables in β)

 Υ QCD expect $\alpha_n \sim n$ (linear radial Regge-trajectory) (few more words)

For those who know: resembles deconstruction Stephanov'07 difference physical interpretation of spacing due to scaling spectrum

remarks S-parameter

Analytical guidance S-parameter: $S = 4\pi \Pi_{V-A}(0) - \text{pion pole}$

$$(q^{\mu}q^{\nu} - q^{2}g^{\mu\nu})\delta_{ab}\Pi_{V-A}(q^{2}) = i \int d^{4}x e^{iq \cdot x} \langle 0|T\left(V_{a}^{\mu}(x)V_{b}^{\nu}(0) - (V \leftrightarrow A)\right)|0\rangle$$
$$\Pi_{V-A}(q^{2}) \simeq \frac{f_{V}^{2}}{m_{V}^{2} - q^{2}} - \frac{f_{A}^{2}}{m_{A}^{2} - q^{2}} - \frac{f_{P}^{2}}{m_{P}^{2} - q^{2}} + \dots$$

loonspin man	$\Pi_{V-A}^{W-TC}(0) \sim O(m^{-1})$	
improve of cancellati	$\Pi_{V-A}^{\mathrm{mCGT}}(0) \sim O(m^0)$	
on allons	$\Pi_{V-A}^{\mathrm{mCGT}}(q^2) \sim \frac{m^{2/y_m}}{q^2}$	for $-q^2 \gg (\Lambda_U)^2$ Samino'10 free theory

⇒ lattice determination coming soon (already some market)

Lattice simulations (generic remarks):

☆ Ca 7(2) groups UK Swansea/Edbgh), Finnland, Holland, Lin & Onugi USA (LSD,deGRand, Knuti,Fodor, Caterall & Sannino)

c IR mass is relevant; coupling irrelevant (*principal no tuning necessary*)

Measure β-fct (stepsize scaling) problem: m≠0 so not fixed-pt β-fct not physical measuring zero (cancellations)

 \Rightarrow measure enhancement <QQ>/ f_{π^3} (LSD) parametric control?

☆It would seem longterm mass/decay constant parametric scaling should help

Summary of results:

See reasonable results scaling in $0^{-+}, 1^{--}$ channels 0^{++} more noisy (as usual)

 \Rightarrow typically γ^{*} ~ 0.4(3?) not too large (upper bound difficult)

 \cancel{x} so-called MinimalWTC looks conformal \Rightarrow conformal-TC model building

☆ Why & What is simulated: next slide

Current landscape

Not Quite the

Epilogue

 \swarrow People accept it will take more time to establish CW than foreseen

 ☆Major goals: 1) size of conformal window
 2) how large anomalous dimension 1 ≤ Δ_{qq}..... will unitary-bound be reached? Is Δ_{qq} ≅ 2 border DS?
 3) measurement S-parameter

☆ Conformal window studies open up theory space model building CTC...

 \bigstar More theoretical questions: trajectories etc

 \bigstar Maybe by understanding mCGT better we learn sthg about QCD

Thanks for your attention!

Backup slides ...

Addendum (bounds scaling dimension)

assume add L = mqq (N.B. not a scalar under global flavour symmetry!)

 \Rightarrow using bootstrap ('associative' OPE on 4pt function) possible to obtain <u>upper</u>-bound on scaling dimension ∆ of lowest operator in OPE

$$\langle \phi \phi \phi \phi \rangle = \sum_{2} 0 \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 3 \end{array} \right) \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ \left(\begin{array}{c} 1 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 3 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\left$$

non-singlet

Rattazzi, Rychkov Tonni & Vichi'08

Rattazzi, Rychkov & Vichi '10

1.35 still rather close to unitarity bound Tuesday, 18 January 2011

	G	$U(1) \equiv SO(2)$	SO(3)	SO(4)	SU(2)	SU(3)
d_*	d	$1.063 \ (k=2)$	$1.032 \ (k=2)$	$1.017 \ (k=2)$	1.016	1.003
	<i>u</i> *	$1.12 \ (k=4)$	$1.08 \ (k=4)$	$1.06 \ (k=4)$	(k = 2)	(k = 2)

