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Abstract	


!

We address the issue of (quantum) black hole formation by particle collision in quantum physics. 
We will introduce the horizon wave-function for quantum mechanical states representing a single 
localised particle, from which we derive a Generalised Uncertainty Principle. For two highly boosted 
non-interacting particles that collide in a one-dimensional space, this wave-function determines a 
probability that the system becomes a black hole depending on the initial momenta and spatial 
separation between the particles. This probability allows us to extend the hoop conjecture to 
quantum mechanics and estimate corrections to its classical counterpart.!
ArXiv:1305.3195, 1306.5298 [EPJ C], 1311.5698 [PLB]!
Collaboration: A. Giugno, O. Micu, A. Orlandi, F. Scardigli, …



1.Physical system: gravitational collapse of quantum matter	



2.Hawking radiation: lessons from the semiclassical picture	



3.Hoop conjecture: Schwarzschild radius of a classical particle	



4.Problem: Schwarzschild radius of a quantum particle?	



5.Single particle: horizon wave-function and the GUP	



6.2-particle collision: horizon wave-function and the quantum hoop	



7.Summary and outlook

Plan of the talk



1) Gravitational collapse 

Standard classical picture: classical matter and “geometrical” space-time* 
[N.B. Very little can be done without supercomputers…]
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But matter is quantum…!
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Basic ingredients: QFT particles near horizons

21) Gravitational collapse 

Standard semiclassical picture: classical matter and “geometrical” space-
time + foreground quantum particles

Prototype effect (with a few lessons to learn):



Trapping surface: local concept = naive definition
(Ṙ = @⌧R)
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1.1) Horizons

Naive concept: escape velocity = speed of light



Quantum field theory in a nutshell

So particles = field excitations or...?  
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1.2) Particles



Naive concept: particle = localised object  

Example: free scalar field in 1+1 (Fourier transform in “formal solutions”)  
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Time evolution preserves (physically sensible) “packets”:

1.2) Particles



Counter-example: toy scalar field in 1+1  
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Time evolution does not preserve “packets”:

1.2) Particles

5) In curved space-time, normal modes are not usually plane waves 

Packets not preserved (tidal effects induce Hawking emission)
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2) Hawking radiation

(Quantum stress tensor)
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Backreaction: (almost) never important in the standard (global) viewpoint



P ⇠ e��H ! �H = 8⇡MTransmission probability:

Horizon quantum tunnelling	


(or particle self-tunnelling)
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(“Particle opens its own exit door”)

Quantum mechanical tunnelling	


across static horizon

Backreaction: (always) important in the local viewpoint

2) Hawking radiation [Parikh, Wilczek, PRL 85 (2000) 5042]



Standard semiclassical picture: classical background geometry & matter + quantum foreground

Semiclassical gravity: classical background geometry + quantum matter
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Let us take a step back to fully classical first…

2) Hawking radiation

!



Thorne’s hoop conjecture (1972):
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Classical geometry

Quantum mechanical particle

A black hole forms when the impact parameter b of two colliding objects (of negligible 
spatial extension) is shorter than the radius of the would-be-horizon (Schwarzschild 
radius, for negligible angular momentum) corresponding to the total energy E

?

323) Hoop conjecture 



Classical spherically symmetric system:
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To Dvali’s classicalization (2010):
At high (~Planckian) energy, quantum particle scatterings lead to formation of 
“classicalons” and quantum degrees of freedom disappear (no UV divergences). !
For gravity, “classicalons” = black holes = BEC of gravitons 

From Generalized uncertainty principles (GUPs): �x & `p
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4) Horizon of QM particle

What is the Schwarzschild radius of QM particles?



4.1) GUP in QM [F. Scardigli, R.C., Int. J. Mod. Phys. D18 (2009) 319]
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“Measuring very short lengths requires much energy: a BH is produced and precision reduces”



1) Localised particle at rest: 

2) Spectral decomposition: 

3) Horizon wave-function: 

RH = 2 `p
E

mp

| Si =
X

E

C(E) |Ei

3.1) Schwarzschild-link
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2.1) Energy (modes) of choice!
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5) Horizon wave-function [ArXiv:1305.3195]



Localised particle at rest: 	


!
Gaussian wave-function:

Energy spectrum: 	


!
Fourier transform:
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5) Horizon wave-function [ArXiv:1305.3195]



Probability particle is inside its own horizon:
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Probability particle is a Black Hole:

5) Horizon wave-function [ArXiv:1305.3195]
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5) Horizon wave-function [ArXiv:1305.3195]



1 2 3 4

2

4

6

8

Two uncertainties:
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         (gravity is more than kinematics...?)
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5.1) GUP [ArXiv:1306.5298, EPJ C]
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Uncertainty principle for horizon wave-function:

5.2) Hawking radiation

�RH �PH ⇠ `p mp

�RH ⇠
`2p
`

⇠ `p
M

mp

�PH ⇠
m2

p

M

Conjugate momentum to horizon position:

�PH ⇠ M ṘH ⇠ M `p
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“Amount of particle’s energy” outside its horizon:
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5.3) Decay [ArXiv:1306.5298, EPJ C]



We recovered GUP: �x & `p
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6) Collisions

We can study collisions: 
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6) Collisions [R.C., O.Micu, A.Orlandi, arXiv:1205.6303, EPJ C]



1) Two localised particles: 
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6) Collisions [ArXiv:1311.5698]



3) Unnormalised horizon wave-function: 
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6) Collisions [ArXiv:1311.5698]
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5) Horizon wave-function: 

6) Collisions [ArXiv:1311.5698]
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6) Hoop conjecture: 
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Summary and outlook

1. Horizon wave-function in flat space describes spherical particle/black 
hole + GUP	



2. Horizon wave-function yields quantum hoop conjecture for 2-particle 
collisions in flat 1+1 dimensions	



3. Account for particle(s) self-gravity (refine spectral decomposition - 
work in progress) 	



4. Analyse more spherical systems (simple models of gravitational 
collapse - work in progress)	



5. Generalise to non-spherical systems (and spin)	



6. Analyse (2-)particle collisions with angular momentum+spin	



7. (Hope for?) quantum description of gravitational collapse


