Towards holography in vacuum Einstein gravity

Marco Caldarelli

Mathematical Sciences and STAG research centre University of Southampton

(with J. Camps, B. Goutéraux and K. Skenderis)

~ arXiv:1211.2815 & 1312.7874 ~

University of Sussex ~ 7 April 2014

- Gravity is believed to be holographic: it should be described by a non-gravitational theory in one dimension less 't Hooft '93, Susskind '94
- This is well understood for asymptotically anti-de Sitter spacetimes: AdS/CFT correspondence Maldacena '97, Gubser Klebanov Polyakov '98, Witten '98, ...
- Original arguments for holography are insensitive to asymptotics
- Decoupling argument extends to nonconformal branes:
 Kanitscheider et al '08, Wiseman & Withers '08
 - non-trivial dilaton, non-AdS asymptotics
 - generalized dimensional reduction

Kanitscheider & Skenderis '09

We want to present a generalized dimensional reduction linking Ricci-flat and AdS solutions, to develop holography for Ricci-flat spacetimes

Holography in anti-de Sitter spacetimes

~ a lightning review ~

AdS Holography

- \diamond Conformal **boundary** in r = 0, Minkowski in d dimensions (M_d)
- \Leftrightarrow AdS isometry group is the **conformal group** of M_d
- \Leftrightarrow AdS gravity is dual to a **conformal field theory** (CFT) on M_d
- \diamondsuit The AdS solution represents the **vacuum** of the CFT

Dirichlet problem in AdS: fix the boundary metric (conformal class)

$$g_{(0)ij} \sim e^{2\sigma(x)} g_{(0)ij}(x)$$

AdS HolographyFefferman-Graham expansion near the boundary $ds^2 = \frac{\ell^2}{r^2} \left[dr^2 + (g_{(0)\mu\nu} + r^2 g_{(2)\mu\nu} + \dots + r^d g_{(d)\mu\nu} + \dots) dx^{\mu} dx^{\nu} \right]$ $g_{(0)\mu\nu}$ source for the CFT
stress energy tensor $T_{\mu\nu}$ $g_{(d)\mu\nu}$ expectation value of dual
stress energy tensor
 $\langle T_{\mu\nu} \rangle \propto g_{(d)\mu\nu}$

Dirichlet problem in AdS: fix the boundary metric (conformal class)

$$g_{(0)ij} \sim e^{2\sigma(x)} g_{(0)ij}(x)$$

Observables: correlators of local operators in dual CFT

Find the regular solution in the bulk satisfying appropriate Dirichlet boundary conditions. Perturbatively, expand $g_{(0)\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

An example: 2-point function

Find the **regular linear** perturbation around AdS,

$$h_{\mu\nu}(k) = h_{(0)\mu\nu}(k) \frac{1}{2^{d/2 - 1}\Gamma(d/2)} \underbrace{(kr)^{d/2} K_{d/2}(kr)}_{1 + \dots + r^d k^d + \dots}$$

Extract the 2-point function from the asymptotic expansion

$$\langle T_{\mu\nu}(k)T_{\rho\sigma}(-k)\rangle = \prod_{\mu\nu\rho\sigma}k^d$$
 projector to transverse traceless tensors

This is the correct 2-point function for the stress energy tensor of a CFT in d dimensions (d odd)

Can this construction be extended to asymptotically flat spacetimes?

A straightforward extension of this holographic procedure **fails** in asymptotically flat spacetimes!

WHY?

I. The fields that parametrize the boundary conditions are constrained

2. The infinities of the on-shell action are non local in these fields

We shall see that the holographic data is encoded in a different way!

AdS/Ricci-flat correspondence

~ a map linking AdS gravity and vacuum Einstein gravity ~

A map relating AdS and Ricci-flat solutions

MC, Camps, Goutéraux & Skenderis '12

 $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 0$ $\Lambda = -\frac{d(d-1)}{2\ell^2}$

I. Solutions to AdS gravity in d+1 dimensions of the form:

$$ds_{\Lambda}^{2} = d\hat{s}_{p+2}^{2}(x) + e^{\frac{2\phi(x)}{d-p-1}} d\vec{y}_{d-p-1}^{2}$$

2. Extract (p+2)-dim metric $\hat{g}(x)$ and the scalar $\phi(x)$

3. Substitute $d \to -n$ in $\hat{g}(x)$ and $\phi(x)$ 4. Insert back in $ds_0^2 = e^{\frac{2\phi(x)}{n+p+1}} \left(d\hat{s}_{p+2}^2(x) + \ell^2 d\Omega_{n+1}^2 \right)$

Then, the metric ds_0^2 is **Ricci-flat** $\tilde{R}_{\mu\nu} = 0$ It solves **vacuum Einstein** equations in (n+p+3) dimensions

Trading curvatures: from AdS to Ricci-flat

Trading curvatures: from AdS to Ricci-flat

Trading curvatures: from AdS to Ricci-flat

Dimension d (and n) enters analytically as a parameter in the equations of motion

Some remarks

- I. Requires knowing the solution for any d (or n): we are mapping families of AdS solutions to families of Ricci-flat solutions
- 2. Analytical continuation $d \rightarrow -n$ on the lower dimensional theory: d and n should not be thought of as spacetime dimensions
- 3. We are trading the curvature of AdS with the curvature of the sphere $(-2\Lambda \leftrightarrow \mathcal{R}_{S^{\tilde{n}+1}})$
- 4. This is an example of Generalized Dimensional Reduction
 - (cf. Kanitscheider & Skenderis '09, Goutéraux, Smolic, Smolic, Skenderis & Taylor '11, Goutéraux & Kiritsis '11)

The resulting Ricci-flat class of solutions has an underlying holographic structure and hidden conformal symmetry inherited from the locally asymptotically AdS class of solutions.

Some simple examples

 \sim what happens to simple known solutions under this map? \sim

First example: AdS_{d+1} on a Torus

I. AdS spacetime in d+I dimensions: T^{d-p-1}

$$\mathrm{d}s_{\Lambda}^{2} = \frac{\ell^{2}}{r^{2}} \left(\mathrm{d}r^{2} + \eta_{ab} \mathrm{d}x^{a} \mathrm{d}x^{b} + \mathrm{d}\vec{y}^{2} \right)$$

2. Extract the metric and scalar:

$$ds_{\Lambda}^{2} = d\hat{s}_{p+2}^{2} + e^{\frac{2\phi}{d-p-1}} d\vec{y}_{d-p-1}^{2} \Rightarrow \begin{cases} d\hat{s}_{p+2}^{2} = \frac{\ell^{2}}{r^{2}} \left(dr^{2} + \eta_{ab} \, dx^{a} dx^{b} \right) \\ \phi(x) = -(d-p-1) \ln \frac{r}{\ell} \end{cases}$$

B. Substitute $d \to -n \Rightarrow \begin{cases} d\hat{s}_{p+2}^{2} = \frac{\ell^{2}}{r^{2}} \left(dr^{2} + \eta_{ab} \, dx^{a} dx^{b} \right) \\ \phi(x) = (n+p+1) \ln \frac{r}{\ell} \end{cases}$

4. Lift to n+p+3 dimensions:

$$ds_0^2 = e^{\frac{2\phi}{n+p+1}} \left(d\hat{s}_{p+2}^2 + \ell^2 \, d\Omega_{n+1}^2 \right)$$

00

$$\Rightarrow \quad ds_0^2 = \underbrace{\eta_{ab} \mathrm{d} x^a \mathrm{d} x^b}_{\mathbb{R}^{1,p}} + \underbrace{\mathrm{d} r^2 + r^2 \mathrm{d} \Omega_{n+1}^2}_{\mathbb{R}^{n+2}}$$

Minkowski in n+p+3 dim.

First example: AdS_{d+1} on a Torus

I. Fefferman-Graham coordinates for Einstein-AdS solutions: $(
ho=r^2)$

$$\mathrm{d}s_{\Lambda}^{2} = \frac{\mathrm{d}\rho^{2}}{4\rho^{2}} + \frac{1}{\rho} \left(\eta_{\mu\nu} + \rho^{d/2}g_{(d)\mu\nu} + \cdots \right) \mathrm{d}z^{\mu}\mathrm{d}z^{\nu}$$

Flat boundary metric
$$T_{\mu\nu} = \frac{d}{16\pi G_{N}}g_{(d)\mu\nu},$$

Expectation value of the dual stress tensor

The stress tensor satisfies:

 $\partial^a T_{ab} = 0, \qquad T_a{}^a = 0$

as a consequence of the gravitational field equations (Ward identities for the CFT on flat background)

I. Fefferman-Graham coordinates for Einstein-AdS solutions:

$$ds_{\Lambda}^{2} = \frac{d\rho^{2}}{4\rho^{2}} + \frac{1}{\rho} \left(\eta_{\mu\nu} + \rho^{d/2} g_{(d)\mu\nu} + \cdots \right) dz^{\mu} dz^{\nu}$$

Flat boundary metric \longleftarrow compactify (d-p-1) of these flat directions

2. Reduced theory: $d\hat{s}^2 = \frac{d\rho^2}{4\rho^2} + \frac{1}{\rho} \left(\eta_{ab} + \rho^{d/2} (\hat{g}_{(d)ab} + \rho \hat{g}_{(d+2)ab} + \ldots) \right) dx^a dx^b$ $\phi = \rho^{d/2} \hat{\phi}_{(d)} + \rho^{d/2+1} \hat{\phi}_{(d+2)} + \ldots$

Holographic dictionary for nonconformal branes:

Kanitscheider & Skenderis '09

$$\hat{T}_{ab} = \frac{d}{16\pi \hat{G}_N} \hat{g}_{(d)ab}, \quad \hat{\mathcal{O}}_{\phi} = -\frac{d(d-p-1)}{32\pi \hat{G}_N} \hat{\phi}_{(d)}$$

expectation values of the dual stress energy tensor and of the scalar operator

Ward identities: $\partial^a \hat{T}_{ab} = 0$, $\hat{T}_a{}^a = (d - p - 1)\hat{\mathcal{O}}_{\phi}$

the expectation value of the scalar operator breaks conformal invariance

3. & 4. Analytical continuation and uplift to n+p+3 dimensions: $(\rho = 1/r^2)$

$$ds_0^2 = \left(1 - \frac{16\pi\hat{G}_N}{n\,r^n} (1 + \frac{r^2}{2(n-2)}\Box)\hat{\mathcal{O}}_{\phi}(x)\right) \left(dr^2 + \eta_{ab}dx^a dx^b + r^2 d\Omega_{n+1}^2\right) - \frac{16\pi\hat{G}_N}{n\,r^n} (1 + \frac{r^2}{2(n-2)}\Box)\hat{T}_{ab}(x) dx^a dx^b + \dots = (\eta_{AB} + h_{AB} + \dots) dx^A dx^B$$

As a perturbation of flat spacetime it verifies:

$$\bar{h}_{AB} = h_{AB} - \frac{h}{2}\eta_{AB} \qquad \qquad \Box \bar{h}_{AB} = 16\pi \hat{G}_N \Omega_{n+1} \delta_A{}^a \delta_B{}^b \hat{T}_{ab} \delta^{n+2}(r)$$

i.e. it solves linearized Einstein eqns $\Box \bar{h}_{AB} = -16\pi \tilde{G}_N \tilde{T}_{AB}$

with

$$\tilde{T}_{ab} = -\frac{G_N}{\tilde{G}_N} \Omega_{n+1} \hat{T}_{ab} \delta^{n+2}(r)$$

(stress tensor of a p-brane located at r=0)

Holographic stress tensor sources the faraway grav. field

Correlation functions

To compute correlation functions we set $g_{(0)\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

and find **regular**, linear transverse traceless fluctuation in AdS

$$h_{\mu\nu}^{\text{AdS}}(k) = h_{(0)\mu\nu}(k) \frac{1}{2^{d/2 - 1} \Gamma(d/2)} (kr)^{d/2} K_{d/2}(kr)$$

Apply AdS/Ricci flat correspondence, with $\ d \rightarrow -n$

$$h_{\mu\nu}^{\rm Mink}(k) = h_{(0)\mu\nu}(k) \frac{2^{n/2+1}}{\Gamma(-n/2)} \frac{K_{n/2}(kr)}{(kr)^{n/2}}$$

Linearized gravitational field produced by a **p-brane** with worldvolume metric $\eta_{\mu\nu} + h_{\mu\nu}$

Exponential fall-off at infinity: the metric is asymptotically flat

First entries in the holographic dictionary

On AdS, the boundary condition was to choose a metric on the boundary

This translates on the Ricci-flat side into a **choice of a metric at the location of a p-brane**

At linear order, the holographic stress energy tensor becomes the **stress energy tensor due to this p-brane**, that sources the linearized gravitational field

The regularity in the bulk of AdS becomes the requirement that **the Ricci-flat perturbation preserves asymptotic flatness**

Generalized conformal structure

The AdS metric $ds_{\Lambda}^2 = \frac{\ell^2}{r^2} \left(dr^2 + \eta_{\mu\nu} dx^{\mu} dx^{\nu} \right)$ is invatiant under isometries forming the boundary **conformal group**

 $\begin{array}{ll} \mbox{Dilatations} & \delta_{\lambda} x^{M} = \lambda x^{M} \\ \mbox{Special conformal transformations} \left\{ \begin{array}{l} \delta_{b} z^{\mu} = b^{\mu} z^{2} - 2 z^{\mu} (z \cdot b) + r^{2} b^{\mu} \\ \delta_{b} r = -2 (z \cdot b) r \end{array} \right. \end{array}$

Holographic stress energy tensor traceless and conserved

Compactification over a torus **breaks** these symmetries: the scalar now transforms as $\delta_{\lambda}\phi = (p+1-d)\lambda$

$$\delta_b \phi = -2(p+1-d)(x \cdot b)$$

The stress energy tensor is still conserved, but has a **non vanishing trace** $\partial^a \hat{T}_{ab} = 0$, $\hat{T}_a{}^a = (d - p - 1)\hat{\mathcal{O}}_{\phi}$

Hidden symmetries and solution generating transformations

On Minkowski side they act as **conformal transformation**

 $\delta g_{0AB} = 2\sigma(x)g_{0AB}$

with $\sigma(x) = \lambda$ for dilatations $\sigma(x) = -2(x \cdot b)$ for special conformal transformations

They are not isometries of Minkowski, but the resulting metric is still Ricci-flat: they act as **solution generating transformations**

The underlying generalized conformal structure constrains the physics of these Ricci-flat spacetimes

Third example: black branes

$$d \leftrightarrow -n$$
 \blacklozenge $z = \frac{1}{r}, \quad b = r_0$

The Gravity/Fluid correspondence

 \sim applying the map to hydrodynamic perturbations of bhs \sim

Fluid/gravity metrics in AdS

- ♦ Field theories are expected to equilibrate locally at high enough density ⇒ hydrodynamic description in $\omega \to 0, \lambda \to \infty$ limit
- ♦ Hydrodynamic limit in AdS/CFT: Einstein eqns ⇔ Navier-Stokes eqns
- Fluid/gravity metric can be built perturbatively from a black hole by varying slowly its temperature and boost

Patch-wise construction in Eddington-Finkelstein coords. Bhattacharyya, Hubeny, Minwalla & Rangamani '07

The solution is corrected order by order in a derivative expansion by viscous corrections

The AdS fluid/gravity metric and ST...

Bhattacharyya, Loganayagam, Mandal, Minwalla & Sharma '08

AdS/fluid metric: $ds^2 = -2u_\mu dx^\mu (dr + \mathcal{V}_\nu dx^\nu) + \mathcal{G}_{\mu\nu} dx^\mu dx^\nu$

$$\begin{aligned} \mathcal{V}_{\mu} = r\mathcal{A}_{\mu} + \frac{1}{d-2} \left[\mathcal{D}_{\lambda}\omega_{\ \mu}^{\lambda} - \mathcal{D}_{\lambda}\sigma_{\ \mu}^{\lambda} + \frac{\mathcal{R}u_{\mu}}{2(d-1)} \right] - \frac{2L(br)}{(br)^{d-2}} P_{\mu}^{\nu} \mathcal{D}_{\lambda}\sigma_{\ \nu}^{\lambda} \\ &- \frac{u_{\mu}}{2(br)^{d}} \left[r^{2} \left(1 - (br)^{d} \right) - \frac{1}{2} \omega_{\alpha\beta} \omega^{\alpha\beta} - (br)^{2} K_{2}(br) \frac{\sigma_{\alpha\beta} \sigma^{\alpha\beta}}{(d-1)} \right] \\ \mathcal{G}_{\mu\nu} = r^{2} P_{\mu\nu} - \omega_{\mu\lambda} \omega_{\ \nu}^{\lambda} + 2br^{2} F \sigma_{\mu\nu} + 2(br)^{2} \sigma_{\mu\lambda} \sigma_{\ \nu}^{\lambda} \left[F^{2} - H_{1} \right] + 2(br)^{2} \left[H_{1} - K_{1} \right] \frac{\sigma_{\alpha\beta} \sigma^{\alpha\beta}}{d-1} P_{\mu\nu} + \\ &+ 2(br)^{2} u^{\lambda} \mathcal{D}_{\lambda} \sigma_{\mu\nu} \left[H_{2} - H_{1} \right] + 4(br)^{2} H_{2} \omega_{(\mu|\lambda|} \sigma_{\ \nu)}^{\lambda} \end{aligned}$$

Holographic ST: $T_{\mu\nu} = P \left(g_{\mu\nu} + du_{\mu}u_{\nu} \right) - 2\eta\sigma_{\mu\nu} - 2\eta\tau_{\omega} \left[u^{\lambda}\mathcal{D}_{\lambda}\sigma_{\mu\nu} + \omega_{\mu}{}^{\lambda}\sigma_{\lambda\nu} + \omega_{\nu}{}^{\lambda}\sigma_{\mu\lambda} \right] + 2\eta b \left[u^{\lambda}\mathcal{D}_{\lambda}\sigma_{\mu\nu} + \sigma_{\mu}{}^{\lambda}\sigma_{\lambda\nu} - \frac{\sigma_{\alpha\beta}\sigma^{\alpha\beta}}{d-1}P_{\mu\nu} \right]$

$$b \equiv \frac{d}{4\pi T} \qquad P = \frac{1}{16\pi G_N b^d} \qquad \epsilon = (d-1)P \qquad c_s^2 = \frac{1}{d-1}$$
$$\eta = \frac{s}{4\pi} = \frac{1}{16\pi G_N b^{d-1}} \qquad \zeta = 0 \qquad \tau_\omega = b \int_1^\infty \frac{\xi^{d-2} - 1}{\xi(\xi^d - 1)} d\xi$$

... are mapped to the blackfold metric / ST MC, J Camps, B Goutéraux, K Skenderis

AdS/Ricci-flat map gives the metric describing long wavelength perturbations of a black p-brane, whose (intrinsic) dynamics is captured by an effective fluid (blackfold Emparan, et al '09):

$$\begin{split} \tilde{T}_{\alpha\beta} &= \tilde{P} \left(\eta_{\alpha\beta} - \tilde{n}\tilde{u}_{\alpha}\tilde{u}_{\beta} \right) - 2\tilde{\eta}\tilde{\sigma}_{\alpha\beta} - \tilde{\zeta}\tilde{\theta}\tilde{P}_{\alpha\beta} \\ &+ 2\tilde{\eta}\tilde{\tau}_{\omega} \left[\tilde{P}_{\alpha}{}^{\gamma}\tilde{P}_{\beta}{}^{\delta}\tilde{u}^{\epsilon}\partial_{\epsilon}\tilde{\sigma}_{\gamma\delta} - \frac{\tilde{\theta}\tilde{\sigma}_{\alpha\beta}}{\tilde{n}+1} + 2\tilde{\omega}_{(\alpha}{}^{\gamma}\tilde{\sigma}_{\beta)\gamma} \right] + \tilde{\zeta}\tilde{\tau}_{\omega} \left[\tilde{P}_{\alpha\beta}\tilde{u}^{\lambda}\partial_{\lambda}\tilde{\theta} - \frac{1}{\tilde{n}+1}\tilde{\theta}^{2}\tilde{P}_{\alpha\beta} \right] \\ &- 2\tilde{\eta}\tilde{b} \left[\tilde{P}_{\alpha}{}^{\gamma}\tilde{P}_{\beta}{}^{\delta}\tilde{u}^{\epsilon}\partial_{\epsilon}\tilde{\sigma}_{\gamma\delta} + \left(\frac{2}{p} + \frac{1}{\tilde{n}+1} \right)\tilde{\theta}\tilde{\sigma}_{\alpha\beta} + \tilde{\sigma}_{\alpha}{}^{\gamma}\tilde{\sigma}_{\gamma\beta} + \frac{\tilde{\sigma}^{2}}{\bar{n}+1}\tilde{P}_{\alpha\beta} \right] \\ &- \tilde{\zeta}\tilde{b} \left[\tilde{P}_{\alpha\beta}\tilde{u}^{\gamma}\partial_{\gamma}\tilde{\theta} + \left(\frac{1}{p} + \frac{1}{\tilde{n}+1} \right)\tilde{\theta}^{2}\tilde{P}_{\alpha\beta} \right] \end{split}$$

PressureEnergy densitySpeed of sound $\tilde{P} = -\frac{\tilde{b}^{\tilde{n}}}{16\pi \tilde{G}_N}$ $\tilde{\epsilon} = -(\tilde{n}+1)\tilde{P}$ $\tilde{c}_s^2 = -\frac{1}{\tilde{n}+1}$ Shear viscosityBulk viscosityRelaxation time

 $\tilde{\zeta} = 2\tilde{\eta} \left(\frac{1}{n} - \tilde{c}_s^2\right)$

 $\tilde{\tau}_{\omega} = \frac{\tilde{b}}{\tilde{n}} \operatorname{Harmonic} \left(-\frac{2}{\tilde{n}} - 1 \right)$

 $\tilde{\eta} = \frac{\tilde{s}}{4\pi} = \frac{\tilde{b}^{\tilde{n}+1}}{16\pi\tilde{G}_N}$

Some checks...

Bulk viscosity: saturation of the Buchel bound explained by the **conformal origin** of the effective black brane fluid $\tilde{\zeta} = 2\tilde{\eta}\left(\frac{1}{n} - \tilde{c}_s^2\right)$

Exact agreement of the AF metric to first order in derivatives with the first order corrections of the blackfold metric computed by Camps Emparan & Haddad (2010)

... and some new results

In addition the AdS/Ricci-flat map provides us with the second order corrections in a derivative expansion to the black *p*-brane metric and its effective fluid stess tensor.

Next, we will see two applications of these results...

And two applications to conclude

~ GL instabilities and Rindler fluids ~

Gregory-Laflamme instability of black strings Gregory & Laflamme '94

 $\delta r_0 \sim e^{\Omega t + ikz}$

Instability for $\lambda \gtrsim r_0$

 r_0

 $\lambda = \frac{2\pi}{k}$

z

Sound waves on a black string/brane

Intrinsic fluctuations $\delta r_0 \rightarrow \text{pressure/density fluctuations} * sound waves *$

 $c_s^2 = \frac{dP}{d\epsilon} = -\frac{1}{n+1} < 0$

 $\delta r_0 \sim e^{\Omega t + ikz}$

$$\Omega = \frac{k}{\sqrt{n+1}} + O\left(k^2\right)$$

captures the slope of the curve near the origin

The Rindler/fluid correspondence

Bredberg et al '12, Compere et al '12, Eling et al '12

Black p-brane:

$$ds_0^2 = -f(r)d\tau^2 + \frac{dr^2}{f(r)} + r^2 d\Omega_{n+1}^2 + d\vec{x}^2, \qquad f(r) = 1 - \frac{r_0^n}{r^n}$$

When $n \rightarrow -1$ the sphere collapse to a point and we obtain **Rindler spacetime in p+2 dimensions**:

$$ds_0^2 = -\frac{\rho^2}{4r_0^2}d\tau^2 + d\rho^2 + d\vec{x}^2, \qquad \rho^2 = 4r_0^2\left(1 - r/r_0\right)$$

The AdS boundary is mapped on a constant ρ hypersurface with induced metric η_{ab}

Taking carefully the $n \rightarrow -1$ limit of the gravity/fluid metric, we recover the hydrodynamic perturbations of Rindler spacetime and the associated stress energy tensor to second order in derivatives.

~ Conclusions ~

- * AdS/Ricci-flat correspondence maps asymptotically locally AdS solutions on torus to Ricci-flat spacetimes
- * Holography for asymptotically flat spacetimes
 - Source for dual operators located at the location of a p-brane
 - Stress energy tensor due to this p-brane is holographic
- * Mapped AdS fluid metric to the Ricci-flat blackfold fluid
 - Holographic stress tens. \implies effective stress tens. of a *p*-brane
 - "Hidden" conformal symmetry reflected in transport coeff.
- * Ricci-flat spacetimes inherit a generalized conformal structure

- * AdS/Ricci-flat correspondence maps asymptotically locally AdS solutions on torus to Ricci-flat spacetimes
- * Holography for asymptotically flat spacetimes
 - Source for dual operators located at the location of a p-brane
 - Stress energy tensor due to this p-brane is holographic
- * Mapped AdS fluid metric to the Ricci-flat blackfold fluid
 - Holographic stress tens. \implies effective stress tens. of a *p*-brane
 - "Hidden" conformal symmetry reflected in transport coeff.
- * Ricci-flat spacetimes inherit a generalized conformal structure
- * Turn on finite sources to develop a full holographic dictionary
- * Implications of the hidden conformal invariance?
- * Explore possible generalizations of the correspondence

~ Thank you! ~