
Black Holes and Qubits

Michael Duff

Imperial College London

Sussex
February 2011

M. J. Duff (Imperial College London) Black Holes and Qubits Sussex February 2011 1 / 1



Abstract

Quantum entanglement lies at the heart of quantum information
theory, with applications to quantum computing, teleportation,
cryptography and communication. In the apparently separate world of
quantum gravity, the Bekenstein-Hawking entropy of black holes has
also occupied center stage.

Here we describe a correspondence between the entanglement
measures of qubits in quantum information theory and black hole
entropy in string theory.

Reviewed in Borsten, Dahanayake, Duff, Ebrahim, Rubens:
“Black Holes, Qubits and Octonions”
Phys. Rep. 471:113-219,2009 arXiv:0809.4685 [hep-th] .

Duff: “Black Holes and Qubits” CERN COURIER May 2010
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Repurposing string theory

1970s Strong nuclear interactions

1980s Quantum gravity; “theory of everything”

1990s AdS/CFT: QCD (revival of 1970s); quark-gluon plasmas

2000s AdS/CFT: superconductors

2000s Cosmic strings

2010s Black hole/qubit correspondence: entanglement in Quantum
Information Theory

Conclusion: May be right theory for some but not all
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Qubits
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Qubits

One qubit

A qubit is any two-state quantum system. For example:
spin-up/spin-down electron or left/right polarized photon.

The one qubit system Alice (where A = 0, 1) is described by the state

|Ψ〉 = aA|A〉 = a0|0〉+ a1|1〉

where a0 and a1 are complex numbers.
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Qubits

Two qubits

The two qubit system Alice and Bob (where A,B = 0, 1) is described by
the state

|Ψ〉 = aAB|AB〉
= a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉.
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Qubits

Entanglement

Example, separable state:

|Ψ〉 =
1√
2
|00〉+

1√
2
|01〉 = |0〉

(
1√
2
|0〉+

1√
2
|1〉
)

Alice measures spin up, Bob can measure either spin up or spin down.
This state is not entangled.

Example, Bell state:

|Ψ〉 =
1√
2
|00〉+

1√
2
|11〉

If Alice measures spin up, Bob has to measure spin up too! This state
is entangled.
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Qubits

EPR paradox

1935 Einstein-Podolsky-Rosen “paradox”: Alice might be in Falmer
and Bob in Alpha Centauri. Einstein called it “spooky” action at a
distance.

1964 John Bell describes a way of testing experimentally this
quantum non-locality versus Einstein’s realism. (By the way, observe
the time lag between theoretical idea and falsifiable prediction. Critics
of string theory take note.)

1982 Alain Aspect performs Bell’s experiment: quantum mechanics
wins out!
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Qubits

Entanglement measure

The measure of the bipartite entanglement of Alice and Bob is given
by the “two-tangle”

τAB = 4|det aAB|2 = 4|a00a11 − a01a10|2

or equivalently
τAB = 4|det ρA| = 4|det ρB|

where ρA and ρB are the reduced density matrices

ρA = TrB|Ψ〉〈Ψ| ρB = TrA|Ψ〉〈Ψ|

For normalized states
0 ≤ τAB ≤ 1
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Qubits

Examples

Example, separable state:

|Ψ〉 =
1√
2
|00〉+

1√
2
|01〉

τAB = 0

No entanglement.

Example, Bell state:

|Ψ〉 =
1√
2
|00〉+

1√
2
|11〉

τAB = 1

Maximal entanglement.
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Qubits

Symmetries of τAB

Under SL(2) aA transforms as a 2:(
a0
a1

)
→
(
α β
γ δ

)(
a0
a1

)
where

αδ − βγ = 1

Under SL(2)A × SL(2)B, aAB transforms as a (2, 2).

τAB is invariant under SL(2)A × SL(2)B and under a discrete duality
that interchanges A and B.
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Qubits

Three qubits

The three qubit system Alice, Bob and Charlie (where A,B,C = 0, 1) is
described by the state

|Ψ〉 = aABC |ABC〉
= a000|000〉+ a001|001〉+ a010|010〉+ a011|011〉
+ a100|100〉+ a101|101〉+ a110|110〉+ a111|111〉.
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Qubits

Hypermatrix

The 3-index quantity aABC is an
example of what Cayley termed a
hypermatrix in 1845. Its elements
may be represented by the cube

0 1

00 01

10 11

000 001

010 011

100 101

110 111
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Qubits

Cayley’s hyperdeterminant

The tripartite entanglement of Alice, Bob and Charlie is given by the
three-tangle

τABC = 4|Det aABC |,

Coffman et al: arXiv:quant-ph/9907047

Det aABC is Cayley’s hyperdeterminant

Det aABC = −1

2
εA1A2εB1B2εC1C4εC2C3εA3A4εB3B4

· aA1B1C1aA2B2C2aA3B3C3aA4B4C4

Miyake, Wadati: arXiv:quant-ph/0212146

It is invariant under SL(2)A × SL(2)B × SL(2)C , with aABC
transforming as a (2,2,2), and under a discrete triality that
interchanges A, B and C.

M. J. Duff (Imperial College London) Black Holes and Qubits Sussex February 2011 15 / 1



Qubits

Symmetry

Explicitly

Det aABC =

a2000a
2
111 + a2001a

2
110 + a2010a

2
101 + a2100a

2
011

− 2(a000a001a110a111 + a000a010a101a111

+ a000a100a011a111 + a001a010a101a110

+ a001a100a011a110 + a010a100a011a101)

+ 4(a000a011a101a110 + a001a010a100a111).
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Qubits

SLOCC

In QIT the group [SL(2)]n is known as the n-qubit SLOCC
equivalence group.

SLOCC = Stochastic Local Operations and Classical Communication

For one qubit SLOCC=SL(2)A and aA transforms as a 2:(
a0
a1

)
→
(
α β
γ δ

)(
a0
a1

)
where

αδ − βγ = 1

For three qubits SLOCC=SL(2)A × SL(2)B × SL(2)C and aABC
transforms as a (2, 2, 2).
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3-tangle = black hole entropy
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3-tangle = black hole entropy

Reissner-Nordström solution

The most general static spherically symmetric black hole solution of
Einstein-Maxwell theory is given in spherical polar coordinates (t, r, θ, φ)
by the Reissner-Nordström line-element

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1
dr2

+r2(dθ2 + sin2θdφ2) At =
Q

r

where M and Q are the mass and electric charge of the black hole in units
G = ~ = c = 1.
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3-tangle = black hole entropy Surface gravity and the area

Surface gravity and the area

Besides the mass and the charge which are measured at infinity there
are two other quantities, surface gravity and the area, measured on
the event horizon that are given by

κS =

√
M2 −Q2

2M(M +
√
M2 −Q2)−Q2

, A = 4π(M +
√
M2 −Q2)2.

The R-N solution has two horizons determined by

r± = M ±
√
M2 −Q2.
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3-tangle = black hole entropy Surface gravity and the area

Extremal black holes

Cosmic censorship: If M ≥ |Q|, the singularity at r = 0 is hidden
behind the event horizon; otherwise there is a naked singularity.

Extremal black holes have M = |Q|. Two horizons, r+ and r−
coincide.

This also allows classically stable multi-centered black hole solutions
obeying a no-force condition: the gravitational attraction is exactly
cancelled by the Coulomb repulsion.
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3-tangle = black hole entropy Surface gravity and the area

Extremal and BPS black holes

Extremal black holes obey generalised mass=charge conditions.

A black hole that preserves some unbroken supersymmetry (admitting
one or more Killing spinors) is said to be BPS (after
Bogomol’nyi-Prasad-Sommerfield) and non-BPS otherwise.

All BPS black holes are extremal but extremal black holes can be
BPS or non-BPS.
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3-tangle = black hole entropy Surface gravity and the area

Quantum black holes

Hawking temperature

TH =
κS
2π

Bekenstein-Hawking entropy

SBH =
A

4
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3-tangle = black hole entropy Entropy and temperature

Entropy and temperature

In the extremal case, the entropy is completely determined in terms of the
charges

SBH =
A

4
= πQ2

and there is no Hawking radiation since

TH = 0
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3-tangle = black hole entropy Magnetic charge

Magnetic charge

If magnetic monopoles are included into the theory,

Aφ = Pcosθ

then a generalization to include magnetic charge P is obtained by
replacing Q2 by Q2 + P 2 in the metric and other formulae.
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3-tangle = black hole entropy Black holes in supergravity

Black holes in supergravity

Supergravity incorporates bose-fermi symmetry: the spin-2 graviton
can have 1 ≤ N ≤ 8 spin 3/2 gravitino partners.

The supergravity theories we shall consider have more than the one
photon of Einstein-Maxwell theory. The N = 2 STU model has 4;
the N = 8 model has 28, so the black holes will carry 8 or 56 electric
and magnetic charges, respectively.

Both also involve scalar fields.
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3-tangle = black hole entropy Black holes in supergravity

STU model

The STU supergravity model arises in string theory. Its bosonic sector
consists of gravity coupled to 4 photons and three complex scalars,
denoted S, T and U .

The equations of motion display the symmetry
SL(2)S × SL(2)T × SL(2)U and a discrete triality that interchanges
S, T and U .

Duff, Liu, Rahmfeld: arXiv:hep-th/9508094

M. J. Duff (Imperial College London) Black Holes and Qubits Sussex February 2011 27 / 1



3-tangle = black hole entropy Black holes in supergravity

STU black hole entropy

A general static spherically symmetric STU black hole solution
depends on 8 charges denoted q0, q1, q2, q3, p

0, p1, p2, p3.

Black hole entropy S given by the one quarter the area of the event
horizon. Hawking: 1975

The extremal STU black hole entropy is a complicated function of the
8 charges :

(S/π)2 = −(p0q0 + p1q1 + p2q2 + p3q3)
2

+4
[
(p1q1)(p

2q2) + (p1q1)(p
3q3) + (p3q3)(p

2q2)

+q0p
1p2p2 − p0q1q2q3

]
Behrndt et al: arXiv:hep-th/9608059
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3-tangle = black hole entropy Black holes in supergravity

Black hole/qubit correspondence

Duff: arXiv:hep-th/0601134 Identify STU with ABC and the 8 black hole charges
with the 8 components of the three-qubit hypermatrix aABC ,

p0

p1

p2

p3

q0
q1
q2
q3


=



a000
−a001
−a010
−a100
a111
a110
a101
a011


Find that the black hole entropy is related to the 3-tangle as in

S = π
√
|Det aABC | =

π

2

√
τABC

Turns out to be the tip of an iceberg.
M. J. Duff (Imperial College London) Black Holes and Qubits Sussex February 2011 29 / 1



3-tangle = black hole entropy Black holes in supergravity

Further developments

Further papers have written a more complete dictionary, which
translates a variety of phenomena in one language to those in the
other, for example:

The attractor mechanism on the black hole side is related to optimal
local distillation protocols on the QI side Levay: arXiv:0708.2799 [hep-th]

Moreover, supersymmetric and non-supersymmetric black holes
corresponding to the suppression or non-suppression of bit-flip errors
Levay: arXiv:0708.2799 [hep-th]

Classification of black holes matches classification of qubit
entanglement
Kallosh, Linde: hep-th/060206

Borsten, Dahanayake, Duff, Ebrahim, Rubens: arXiv:0809.4685 [hep-th]
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3-qubit classification from black holes
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3-qubit classification from black holes

Local entropy

Besides Det a, another useful quantity is the local entropy SA, which
is a measure of how entangled A is with the pair BC:

SA = 4det ρA

where ρA is the reduced density matrix

ρA = TrBC |Ψ〉〈Ψ|,

and with similar formulae for B and C.
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3-qubit classification from black holes

Entanglement classes

Class
Condition

|ψ|2 SA SB SC Det a

Zero 0 0 0 0 0
A-B-C > 0 0 0 0 0
A-BC > 0 0 > 0 > 0 0
B-CA > 0 > 0 0 > 0 0
C-AB > 0 > 0 > 0 0 0

W > 0 > 0 > 0 > 0 0
GHZ > 0 > 0 > 0 > 0 6= 0

Dur, Vidal, Cirac: arXiv:quant-ph/0005115
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3-qubit classification from black holes

Representatives

Null class: 0

Separable class A-B-C (product states): q0|111〉
Biseparable class (bipartite entanglement):

A-BC : q0|111〉 − p1|100〉
B-CA : q0|111〉 − p2|010〉
C-AB : q0|111〉 − p3|001〉

Class W (maximizes bipartite entanglement):

−p1|100〉 − p2|010〉 − p3|001〉

Class GHZ (genuine tripartite entanglement):

q0|111〉 − p1|100〉 − p2|010〉 − p3|001〉
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3-qubit classification from black holes

N = 4N = 3

N = 2a N = 2b N = 2c

N = 1

N = 0 1 Susy

1�2 Susy

1�4 Susy

1�8 Susy GHZW

A-BC B-CA C-AB

A-B-C

Null Null

Separable

Bipartite

Tripartite

Entangled

Unentangled

Genuine

Degenerate

BLACK HOLES QUBITS

N= number of charges / number of kets
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3-qubit classification from black holes

No force condition

The 4-charge solution with just q0, p
1, p2, p3 switched on obeys the

no-force condition and may be regarded as a bound state of four
individual black holes with charges q0, p1, p2, p3, with zero binding
energy.

This translates into the special GHZ (or Mermin) state

|Ψ〉 = −p3|001〉 − p2|010〉 − p1|100〉+ q0|111〉.

Flipping the sign of q0 flips the sign of Det aABC and corresponds to
going from 1/8 susy (BPS) to 0 susy (non-BPS) black hole.

Similarly GHZ state

|Ψ〉 = p0|000〉+ q0|111〉.

corresponds to non-BPS black hole.
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4-qubit classification: a prediction of string theory
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4-qubit classification: a prediction of string theory

16 parameters

In addition to the 4 electric and 4 magnetic charges, an STU black
hole is also specified by its mass, its NUT charge (gravity analog of
magnetic charge) and the values of the 6 real scalars at infinity,
making 16 parameters in all.

Suggests a correspondence with 4 qubits

|Ψ〉 = aABCD|ABCD〉

Levay: arXiv:1004.3639 [hep-th]
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4-qubit classification: a prediction of string theory

Families/Classes

Under this finer classification there are 31 families of black hole

@18D0 @22,14D10

@3,15D12

@3,15D12

I,II@24D12
I,II

I,II@3,22,1D16

@3,22,1D16
I,II

I,II@32,12D18

@32,12D18

@32,12D18
I,II

@5,13D20

@5,13D20

I,II@42D20
I,II

I,II@5,3D22

@5,3D22
I,II

I,II@7,1D24

@7,1D24
I,II

Bergshoeff et al: arXiv:0902.4438 [hep-th]

Bossard, Michel, Pioline: arXiv:0902.4438 [hep-th]

Suggests a way to classify 4 qubit entanglement
Borsten, Dahanayake, Duff, Marrani, Rubens

Phys. Rev. Lett. 105:100507,2010 arXiv:1002.4223 [hep-th]
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4-qubit classification: a prediction of string theory

Families/Classes

Four-qubit literature is confusing

Classes: vanishing or not of SLOCC covariants/invariants

Families: normal forms parameterized by SLOCC invariants e.g.

Gabcd =
a+ d

2
(|0000〉+ |1111〉) +

a− d
2

(|0011〉+ |1100〉)

+
b+ c

2
(|0101〉+ |1010〉) +

b− c
2

(|1001〉+ |0110〉).
(1)

Example of difference: the separable EPR-EPR state
(|00〉+ |11〉)⊗ (|00〉+ |11〉), obtained by setting b = c = d = 0,
belongs to the Gabcd family, whereas in the covariant approach it
forms its own class.
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4-qubit classification: a prediction of string theory

Four-qubit literature is contradictory

Paradigm Author Year result mod perms result incl. perms

classes

Wallach 2005 ? 90
Lamata et al, 2006 8 genuine, 5 degenerate 16 genuine, 18 degenerate
Cao et al 2007 8 genuine, 4 degenerate 8 genuine, 15 degenerate
Li et al 2007 ? ≥ 31 genuine, 18 degenerate
Akhtarshenas et al 2010 ? 11 genuine, 6 degenerate

families
Verstraete et al 2002 9 ?
Chretrentahl et al 2007 9 ?
String theory 2010 9 31

String theory lends itself to the families approach
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4-qubit classification: a prediction of string theory

Extremal black hole / 4 qubit
correspondence

Extremal black holes classification of STU model

l
31 real nilpotent orbits of SO(4, 4) acting on the 28

l
Kostant-Sekiguchi Correspondence

l
31 complex nilpotent orbits of SL(2)4 acting on the (2,2,2,2)

l
4 qubits entanglement classification

Borsten, Dahanayake, Duff, Marrani, Rubens
Phys. Rev. Lett. 105:100507,2010 arXiv:1002.4223 [hep-th]
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4-qubit classification: a prediction of string theory

STU black holes perms nilpotent rep family

trivial 1 0 ∈ Gabcd

doubly-critical 1
2BPS 6 |0110〉 ∈ Labc2

critical, 1
2BPS and

non-BPS
4 |0110〉+ |0011〉 ∈ La2b2

lightlike 1
2BPS and

non-BPS
1 |0110〉+ |0101〉+ |0011〉 ∈ La203⊕1̄

large non-BPS zH 6= 0 1
i√
2
(|0001〉+ |0010〉 −
|0111〉 − |1011〉)

∈ Lab3

“extremal” 6 i|0001〉+|0110〉−i|1011〉 ∈ La4
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4-qubit classification: a prediction of string theory

STU black holes perms nilpotent rep family

large 1
2BPS and

non-BPS zH = 0
4 |0000〉+ |0111〉 ∈ L03⊕1̄03⊕1̄

“extremal” 4
|0000〉+ |0101〉+
|1000〉+ |1110〉 ∈ L05⊕3̄

“extremal” 4
|0000〉+ |1011〉+
|1101〉+ |1110〉 ∈ L07⊕1̄

Total number of families without permutations = 9
Total number of families including permutations = 31
NB Trivially permuting the 9 yields many more than 31;
still need to check equivalence
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4-qubit classification: a prediction of string theory

Falsifiable predictions

Previous result 2006:
STU black holes imply 5 ways to entangle three qubits
Already known in QI; verified experimentally

New result 2010:
STU black holes imply 31 ways to entangle four qubits
Not already known in QI: in principle testable in the laboratory
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4-qubit classification: a prediction of string theory
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