Black Holes and Qubits

Michael Duff
Imperial College London

Sussex
February 2011

Abstract

- Quantum entanglement lies at the heart of quantum information theory, with applications to quantum computing, teleportation, cryptography and communication. In the apparently separate world of quantum gravity, the Bekenstein-Hawking entropy of black holes has also occupied center stage.
- Here we describe a correspondence between the entanglement measures of qubits in quantum information theory and black hole entropy in string theory.
■ Reviewed in Borsten, Dahanayake, Duff, Ebrahim, Rubens: "Black Holes, Qubits and Octonions"

Phys. Rep. 471:113-219,2009

Duff: "Black Holes and Qubits" CERN courier may 2010

Repurposing string THEORY

- 1970s Strong nuclear interactions
- 1980s Quantum gravity; "theory of everything"

■ 1990s AdS/CFT: QCD (revival of 1970s); quark-gluon plasmas
■ 2000s AdS/CFT: superconductors

- 2000s Cosmic strings
- 2010s Black hole/qubit correspondence: entanglement in Quantum Information Theory
■ Conclusion: May be right theory for some but not all

One qubit

■ A qubit is any two-state quantum system. For example: spin-up/spin-down electron or left/right polarized photon.
■ The one qubit system Alice (where $A=0,1$) is described by the state

$$
|\Psi\rangle=a_{A}|A\rangle=a_{0}|0\rangle+a_{1}|1\rangle
$$

where a_{0} and a_{1} are complex numbers.

Two Qubits

The two qubit system Alice and Bob (where $A, B=0,1$) is described by the state

$$
\begin{aligned}
& |\Psi\rangle=a_{A B}|A B\rangle \\
& \quad=a_{00}|00\rangle+a_{01}|01\rangle+a_{10}|10\rangle+a_{11}|11\rangle .
\end{aligned}
$$

EnTANGLEMENT

■ Example, separable state:

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|01\rangle=|0\rangle\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)
$$

Alice measures spin up, Bob can measure either spin up or spin down. This state is not entangled.

- Example, Bell state:

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle
$$

If Alice measures spin up, Bob has to measure spin up too! This state is entangled.

EPR PARADOX

■ 1935 Einstein-Podolsky-Rosen "paradox": Alice might be in Falmer and Bob in Alpha Centauri. Einstein called it "spooky" action at a distance.

- 1964 John Bell describes a way of testing experimentally this quantum non-locality versus Einstein's realism. (By the way, observe the time lag between theoretical idea and falsifiable prediction. Critics of string theory take note.)
■ 1982 Alain Aspect performs Bell's experiment: quantum mechanics wins out!

EnTANGLEMENT MEASURE

- The measure of the bipartite entanglement of Alice and Bob is given by the "two-tangle"

$$
\tau_{A B}=4\left|\operatorname{det} a_{A B}\right|^{2}=4\left|a_{00} a_{11}-a_{01} a_{10}\right|^{2}
$$

or equivalently

$$
\tau_{A B}=4\left|\operatorname{det} \rho_{A}\right|=4\left|\operatorname{det} \rho_{B}\right|
$$

where ρ_{A} and ρ_{B} are the reduced density matrices

$$
\rho_{A}=\operatorname{Tr}_{B}|\Psi\rangle\langle\Psi| \quad \rho_{B}=\operatorname{Tr}_{A}|\Psi\rangle\langle\Psi|
$$

- For normalized states

$$
0 \leq \tau_{A B} \leq 1
$$

ExAMPLES

- Example, separable state:

$$
\begin{gathered}
|\Psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|01\rangle \\
\tau_{A B}=0
\end{gathered}
$$

No entanglement.

- Example, Bell state:

$$
\begin{gathered}
|\Psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle \\
\tau_{A B}=1
\end{gathered}
$$

Maximal entanglement.

Symmetries of $\tau_{A B}$

■ Under $S L(2) a_{A}$ transforms as a 2 :

$$
\binom{a_{0}}{a_{1}} \rightarrow\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{a_{0}}{a_{1}}
$$

where

$$
\alpha \delta-\beta \gamma=1
$$

- Under $S L(2)_{A} \times S L(2)_{B}, a_{A B}$ transforms as a (2,2).
- $\tau_{A B}$ is invariant under $S L(2)_{A} \times S L(2)_{B}$ and under a discrete duality that interchanges A and B .

Three qubits

The three qubit system Alice, Bob and Charlie (where $A, B, C=0,1$) is described by the state

$$
\begin{aligned}
& |\Psi\rangle=a_{A B C}|A B C\rangle \\
& =a_{000}|000\rangle+a_{001}|001\rangle+a_{010}|010\rangle+a_{011}|011\rangle \\
& +a_{100}|100\rangle+a_{101}|101\rangle+a_{110}|110\rangle+a_{111}|111\rangle
\end{aligned}
$$

Hypermatrix

The 3-index quantity $a_{A B C}$ is an example of what Cayley termed a hypermatrix in 1845. Its elements may be represented by the cube

CAYLEY'S HYPERDETERMINANT

■ The tripartite entanglement of Alice, Bob and Charlie is given by the three-tangle

$$
\tau_{A B C}=4 \mid \text { Det } a_{A B C} \mid
$$

Coffman et al: arxivauant-ph/9007047
■ Det $a_{A B C}$ is Cayley's hyperdeterminant

$$
\begin{aligned}
\text { Det } a_{A B C}=-\frac{1}{2} & \varepsilon^{A_{1} A_{2}} \varepsilon^{B_{1} B_{2}} \varepsilon^{C_{1} C_{4}} \varepsilon^{C_{2} C_{3}} \varepsilon^{A_{3} A_{4}} \varepsilon^{B_{3} B_{4}} \\
& \cdot a_{A_{1} B_{1} C_{1}} a_{A_{2} B_{2} C_{2}} a_{A_{3} B_{3} C_{3}} a_{A_{4} B_{4} C_{4}}
\end{aligned}
$$

Miyake, Wadati: axivivuant-ph/0212146

- It is invariant under $S L(2)_{A} \times S L(2)_{B} \times S L(2)_{C}$, with $a_{A B C}$ transforming as a $(\mathbf{2}, \mathbf{2}, \mathbf{2})$, and under a discrete triality that interchanges A, B and C.

SYMMETRY

- Explicitly

$$
\begin{aligned}
& \text { Det } a_{A B C}= \\
& a_{000}^{2} a_{111}^{2}+a_{001}^{2} a_{110}^{2}+a_{010}^{2} a_{101}^{2}+a_{100}^{2} a_{011}^{2} \\
& -2\left(a_{000} a_{001} a_{110} a_{111}+a_{000} a_{010} a_{101} a_{111}\right. \\
& +a_{000} a_{100} a_{011} a_{111}+a_{001} a_{010} a_{101} a_{110} \\
& \left.+a_{001} a_{100} a_{011} a_{110}+a_{010} a_{100} a_{011} a_{101}\right) \\
& +4\left(a_{000} a_{011} a_{101} a_{110}+a_{001} a_{010} a_{100} a_{111}\right)
\end{aligned}
$$

SLOCC

■ In QIT the group $[S L(2)]^{n}$ is known as the n -qubit SLOCC equivalence group.

- SLOCC $=$ Stochastic Local Operations and Classical Communication
- For one qubit $\operatorname{SLOCC}=S L(2)_{A}$ and a_{A} transforms as a 2:

$$
\binom{a_{0}}{a_{1}} \rightarrow\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{a_{0}}{a_{1}}
$$

where

$$
\alpha \delta-\beta \gamma=1
$$

■ For three qubits $\mathrm{SLOCC}=S L(2)_{A} \times S L(2)_{B} \times S L(2)_{C}$ and $a_{A B C}$ transforms as a $(2,2,2)$.

Reissner-Nordström solution

The most general static spherically symmetric black hole solution of Einstein-Maxwell theory is given in spherical polar coordinates (t, r, θ, ϕ) by the Reissner-Nordström line-element

$$
\begin{aligned}
d s^{2}=- & \left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right)^{-1} d r^{2} \\
& +r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \quad A_{t}=\frac{Q}{r}
\end{aligned}
$$

where M and Q are the mass and electric charge of the black hole in units $G=\hbar=c=1$.

Surface gravity and the area

- Besides the mass and the charge which are measured at infinity there are two other quantities, surface gravity and the area, measured on the event horizon that are given by

$$
\kappa_{S}=\frac{\sqrt{M^{2}-Q^{2}}}{2 M\left(M+\sqrt{M^{2}-Q^{2}}\right)-Q^{2}}, \quad A=4 \pi\left(M+\sqrt{M^{2}-Q^{2}}\right)^{2} .
$$

- The R-N solution has two horizons determined by

$$
r_{ \pm}=M \pm \sqrt{M^{2}-Q^{2}}
$$

EXTREMAL BLACK HOLES

■ Cosmic censorship: If $M \geq|Q|$, the singularity at $r=0$ is hidden behind the event horizon; otherwise there is a naked singularity.

- Extremal black holes have $M=|Q|$. Two horizons, r_{+}and r_{-} coincide.
- This also allows classically stable multi-centered black hole solutions obeying a no-force condition: the gravitational attraction is exactly cancelled by the Coulomb repulsion.

Extremal and BPS BLACK holes

■ Extremal black holes obey generalised mass=charge conditions.
■ A black hole that preserves some unbroken supersymmetry (admitting one or more Killing spinors) is said to be BPS (after Bogomol'nyi-Prasad-Sommerfield) and non-BPS otherwise.

- All BPS black holes are extremal but extremal black holes can be BPS or non-BPS.

Quantum black holes

■ Hawking temperature

$$
T_{\mathrm{H}}=\frac{\kappa_{S}}{2 \pi}
$$

■ Bekenstein-Hawking entropy

$$
S_{\mathrm{BH}}=\frac{A}{4}
$$

Entropy and temperature

In the extremal case, the entropy is completely determined in terms of the charges

$$
S_{B H}=\frac{A}{4}=\pi Q^{2}
$$

and there is no Hawking radiation since

$$
T_{\mathrm{H}}=0
$$

Magnetic charge

If magnetic monopoles are included into the theory,

$$
A_{\phi}=P \cos \theta
$$

then a generalization to include magnetic charge P is obtained by replacing Q^{2} by $Q^{2}+P^{2}$ in the metric and other formulae.

BLACK HOLES IN SUPERGRAVITY

■ Supergravity incorporates bose-fermi symmetry: the spin-2 graviton can have $1 \leq \mathcal{N} \leq 8$ spin $3 / 2$ gravitino partners.

- The supergravity theories we shall consider have more than the one photon of Einstein-Maxwell theory. The $\mathcal{N}=2 S T U$ model has 4; the $\mathcal{N}=8$ model has 28 , so the black holes will carry 8 or 56 electric and magnetic charges, respectively.
- Both also involve scalar fields.

STU MODEL

- The STU supergravity model arises in string theory. Its bosonic sector consists of gravity coupled to 4 photons and three complex scalars, denoted S, T and U.
- The equations of motion display the symmetry $S L(2)_{S} \times S L(2)_{T} \times S L(2)_{U}$ and a discrete triality that interchanges S, T and U.

■ Duff, Liu, Rahmfeld: axivinep-th/9508094

STU BLACK HOLE ENTROPY

- A general static spherically symmetric STU black hole solution depends on 8 charges denoted $q_{0}, q_{1}, q_{2}, q_{3}, p^{0}, p^{1}, p^{2}, p^{3}$.
■ Black hole entropy S given by the one quarter the area of the event horizon. Hawking: 1975
- The extremal STU black hole entropy is a complicated function of the 8 charges :

$$
\begin{gathered}
(S / \pi)^{2}=-\left(p^{0} q_{0}+p^{1} q_{1}+p^{2} q_{2}+p^{3} q_{3}\right)^{2} \\
+4\left[\left(p^{1} q_{1}\right)\left(p^{2} q_{2}\right)+\left(p^{1} q_{1}\right)\left(p^{3} q_{3}\right)+\left(p^{3} q_{3}\right)\left(p^{2} q_{2}\right)\right. \\
\left.+q_{0} p^{1} p^{2} p^{2}-p^{0} q_{1} q_{2} q_{3}\right]
\end{gathered}
$$

Behrndt et al: axXivihep-th/9608059

Black hole/qubit correspondence

Duff: axivinepth/0601134 Identify STU with ABC and the 8 black hole charges with the 8 components of the three-qubit hypermatrix $a_{A B C}$,

$$
\left[\begin{array}{c}
p^{0} \\
p^{1} \\
p^{2} \\
p^{3} \\
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{c}
a_{000} \\
-a_{001} \\
-a_{010} \\
-a_{100} \\
a_{111} \\
a_{110} \\
a_{101} \\
a_{011}
\end{array}\right]
$$

Find that the black hole entropy is related to the 3 -tangle as in

$$
S=\pi \sqrt{\mid \text { Det } a_{A B C} \mid}=\frac{\pi}{2} \sqrt{\tau_{A B C}}
$$

Turns out to be the tip of an iceberg.

FURTHER DEVELOPMENTS

- Further papers have written a more complete dictionary, which translates a variety of phenomena in one language to those in the other, for example:
- The attractor mechanism on the black hole side is related to optimal local distillation protocols on the QI side Levay: axivorore 2799 [hep-th]

■ Moreover, supersymmetric and non-supersymmetric black holes corresponding to the suppression or non-suppression of bit-flip errors Levay: axivi:0708 2790 hep-th]

- Classification of black holes matches classification of qubit entanglement
Kallosh, Linde: hep th/060206
Borsten, Dahanayake, Duff, Ebrahim, Rubens: axXiv0809 4685 [hep-th]

LOCAL ENTROPY

■ Besides Det a, another useful quantity is the local entropy S_{A}, which is a measure of how entangled A is with the pair BC :

$$
S_{A}=4 \operatorname{det} \rho_{A}
$$

where ρ_{A} is the reduced density matrix

$$
\rho_{A}=\operatorname{Tr}_{B C}|\Psi\rangle\langle\Psi|,
$$

and with similar formulae for B and C.

EnTANGLEMENT CLASSES

Class	Condition				
	$\|\psi\|^{2}$	S_{A}	S_{B}	S_{C}	$\operatorname{Det} a$
Zero	0	0	0	0	0
$A-B-C$	>0	0	0	0	0
$A-B C$	>0	0	>0	>0	0
$B-C A$	>0	>0	0	>0	0
$C-A B$	>0	>0	>0	0	0
W	>0	>0	>0	>0	0
GHZ	>0	>0	>0	>0	$\neq 0$

- Dur, Vidal, Cirac: arXivquant-ph/0005115

Representatives

■ Null class: 0

- Separable class $A-B-C$ (product states): $q_{0}|111\rangle$

■ Biseparable class (bipartite entanglement):

$$
\begin{aligned}
& A-B C: q_{0}|111\rangle-p^{1}|100\rangle \\
& B-C A: q_{0}|111\rangle-p^{2}|010\rangle \\
& C-A B: q_{0}|111\rangle-p^{3}|001\rangle
\end{aligned}
$$

■ Class W (maximizes bipartite entanglement):

$$
-p^{1}|100\rangle-p^{2}|010\rangle-p^{3}|001\rangle
$$

- Class GHZ (genuine tripartite entanglement):

$$
q_{0}|111\rangle-p^{1}|100\rangle-p^{2}|010\rangle-p^{3}|001\rangle
$$

BLACK HOLES

QUBITS

■ $N=$ number of charges / number of kets

No FORCE CONDITION

- The 4-charge solution with just $q_{0}, p^{1}, p^{2}, p^{3}$ switched on obeys the no-force condition and may be regarded as a bound state of four individual black holes with charges $q_{0}, p^{1}, p^{2}, p^{3}$, with zero binding energy.
- This translates into the special GHZ (or Mermin) state

$$
|\Psi\rangle=-p^{3}|001\rangle-p^{2}|010\rangle-p^{1}|100\rangle+q_{0}|111\rangle .
$$

■ Flipping the sign of q_{0} flips the sign of $\operatorname{Det} a_{A B C}$ and corresponds to going from $1 / 8$ susy (BPS) to 0 susy (non-BPS) black hole.
■ Similarly GHZ state

$$
|\Psi\rangle=p^{0}|000\rangle+q_{0}|111\rangle .
$$

corresponds to non-BPS black hole.

16 PARAMETERS

- In addition to the 4 electric and 4 magnetic charges, an STU black hole is also specified by its mass, its NUT charge (gravity analog of magnetic charge) and the values of the 6 real scalars at infinity, making 16 parameters in all.
■ Suggests a correspondence with 4 qubits

$$
|\Psi\rangle=a_{A B C D}|A B C D\rangle
$$

■ Levay: arXiv:1004.3639 [hep-th]

Families/Classes

■ Under this finer classification there are 31 families of black hole

■ Bergshoeff et al: axiviv00024438 [hep-th]
Bossard, Michel, Pioline: axiv:0002.4438 [heptib]
■ Suggests a way to classify 4 qubit entanglement Borsten, Dahanayake, Duff, Marrani, Rubens

```
Phys. Rev. Lett. 105:100507,2010 arXiv:1002.4223 [hep-th]
```


Families/Classes

■ Four-qubit literature is confusing

- Classes: vanishing or not of SLOCC covariants/invariants
- Families: normal forms parameterized by SLOCC invariants e.g.

$$
\begin{align*}
G_{a b c d} & =\frac{a+d}{2}(|0000\rangle+|1111\rangle)+\frac{a-d}{2}(|0011\rangle+|1100\rangle) \\
& +\frac{b+c}{2}(|0101\rangle+|1010\rangle)+\frac{b-c}{2}(|1001\rangle+|0110\rangle) . \tag{1}
\end{align*}
$$

■ Example of difference: the separable EPR-EPR state $(|00\rangle+|11\rangle) \otimes(|00\rangle+|11\rangle)$, obtained by setting $b=c=d=0$, belongs to the $G_{a b c d}$ family, whereas in the covariant approach it forms its own class.

■ Four-qubit literature is contradictory

Paradigm	Author	Year	result mod perms		result incl. perms	
classes	Wallach	2005	?		90	
	Lamata et al,	2006	8 genuine, 8 genuine,	5 degenerate	$\begin{aligned} & 16 \text { genuine }, \\ & 8 \text { genuine, } \\ & \geq 31 \text { genuine, } \\ & 11 \text { genuine, } \end{aligned}$	18 degenerate 15 degenerate 18 degenerate 6 degenerate
	Cao et al	2007		4 degenerate		
	Li et al	2007		?		
	Akhtarshenas et al	2010		?		
families	Verstraete et al	2002		9	?	
	Chretrentahl et al	2007		9	?	
	String theory	2010		9	31	

■ String theory lends itself to the families approach

Extremal black hole / 4 Qubit CORRESPONDENCE

Extremal black holes classification of $S T U$ model

\downarrow

31 real nilpotent orbits of $S O(4,4)$ acting on the $\mathbf{2 8}$

Kostant-Sekiguchi Correspondence

31 complex nilpotent orbits of $S L(2)^{4}$ acting on the $(\mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{2})$

4 qubits entanglement classification
Borsten, Dahanayake, Duff, Marrani, Rubens

$S T U$ black holes	perms	nilpotent rep		family
trivial	1	0	\in	$G_{a b c d}$
doubly-critical $\frac{1}{2} \mathrm{BPS}$	6	$\|0110\rangle$	\in	$L_{a b c_{2}}$
critical, $\frac{1}{2} \mathrm{BPS}$ and non-BPS	4	$\|0110\rangle+\|0011\rangle$	\in	$L_{a_{2} b_{2}}$
lightlike $\frac{1}{2} \mathrm{BPS}$ and non-BPS	1	$\|0110\rangle+\|0101\rangle+\|0011\rangle$	\in	$L_{a_{2} 0_{3 \oplus \overline{1}}}$
large non-BPS $z_{H} \neq 0$	1	$\frac{i}{\sqrt{2}}(\|0001\rangle+\|0010\rangle-$ $\|0111\rangle-\|1011\rangle)$	\in	$L_{a b_{3}}$
"extremal"	6	$i\|0001\rangle+\|0110\rangle-i\|1011\rangle$	\in	$L_{a_{4}}$

$S T U$ black holes
large $\frac{1}{2} \mathrm{BPS}$ and
non-BPS $z_{H}=0$

$$
|0000\rangle+|0111\rangle
$$

$$
\in \quad L_{0_{3 \oplus \overline{1}} 0_{3 \oplus \overline{1}}}
$$

$$
\text { "extremal" } \begin{array}{cc}
|0000\rangle+|0101\rangle+ \\
|1000\rangle+|1110\rangle
\end{array}
$$

| "extremal" | 4 | $\|0000\rangle+\|0101\rangle+$
 $\|1000\rangle+\|1110\rangle$ |
| :--- | :---: | :--- |$\in \quad L_{0_{5 \oplus \overline{3}}}$

- Total number of families without permutations $=9$
- Total number of families including permutations $=31$

■ NB Trivially permuting the 9 yields many more than 31; still need to check equivalence

FALSIFIABLE PREDICTIONS

- Previous result 2006:

STU black holes imply 5 ways to entangle three qubits Already known in QI; verified experimentally

■ New result 2010:
STU black holes imply 31 ways to entangle four qubits Not already known in QI: in principle testable in the laboratory

