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The QCD equation of state

pressure from MC simulation

(Sz. Borsanyi et al, JHEP 1011 (2010) 077)

Regimes

QGP at high T : 8 gluon + 3 quark dof

hadrons at low T : Hadron Resonance Gas
(HRG)

in between continuous crossover phase
transition (PT) with “Tc” = 156 MeV
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At high temperature: Quark Gluon Plasma (QGP)

3-loop HTL calculation
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(N. Haque, et.al., e-Print: arXiv:1402.6907 )

Lesson

Correct description for temperatures T ∼> 2Tc ≈ 300MeV.
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At low temperature: hadrons

HRG: free hadrons with fixed (T = 0) masses from experiments

Thermodynamics

(Sz. Borsanyi, G. Endrodi, Z. Fodor, A.J., S. D. Katz)

( S. Krieg, C. Ratti, K.K. Szabo, JHEP 1011 (2010) 077)

Chiral susceptibility
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(P. Huovinen and P. Petreczky, Nucl. Phys. A 837)

(26 (2010) [arXiv:0912.2541 [hep-ph]].)

Lesson

HRG describes thermodynamics at T < 150− 180MeV
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Phase transition region

Temperature range of 150MeV ∼< T ∼< 300MeV.

Columbia plot
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Physical point

What happens in the crossover regime?
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What happens with the hadrons at Tc?

HRG contains infinitely many dof ⇒ PSB =∞
singularity in PSB at TH Hagedorn temperature.
(R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965); W. Broniowski, et.al. PRD 70, 117503 (2004))

⇒ we must get rid of the hadrons before TH .

no change of ground state (1st or 2nd order phase transition)
⇒ hadrons must not disappear at once

(J. Liao, E.V. Shuryak PRD73 (2006) 014509 [hep-ph/0510110])

MC: hadronic states are observable even at T ∼ 1.2-1.5Tc !
(S. Datta et.al. PRD 69, 094507 (2004) [hep-lat/0312037])

Proposal

150MeV ∼< T ∼< 300− 400MeV is the melting hadron phase (hadron
fluid phase). Quarks appear gradually with the disappearance of
the hadrons. (ionization-recombination, chemistry, Gribov)

Particle spectra and the QCD phase transition University of Sussex, March 31, 2014. 9 / 49
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What is melting?

Heuristically: disappearance of a particle species

Usual approaches in the literature

fast growing (thermal) mass (J. Liao, E.V. Shuryak PRD73 (2006) 014509 )

Would explain why we do not see quarks at low energy and hadrons

at high energy

⇒ in contradiction with lattice results

FRG: all states are present, but with different wave fct.
renormalization
⇒ but Z drops out from pressure

Question

How can a particle state disappear?

Particle spectra and the QCD phase transition University of Sussex, March 31, 2014. 12 / 49
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What is a particle? Free systems.

∃ conserved particle number operator: N̂ =
∑
k

a†kak, [Ĥ, N̂] = 0

definition

particle: energy (and momentum) eigenstate in N = 1 sector.

Moreover:

one particle spectrum contains a single line at E = E (p)

(dispersion relation)

time evolution |t,E , n〉 = e−iEt |0,E , n〉 is unique from any
initial condition

in particular linear response function Gr has the same time
dependence, also at T > 0

particles are also thermodynamical degrees of freedom, eg.

PSB =
π2T 4

90

(
Nb +

7

8
Nf

)
is the Stefan-Boltzmann limit.
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Identifications

Since these are true in free particle case, we intuitively identify the
following concepts:

particle number operator

spectral line (energy eigenstate)

general time evolution

linear response theory

linear response theory at T > 0

statistical/thermodynamical definition

They all mean “particle”.

Warning

These all mean different things in an interacting theory!

. . . and we get mixed up, when these definitions are contradicting

Particle spectra and the QCD phase transition University of Sussex, March 31, 2014. 14 / 49
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Spectrum at zero temperature

Usually in interacting systems 6 ∃ enough conserved quantities
to fully describe the system
⇒ 6 ∃ particle definition through particle number

Exception: integrable systems

energy levels of different N sectors mix together! At T = 0
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multiple energy levels, non-unique time dependence

BUT ∃ discrete E-level
⇒ linear response for long times: Ze−iEt + Ct−3/2e−iEthr t

⇒ define particles as asymptotic particle states
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General case

no clear distinction between particle and continuum states, if

 1e-06
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(AJ, PRD76 (2007) 125004 [hep-ph/0612268])

zero mass excitation (no gap)

unstable particles

T > 0 environment

⇒ 6 ∃ asymptotic states
(in practically all realistic cases. . . )

linear response: %(t) = Ze−iEt−γt + fbckg (t) = pole + cut

for large Z and small γ: complex pole dominates long time
evolution ⇒ quasiparticles
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Quasiparticles and thermodynamics

In QM quasiparticles give fundamental particle-like
contribution to free energy (Beth, Uhlenbeck)

δZ ∼
∫∞

0
dω
π
∂δ
δω e
−βω ∼ e−βE

since δ`(ε) phase shift jumps π-t at pole ω = E

(Landau, Lifsitz V.)

true also for bound states

In QFT this is true only for well separated quasiparticle peaks
(R.F Dashen, R. Rajaraman, PRD10 (1974), 694.)

In scattering theory: quasiparticles are included in S-matrix as
Breit-Wigner resonances with complex amplitudes
unitarity ⇒ constraints
(H. Feshbach, Ann. Phys. 43, 110 (1967); L. Rosenfeld, Acta Phys. Polonica A38, 603 (1970); M. Svec,

PRD64, 096003 (2001) [hep-ph/0009275].)

Particle spectra and the QCD phase transition University of Sussex, March 31, 2014. 18 / 49
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The particle concept

concept of free particles can be saved as quasiparticles

spectral definition ⇒ broadened spectral line

linear response theory ⇒ unique long time dependence

thermodynamical degree of freedom ⇒ for well separated
case

there are important differences

Quasiparticles are not energy eigenstates!

collective excitations with environment dependent spectral
weights ⇒ mass, width environment dependent
⇒ they may give not particle-like contribution to P.

. . .

Particle spectra and the QCD phase transition University of Sussex, March 31, 2014. 19 / 49
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Condition for unitarity

Local Hamiltonian? Exponential damping ⇒ Ĥ → Ĥ − iγ

⇒ loss of unitarity!

Solution

For consistent description one has to take into account the
complete spectrum, not just the quasiparticle peak!

Physics: quasiparticle 6 ∃ independently of environment.
(Ward, Luttinger, Phys.Rev. 118 (1960) 1417; G. Baym, Phys. Rev. 127 (1962) 1391; Cornwall Jackiw,

Tomboulis, Phys.Rev. D10 (1974) 2428-2445;J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

From where can we take the spectrum?

Φ-derivable (2PI) or SD approach: G−1 = G−1
0 − Σ(G ).

We can also use experimental inputs for %.

Particle spectra and the QCD phase transition University of Sussex, March 31, 2014. 21 / 49



Introduction The particle concept Physical applications QCD thermodynamics Conclusions

Typical spectral functions

Φ4 model 2 loop 2PI, T = m
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Typical spectral functions
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Lagrangian representation of general spectral functions

L = 1
2 Φ∗(p)K(p)Φ(p)

unique %→ K relation:

Gret(p) =
∫

dω
2π

%(ω,p)
p0−ω+iε , K = ReG−1

R

defines a consistent nonlocal field theory:
unitary, causal, Lorentz-invariant, E ,p conserving
(just like in 2PI case)

(AJ. Phys.Rev. D86 (2012) 085007 [arXiv:1206.0865])
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Thermodynamics from the spectral function

Technically:
→ energy-momentum tensor from Noether currents

→ energy density ε = 1
Z Tr e−βĤ T̂00

→ averaging with KMS relations

→ free energy, pressure from thermodynamical relations

Result:

ε =

∫
d4p

(2π)4
E (p)n(p0)%(p), E (p) = p0

∂K
∂p0
−K

plausible: sum up n(p) weighted energy values

classical mechanical analogy: K quadratic kernel
”Lagrangian” with p0 ∼ q̇ ⇒ E (p) energy.

but: energy values depend on K and so on %

ε is a nonlinear functional of %!

ε does not depend on the normalization of %.
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Spectral function in gauge theories

Gauge theories are complicated – solvable simplification:
resummation of all photon contribution in 1-component QED
(Bloch-Nordsieck resummation)
One can compute the spectral function at finite temperature. In
comoving frame:(A.J, P. Mati, Phys.Rev. D87 (2013) 125007 [arXiv:1301.1803])

%(w) =
Nαβ sinα eβw/2

coshβw − cosα

∣∣∣∣Γ(1 +
α

2π
+ i

βw

2π

)∣∣∣∣−2

,
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function of w = p0 −m

Near the peak: Lorentzian with width
γ = αT

p0 � m power law: ∼ p
−1−α/π
0

p0 � m exponential: ∼ e2βw
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Real time dependence

Fourier transform of the result: %(t) = e−imt %̄(t)
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for long times Tt � 1: ∼ e−αeff (u)Tt quasiparticle behaviour

for short times Tt � 1: ∼ 1− c(Tt)α/π not quasiparticle-like!

formation time of the quasiparticle: t ∼ β!

at T → 0 %(t)→ e−imt , but we have to wait long to see the
QP behaviour.
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The Gibbs paradox

J.W.Gibbs (1839-1903)

(J.W.Gibbs, 1875-1878; E.T.Jaynes, 1996)

take two containers with (ideal) gases:
initially n1, V1 n2,V2, p1 = p2, T1 = T2

mix them: V = V1 + V2, n = n1 + n2

entropy difference (f = n1/n2)

∆S = nR logV − R(n1 logV1 − n2 logV2)

= −nR(f log f + (1− f ) log(1− f ))

⇒ −nR log 2, for n1 = n2, V1 = V2.

Independent of the gas properties,
provided they are different
e.g. let the two gases have the
same quantum numbers, but different
masses
⇒ discontinuity at ∆m = 0

discuntinuous entropy

∆S

S

m∆
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Understanding Gibbs paradox

indistinguishability from Fock-space construction:
|0〉 vacuum, a†p p-momentum particle creation operator
⇒ |p1, n1, . . .pi , ni . . .〉 = a†n1

p1
. . . a†ni

pi
. . . |0〉

multiparticle state ⇒ single state, permutation ± sign

several gases: a(1)†
p , a(2)†

p , . . . we assign new creation operators
for all species
we have to fix the number of species in advance!

But in Gibbs paradox ∆m is the control parameter ⇒ we
should be able to compute S(∆m)

To describe Gibbs paradox number of particle species must be
a dynamical parameter
(integer number?)
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Gibbs paradox in interacting systems

Without interaction the energy levels (spectral lines) are infinitely
thin lines. In interacting gases the spectral lines broaden.

spectrum in interacting gases

E E

E E

1st plot: 2 lines
4th plot: one broad peak

Gibbs: particles are distinguishable,
if a mixed gas can be separated by
some means. Going from case 1 to
4 this is harder and harder!

Γ width sets resolution ⇒ in
case Γ ∼> ∆m we do not see
separate peaks!

real question is quantitative: how
does it appear in thermodynamics?
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Thermodynamics

Change of spectrum:
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Temperature dependence of a typical spectral function

Spectrum in QFT: QP peak(s) and multiparticle continuum.

At finite T

continuum height increases, and so

QP width grows
quasiparticle peaks merge into the continuum
relative height of quasiparticle peak decreases (sum rule)

Lorentz-invariance is broken

thermal mass

T -dependent couplings

Strategy:
compute thermodynamics for
generic %Q(p0, |p|;T , µ).

T -variation of a spectrum
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Increasing continuum, fixed mass

Trial spectral functions with 3 QP peaks and continuum
⇒ typical for bound states

Spectra
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General behaviour

Pressure decreases for increasing continuum height; for pure
continuum the pressure is very small!
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Effective number of degrees of freedom

Characterization: pressure is roughly proportional to the free gas
pressure

⇒ Neff (T ) =
P(T )

P0(T )
is appr. T -independent

effective ndof
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T -variation: green band

fit a streched exponential
e−(γ/γ0)c

where γ0 = 0.38, c = 1.6.

Physics

We describe vanishing particle species! ⇒ melting
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Momentum dependence of the spectral function

Extreme case of spatial momentum dependence:

for small momenta: Dirac-delta (free particle)

for large momenta: very broad spectral function

Model

simplified model for hadrons

for quarks (asymptotic freedom) we expect inverse behaviour

broad spectral function gives no contribution to P

⇒ effective cutoff of spatial integration

for simplicity we choose Λeff = gT

(g can be T -dependent)
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Effective number of dof

Pressure
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Statistical description

HRG: huge # of hadronic contributions, each small!
⇒ statistical description is needed

we need spectra. . . hard to obtain
⇒ idealized, simplified picture for hadron masses and widths.

Particle spectra and the QCD phase transition University of Sussex, March 31, 2014. 42 / 49



Introduction The particle concept Physical applications QCD thermodynamics Conclusions

Hadron masses: Coulomb spectrum of QCD

QCD bound state dynamics cannot be solved. . .
experimental evidence: exponentially rising energy level density

( W. Broniowski, W. Florkowski and L. Y. .Glozman,

Phys. Rev. D 70, 117503 (2004) [hep-ph/0407290].)

statistical description:

%hadr (m) ∼ (m2 + m2
0)ae−m/TH

Hagedorn spectrum

several fits (also a = 0) possible
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Thermodynamics with free hadrons

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200  250  300  350

p
/T

4

T (MeV)

MC data

fit

 0

 1

 2

 3

 4

 5

 0  50  100  150  200  250  300  350

I/
T

4

T (MeV)

MC data

fit

MC data from BMW collaboration
(Sz. Borsanyi et al, JHEP 1011 (2010) 077)

Hagedorn fit: 5000 hadronic resonances,
m1 = 120MeV, TH = 240MeV, a = 0

for infinitely many resonances: divergent at T > TH

overestimates pressure above ≈ 200MeV.

Particle spectra and the QCD phase transition University of Sussex, March 31, 2014. 44 / 49



Introduction The particle concept Physical applications QCD thermodynamics Conclusions

Melting: number of hadronic/partonic excitations

Pressure

Phadr (T ) = e−G
(hadr)
eff

N∑
n∈hadrons

P0(T ,mn), G
(hadr)
eff = aT b,

PQGP (T ) = e−G
(part)
eff

∑
n∈partons

P0(T ,mn), G
(part)
eff = G0 + ce−dG

(hadr)
eff .

We use oversimplified description

continuum height increases with # of decay channels
⇒ effective cut-off in hadron mass
(J. Cleymans, D. Worku, Mod. Phys. Lett. A 26, 1197 (2011).)

assumed same width, height for all hadronic/partonic channels

most simple choice for hadronic Geff ∼ γb (stretched
exponential) and γ ∼ T

for partons: take into account the number of hadronic modes
correlated parton-hadron description
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Full QCD pressure

Fit the model parameters to MC data ⇒ good agreement
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Full QCD pressure

Different fits
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properties

T ∼< Tc : HRG fully describes thermodynamics

[Tc , 2Tc ], [2Tc , 3Tc ]: hadron or parton dominated QCD
thermodynamics; both dof are present

T ∼> 3Tc : QGP
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Full QCD pressure

Different fits
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Corollary

Tc is not a hadron – QGP transition temperature: partons
just start to appear there

full QGP only for T ∼> 2.5− 3Tc : 6 ∃ mechanism which could
do it faster
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Conclusions

excitations can be characterized by their spectra

not necessarily particle-like:

non-exponential time dependence
Gibbs paradox, melting: (continuous) disappearance of species

QCD thermodynamics at physical point at µ = 0

at Tc ≈ 156 MeV partons start to appear
T ∼< Tc : hadrons
T ∈ [Tc , 3Tc ]: mixed phase
T ∼> 3Tc : QGP

hadron phyiscs + melting + QGP
⇒ perturbative QCD thermodynamics?
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