Introduction	The particle concept	Physical applications	QCD thermodynamics	Conclusions

Particle spectra and the QCD phase transition

A. Jakovác

ELTE, Dept. of Atomic Physics Budapest, Hungary

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 1 / 49

A 10

Introduction 000000	The particle concept	Physical applications	QCD thermodynamics	Conclusion

Contents

- 2 The particle concept
 - Particles in free systems
 - Particles in interacting systems
 - Mathematical treatment of quasiparticles

Operation Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting
- QCD thermodynamics
 - Statistical model of QCD excitations

ntroduction	The particle concept	Physical applications	QCD thermodynamics	Conclu

Outlines

2 The particle concept

- Particles in free systems
- Particles in interacting systems
- Mathematical treatment of quasiparticles

3 Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

4 QCD thermodynamics

• Statistical model of QCD excitations

ntroduction 000000	The particle concept	Physical applications	QCD thermodynamics	Conclusio

Outlines

2 The particle concept

- Particles in free systems
- Particles in interacting systems
- Mathematical treatment of quasiparticles

3 Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

4 QCD thermodynamics

• Statistical model of QCD excitations

Physical applications

QCD thermodynamics

Conclusions

The QCD equation of state

The particle concept 000000000000000 Physical applications

QCD thermodynamics

Conclusions

The QCD equation of state

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 5 / 49

Introduction The particle concept Operations Operations

At high temperature: Quark Gluon Plasma (QGP)

University of Sussex, March 31, 2014. 6 / 49

B b

Introduction The particle concept Operations Operations

At high temperature: Quark Gluon Plasma (QGP)

University of Sussex, March 31, 2014. 6 / 49

B b

At high temperature: Quark Gluon Plasma (QGP)

University of Sussex, March 31, 2014. 6 / 49

B b

At high temperature: Quark Gluon Plasma (QGP)

Lesson

Correct description for temperatures $T \gtrsim 2T_c \approx 300 \,\mathrm{MeV}$.

Particle spectra and the QCD phase transition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

At low temperature: hadrons

HRG: free hadrons with fixed (T = 0) masses from experiments

At low temperature: hadrons

HRG: free hadrons with fixed (T = 0) masses from experiments

At low temperature: hadrons

HRG: free hadrons with fixed (T = 0) masses from experiments

HRG describes thermodynamics at $T < 150 - 180 \,\mathrm{MeV}$

-

The particle concept

Physical applications

QCD thermodynamics

Conclusions

Phase transition region

Temperature range of $150 \,\mathrm{MeV} \lesssim T \lesssim 300 \,\mathrm{MeV}$.

Mechanisms of the PT deconfinement: 1st order PT hadrons become unstable order parameter: Polyakov-loop • valid at $m_{u,d,s} \to \infty$ (quenched) chiral phase transition: 1st order PT chiral condensate unstable • order parameter: $\langle \Psi \Psi \rangle$ • valid at $m_{u,d,s} \rightarrow 0$ (chiral case)

The particle concept

Physical applications

QCD thermodynamics

Conclusions

Phase transition region

Temperature range of $150 \,\mathrm{MeV} \lesssim T \lesssim 300 \,\mathrm{MeV}$.

Physical point

What happens in the crossover regime?

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 8 / 49

э

イロト イポト イヨト イヨト

What happens with the hadrons at T_c ?

• HRG contains infinitely many dof $\Rightarrow P_{SB} = \infty$ singularity in P_{SB} at T_H Hagedorn temperature.

(R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965); W. Broniowski, et.al. PRD 70, 117503 (2004))

- \Rightarrow we must get rid of the hadrons before T_H .
- no change of ground state (1st or 2nd order phase transition)

 \Rightarrow hadrons must not disappear at once

(J. Liao, E.V. Shuryak PRD73 (2006) 014509 [hep-ph/0510110])

• MC: hadronic states are observable even at $T \sim 1.2-1.5T_c!$

(S. Datta et.al. PRD 69, 094507 (2004) [hep-lat/0312037])

イロト イポト イヨト イヨト

What happens with the hadrons at T_c ?

• HRG contains infinitely many dof $\Rightarrow P_{SB} = \infty$ singularity in P_{SB} at T_H Hagedorn temperature.

(R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965); W. Broniowski, et.al. PRD 70, 117503 (2004))

- \Rightarrow we must get rid of the hadrons before T_H .
- no change of ground state (1st or 2nd order phase transition)

 \Rightarrow hadrons must not disappear at once

(J. Liao, E.V. Shuryak PRD73 (2006) 014509 [hep-ph/0510110])

• MC: hadronic states are observable even at $T \sim 1.2-1.5 T_c!$

(S. Datta et.al. PRD 69, 094507 (2004) [hep-lat/0312037])

Proposal

 $150\,{\rm MeV} \lesssim T \lesssim 300-400\,{\rm MeV}$ is the melting hadron phase (hadron fluid phase). Quarks appear gradually with the disappearance of the hadrons. (ionization-recombination, chemistry, Gribov)

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 9 / 49

э

イロン 不通 とうほう イロン

Outlines

2 The particle concept

- Particles in free systems
- Particles in interacting systems
- Mathematical treatment of quasiparticles

3 Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

4 QCD thermodynamics

• Statistical model of QCD excitations

5 Conclusions

- 4 同 ト 4 ヨ ト 4 ヨ ト

Outlines

2 The particle concept

• Particles in free systems

- Particles in interacting systems
- Mathematical treatment of quasiparticles

3 Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

4 QCD thermodynamics

Statistical model of QCD excitations

5 Conclusions

- 4 同 6 4 日 6 4 日 6

The particle concept

Physical applications

QCD thermodynamics

What is melting?

Heuristically: disappearance of a particle species

-

Usual approaches in the literature

- fast growing (thermal) mass (J. Liao, E.V. Shuryak PRD73 (2006) 014509) Would explain why we do not see quarks at low energy and hadrons at high energy
 - \Rightarrow in contradiction with lattice results
- FRG: all states are present, but with different wave fct. renormalization
 - \Rightarrow but Z drops out from pressure

The particle concept

Physical applications

QCD thermodynamics

What is melting?

Heuristically: disappearance of a particle species

-

Usual approaches in the literature

- fast growing (thermal) mass (J. Liao, E.V. Shuryak PRD73 (2006) 014509) Would explain why we do not see quarks at low energy and hadrons at high energy
 - \Rightarrow in contradiction with lattice results
- FRG: all states are present, but with different wave fct. renormalization
 - \Rightarrow but Z drops out from pressure

Question

How can a particle state disappear?

What is a particle? Free systems.

 \exists conserved particle number operator: $\hat{N} = \sum_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}, \quad [\hat{H}, \hat{N}] = 0$

definition

particle: energy (and momentum) eigenstate in N = 1 sector.

Moreover:

- one particle spectrum contains a single line at $E = E(\mathbf{p})$ (dispersion relation)
- time evolution $|t, E, n\rangle = e^{-iEt} |0, E, n\rangle$ is unique from any initial condition
- in particular linear response function G_r has the same time dependence, also at T > 0
- particles are also thermodynamical degrees of freedom, eg. $P_{SB} = \frac{\pi^2 T^4}{90} \left(N_b + \frac{7}{8} N_f \right) \text{ is the Stefan-Boltzmann limit.}$

Introduction 000000	The particle concept	Physical applications	QCD thermodynamics 0000000	Conclusions

Identifications

Since these are true in free particle case, we intuitively identify the following concepts:

- particle number operator
- spectral line (energy eigenstate)
- general time evolution
- linear response theory
- linear response theory at T > 0
- statistical/thermodynamical definition

They all mean "particle".

Introduction 000000	The particle concept	Physical applications	QCD thermodynamics 0000000	Conclusions

Identifications

Since these are true in free particle case, we intuitively identify the following concepts:

- particle number operator
- spectral line (energy eigenstate)
- general time evolution
- linear response theory
- linear response theory at T > 0
- statistical/thermodynamical definition

They all mean "particle".

Warning

These all mean different things in an interacting theory!

... and we get mixed up, when these definitions are contradicting

troduction 00000	The particle concept	Physical applications	QCD thermodynamics	Conclu

Outlines

2 The particle concept

• Particles in free systems

• Particles in interacting systems

• Mathematical treatment of quasiparticles

3 Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

4 QCD thermodynamics

• Statistical model of QCD excitations

Spectrum at zero temperature

 Usually in interacting systems *A* enough conserved quantities to fully describe the system

 \Rightarrow $\not\exists$ particle definition through particle number Exception: integrable systems

• energy levels of different N sectors mix together! At T = 0

- multiple energy levels, non-unique time dependence
- **BUT** \exists discrete E-level
 - \Rightarrow linear response for long times: $Ze^{-iEt} + Ct^{-3/2}e^{-iE_{thr}t}$
 - ⇒ define particles as asymptotic particle states

Introduction 000000	The particle concept	Physical applications	QCD thermodynamics	Conclusions
General ca	ase			

no clear distinction between particle and continuum states, if

- zero mass excitation (no gap)
- unstable particles
- T > 0 environment
- \Rightarrow \nexists asymptotic states (in practically all realistic cases...)

- linear response: $\varrho(t) = Ze^{-iEt-\gamma t} + f_{bckg}(t) = \text{pole} + \text{cut}$
- for large Z and small γ: complex pole dominates long time evolution ⇒ quasiparticles

Introduction The particle concept Physical applications QCD thermodynamics Conclusions

Quasiparticles and thermodynamics

• In QM quasiparticles give fundamental particle-like contribution to free energy (Beth, Uhlenbeck)

 $\delta Z \sim \int_0^\infty \frac{d\omega}{\pi} \frac{\partial \delta}{\delta \omega} e^{-\beta \omega} \sim e^{-\beta E}$

since $\delta_{\ell}(\varepsilon)$ phase shift jumps π -t at pole $\omega = E$ (Landau, Lifsitz V.)

- true also for bound states
- In QFT this is true only for well separated quasiparticle peaks (R.F Dashen, R. Rajaraman, PRD10 (1974), 694.)
- In scattering theory: quasiparticles are included in S-matrix as Breit-Wigner resonances with complex amplitudes unitarity ⇒ constraints

(H. Feshbach, Ann. Phys. 43, 110 (1967); L. Rosenfeld, Acta Phys. Polonica A38, 603 (1970); M. Svec,

```
PRD64, 096003 (2001) [hep-ph/0009275].)
```

The particle concept

concept of free particles can be saved as quasiparticles

- spectral definition \Rightarrow broadened spectral line
- linear response theory \Rightarrow unique long time dependence
- thermodynamical degree of freedom \Rightarrow for well separated case

- 4 同下 4 三下 4 三下

The particle concept

concept of free particles can be saved as quasiparticles

- spectral definition \Rightarrow broadened spectral line
- linear response theory \Rightarrow unique long time dependence
- thermodynamical degree of freedom \Rightarrow for well separated case

there are important differences

- Quasiparticles are not energy eigenstates!
- o collective excitations with environment dependent spectral weights ⇒ mass, width environment dependent
 - \Rightarrow they may give not particle-like contribution to *P*.
- . . .

- 4 周 ト 4 三 ト 4 三 ト

troduction	The particle concept	Physical applications	QCD thermodynamics	Conclu
	000000000000000000000000000000000000000			

Outlines

2 The particle concept

- Particles in free systems
- Particles in interacting systems

• Mathematical treatment of quasiparticles

3 Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

4 QCD thermodynamics

• Statistical model of QCD excitations

Introduction The particle concept Physical applications QCD thermodynamics Conclusions

Condition for unitarity

For consistent description one has to take into account the complete spectrum, not just the quasiparticle peak!

Physics: quasiparticle $\not\exists$ independently of environment.

(Ward, Luttinger, Phys.Rev. 118 (1960) 1417; G. Baym, Phys. Rev. 127 (1962) 1391; Cornwall Jackiw,

Tomboulis, Phys.Rev. D10 (1974) 2428-2445; J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

From where can we take the spectrum?

- Φ -derivable (2PI) or SD approach: $G^{-1} = G_0^{-1} \Sigma(G)$.
- We can also use experimental inputs for ϱ .

イロト イポト イヨト イヨト

 $\hat{H} \rightarrow \hat{H} - i\gamma$

The particle concept

Physical applications

QCD thermodynamics

Conclusions

Typical spectral functions

.⊒ →

< 🗇 > < 🖃 >

The particle concept

Physical applications

QCD thermodynamics

Conclusions

Typical spectral functions

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 22 / 49

э

(4 同) (4 日) (4 日)

The particle concept

Physical applications

QCD thermodynamics

Conclusions

Typical spectral functions

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 22 / 49

QCD thermodynamics

Typical spectral functions

Φ^4 model 2 loop 2PI, T = m

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 22 / 49
The particle concept

Physical applications

QCD thermodynamics

Conclusions

Lagrangian representation of general spectral functions

$$\mathcal{L} = \frac{1}{2} \Phi^*(p) \mathcal{K}(p) \Phi(p)$$

• unique $\rho \to \mathcal{K}$ relation:

$$G_{ret}(\mathbf{p}) = \int rac{d\omega}{2\pi} rac{arrho(\omega,\mathbf{p})}{p_0 - \omega + iarepsilon}, \qquad \mathcal{K} = \, \mathrm{Re} \, G_R^{-1}$$

 defines a consistent nonlocal field theory: unitary, causal, Lorentz-invariant, *E*, p conserving (just like in 2PI case)

(AJ. Phys.Rev. D86 (2012) 085007 [arXiv:1206.0865])

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 23 / 49

<ロト <得ト < 3 ト < 3 ト

Thermodynamics from the spectral function

Technically:

- $\rightarrow~{\rm energy}{-}{\rm momentum}$ tensor from Noether currents
- \rightarrow energy density $\varepsilon = \frac{1}{Z} \operatorname{Tr} e^{-\beta \hat{H}} \hat{T}_{00}$
- $\rightarrow\,$ averaging with KMS $\bar{}$ relations
- \rightarrow free energy, pressure from thermodynamical relations Result:

$$\varepsilon = \int \frac{d^4 p}{(2\pi)^4} E(p) n(p_0) \varrho(p), \qquad E(p) = p_0 \frac{\partial \mathcal{K}}{\partial p_0} - \mathcal{K}$$

- plausible: sum up n(p) weighted energy values
- classical mechanical analogy: \mathcal{K} quadratic kernel "Lagrangian" with $p_0 \sim \dot{q} \Rightarrow E(p)$ energy.
- but: energy values depend on *K* and so on *ρ* ε is a nonlinear functional of *ρ*!
- ε does not depend on the normalization of ϱ .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- 2 The particle concept
 - Particles in free systems
 - Particles in interacting systems
 - Mathematical treatment of quasiparticles

Operation Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

QCD thermodynamics

Statistical model of QCD excitations

5 Conclusions

- 4 同 ト 4 ヨ ト 4 ヨ ト

2 The particle concept

- Particles in free systems
- Particles in interacting systems
- Mathematical treatment of quasiparticles

Operation Physical applications

• Formation time of a quasiparticle

- Gibbs paradox: indistinguishability of particles
- Particle melting

4 QCD thermodynamics

Statistical model of QCD excitations

5 Conclusions

Introduction The

The particle concept

Physical applications

QCD thermodynamics

Conclusions

Spectral function in gauge theories

Gauge theories are complicated – solvable simplification: resummation of all photon contribution in 1-component QED (Bloch-Nordsieck resummation)

One can compute the spectral function at finite temperature. In comoving frame:(A.J, P. Mati, Phys.Rev. D87 (2013) 125007 [arXiv:1301.1803])

$$\varrho(w) = \frac{N_{\alpha}\beta\sin\alpha e^{\beta w/2}}{\cosh\beta w - \cos\alpha} \left| \Gamma\left(1 + \frac{\alpha}{2\pi} + i\frac{\beta w}{2\pi}\right) \right|^{-2},$$

• $\alpha = e^2/(4\pi)$ structure consant

• function of
$$w = p_0 - m$$

• Near the peak: Lorentzian with width $\gamma = \alpha T$

•
$$p_0 \gg m$$
 power law: $\sim p_0^{-1-lpha/\pi}$

•
$$p_0 \ll m$$
 exponential: $\sim e^{2\beta w}$

Physical applications

QCD thermodynamics

Conclusions

Real time dependence

Fourier transform of the result: $\varrho(t) = e^{-imt}\overline{\varrho}(t)$

- for long times $Tt \gg 1$: $\sim e^{-\alpha_{eff}(u)Tt}$ quasiparticle behaviour
- for short times $Tt \ll 1$: $\sim 1 c(Tt)^{\alpha/\pi}$ not quasiparticle-like!
- formation time of the quasiparticle: $t \sim \beta!$
- at $T \to 0 \ \varrho(t) \to e^{-imt}$, but we have to wait long to see the QP behaviour.

(4 同) (4 日) (4 日)

- 2 The particle concept
 - Particles in free systems
 - Particles in interacting systems
 - Mathematical treatment of quasiparticles

Operation Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

4 QCD thermodynamics

Statistical model of QCD excitations

5 Conclusions

Physical applications

(J.W.Gibbs, 1875-1878; E.T.Javnes, 1996)

QCD thermodynamics

Conclusions

The Gibbs paradox

J.W.Gibbs (1839-1903)

take two containers with (ideal) gases: initially n_1 , V_1 n_2 , V_2 , $p_1 = p_2$, $T_1 = T_2$ mix them: $V = V_1 + V_2$, $n = n_1 + n_2$ entropy difference $(f = n_1/n_2)$ $\Delta S = nR \log V - R(n_1 \log V_1 - n_2 \log V_2)$ $= -nR(f \log f + (1 - f) \log(1 - f))$ $\Rightarrow -nR \log 2$, for $n_1 = n_2$, $V_1 = V_2$.

Independent of the gas properties, provided they are different e.g. let the two gases have the same quantum numbers, but different masses

 \Rightarrow discontinuity at $\Delta m = 0$

University of Sussex, March 31, 2014. 30 / 49

The particle concept Physical applications Introduction

Understanding Gibbs paradox

 indistinguishability from Fock-space construction: $|0\rangle$ vacuum, $a_{\rm p}^{\dagger}$ p-momentum particle creation operator $\Rightarrow |\mathbf{p}_1, n_1, \dots, \mathbf{p}_i, n_i \dots \rangle = a_{\mathbf{p}_1}^{\dagger n_1} \dots a_{\mathbf{p}_i}^{\dagger n_i} \dots |0\rangle$

multiparticle state \Rightarrow single state, permutation \pm sign

- several gases: $a_{\mathbf{p}}^{(1)\dagger}, a_{\mathbf{p}}^{(2)\dagger}, \dots$ we assign new creation operators for all species we have to fix the number of species in advance!
- But in Gibbs paradox Δm is the control parameter we should be able to compute $S(\Delta m)$
- To describe Gibbs paradox number of particle species must be a dynamical parameter (integer number?)

Gibbs paradox in interacting systems

Without interaction the energy levels (spectral lines) are infinitely thin lines. In interacting gases the spectral lines broaden.

- 1st plot: 2 lines
 4th plot: one broad peak
- Gibbs: particles are distinguishable, if a mixed gas can be separated by some means. Going from case 1 to 4 this is harder and harder!
- Γ width sets resolution \Rightarrow in case $\Gamma \gtrsim \Delta m$ we do not see separate peaks!
- real question is quantitative: how does it appear in thermodynamics?

Introduction The particle concept Physical applications

QCD thermodynamics

Conclusions

Thermodynamics

Change of spectrum:

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 33 / 49

< ∃⇒

(4 同) (4 回)

Physical applications QCD thermodynamics

Conclusions

Thermodynamics

Particle spectra and the QCD phase transition

The particle concept

Physical applications

QCD thermodynamics

Conclusions

Thermodynamics

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 33 / 49

Physical applications QCD thermodynamics

Conclusions

Thermodynamics

Particle spectra and the QCD phase transition

roduction	The particle concept	Physical applications	QCD thermodynamics
		000000000000000	

2 The particle concept

- Particles in free systems
- Particles in interacting systems
- Mathematical treatment of quasiparticles

Operation Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

QCD thermodynamics

• Statistical model of QCD excitations

5 Conclusions

Conclusions

Temperature dependence of a typical spectral function

Spectrum in QFT: QP peak(s) and multiparticle continuum.

At finite T

- continuum height increases, and so
 - QP width grows
 - quasiparticle peaks merge into the continuum
 - relative height of quasiparticle peak decreases (sum rule)
- Lorentz-invariance is broken
- thermal mass
- T-dependent couplings

Strategy:

compute thermodynamics for generic $\rho_Q(p_0, |\mathbf{p}|; T, \mu)$.

T-variation of a spectrum

Increasing continuum, fixed mass

Trial spectral functions with 3 QP peaks and continuum

 \Rightarrow typical for bound states

ction The particle concept

Physical applications

QCD thermodynamics

Conclusions

Increasing continuum, fixed mass

Trial spectral functions with 3 QP peaks and continuum

 \Rightarrow typical for bound states

Physical applications

QCD thermodynamics

Conclusions

Increasing continuum, fixed mass

Trial spectral functions with 3 QP peaks and continuum

 \Rightarrow typical for bound states

General behaviour

Pressure decreases for increasing continuum height; for pure continuum the pressure is very small!

- 4 同 ト - 4 日 ト - 4 日 ト

The particle concept

Physical applications

QCD thermodynamics

Conclusions

Effective number of degrees of freedom

Characterization: pressure is roughly proportional to the free gas pressure

$$\Rightarrow N_{eff}(T) = \frac{P(T)}{P_0(T)} \text{ is appr. } T \text{-independent}$$

The particle concept

Physical applications

QCD thermodynamics

Conclusions

Effective number of degrees of freedom

Characterization: pressure is roughly proportional to the free gas pressure

 $\Rightarrow N_{eff}(T) = \frac{P(T)}{P_0(T)} \text{ is appr. } T \text{-independent}$

- T-variation: green band
- fit a streched exponential $e^{-(\gamma/\gamma_0)^c}$

where $\gamma_0 = 0.38$, c = 1.6.

(4 同) (4 日) (4 日)

The particle concept

Physical applications

QCD thermodynamics

Conclusions

Effective number of degrees of freedom

Characterization: pressure is roughly proportional to the free gas pressure

 $\Rightarrow N_{eff}(T) = \frac{P(T)}{P_0(T)} \text{ is appr. } T \text{-independent}$

Momentum dependence of the spectral function

Extreme case of spatial momentum dependence:

- for small momenta: Dirac-delta (free particle)
- for large momenta: very broad spectral function

Model

- simplified model for hadrons
- for quarks (asymptotic freedom) we expect inverse behaviour
- broad spectral function gives no contribution to P

 \Rightarrow effective cutoff of spatial integration

• for simplicity we choose $\Lambda_{eff} = gT$

(g can be T-dependent)

・ 同下 ・ ヨト ・ ヨト

The particle concept 000000000000000 Physical applications

QCD thermodynamics

Conclusions

Effective number of dof

< ロ > < 同 > < 回 > < 回 >

The particle concept 000000000000000 Physical applications

QCD thermodynamics

Conclusions

Effective number of dof

fit function: $\frac{1}{1 + x^{-2}e^{-(bx)^a}}$ (a = 1.79, b = 0.58)

Particle spectra and the QCD phase transition

University of Sussex, March 31, 2014. 39 / 49

э

- 4 同 6 4 日 6 4 日 6

Introduction	
000000	

2 The particle concept

- Particles in free systems
- Particles in interacting systems
- Mathematical treatment of quasiparticles

3 Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

QCD thermodynamics

• Statistical model of QCD excitations

5 Conclusions

- 4 同 6 4 日 6 4 日 6

ntroduction	The particle concept	Physical applications	QCD thermodynamics ●000000	Conclus

2 The particle concept

- Particles in free systems
- Particles in interacting systems
- Mathematical treatment of quasiparticles

3 Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

QCD thermodynamics

• Statistical model of QCD excitations

5 Conclusions

The particle concept

Statistical description

- HRG: huge # of hadronic contributions, each small!
 statistical description is needed
 - \Rightarrow statistical description is neede
- we need spectra... hard to obtain
- \Rightarrow idealized, simplified picture for hadron masses and widths.

イロト イポト イヨト イヨト

Hadron masses: Coulomb spectrum of QCD

QCD bound state dynamics cannot be solved... experimental evidence: exponentially rising energy level density

(W. Broniowski, W. Florkowski and L. Y. .Glozman,
 Phys. Rev. D 70, 117503 (2004) [hep-ph/0407290].)

statistical description:

 $arrho_{hadr}(m) \sim (m^2 + m_0^2)^a e^{-m/T_H}$ Hagedorn spectrum

several fits (also a = 0) possible

Introduction The particle concept Physical applications QCD thermodynamics Conclusions

Thermodynamics with free hadrons

• MC data from BMW collaboration

(Sz. Borsanyi et al, JHEP 1011 (2010) 077)

- Hagedorn fit: 5000 hadronic resonances, $m_1 = 120 \text{ MeV}, T_H = 240 \text{ MeV}, a = 0$
- for infinitely many resonances: divergent at $T > T_H$
- overestimates pressure above $\approx 200 \,\mathrm{MeV}$.

Introduction The particle concept Physical applications OCCD thermodynamics Conclusion

Melting: number of hadronic/partonic excitations

Pressure

$$\begin{aligned} P_{hadr}(T) &= e^{-G_{eff}^{(hadr)}} \sum_{n \in \text{hadrons}}^{N} P_0(T, m_n), \qquad G_{eff}^{(hadr)} = aT^b, \\ P_{QGP}(T) &= e^{-G_{eff}^{(part)}} \sum_{n \in \text{partons}}^{N} P_0(T, m_n), \qquad G_{eff}^{(part)} = G_0 + ce^{-dG_{eff}^{(hadr)}}. \end{aligned}$$

We use oversimplified description

- continuum height increases with # of decay channels
 - \Rightarrow effective cut-off in hadron mass

(J. Cleymans, D. Worku, Mod. Phys. Lett. A 26, 1197 (2011).)

- assumed same width, height for all hadronic/partonic channels
- most simple choice for hadronic $G_{eff} \sim \gamma^b$ (stretched exponential) and $\gamma \sim T$
- for partons: take into account the number of hadronic modes correlated parton-hadron description

University of Sussex, March 31, 2014. 45 / 49

 Introduction
 The particle concept
 Physical applications
 QCD thermodynamics
 Conclusions

 Full QCD pressure
 Fit the model parameters to MC data ⇒
 good agreement

University of Sussex, March 31, 2014. 46 / 49

 Introduction
 The particle concept
 Physical applications

 000000
 000000000000
 000000000000

QCD thermodynamics

Conclusions

Full QCD pressure

Different fits

properties

- $T \leq T_c$: HRG fully describes thermodynamics
- [T_c, 2T_c], [2T_c, 3T_c]: hadron or parton dominated QCD thermodynamics; both dof are present
- $T \gtrsim 3T_c$: QGP

э

(日) (同) (日) (日)

Physical applications

QCD thermodynamics

Conclusions

Full QCD pressure

Different fits

Corollary

- *T_c* is not a hadron QGP transition temperature: partons just start to appear there
- full QGP only for $T \gtrsim 2.5 3T_c$: \nexists mechanism which could do it faster

< 回 > < 回 > < 回 >

Introduction 000000	The particle concept	Physical applications	QCD thermodynamics 0000000	Conclusions

2 The particle concept

- Particles in free systems
- Particles in interacting systems
- Mathematical treatment of quasiparticles

3 Physical applications

- Formation time of a quasiparticle
- Gibbs paradox: indistinguishability of particles
- Particle melting

QCD thermodynamics

• Statistical model of QCD excitations

5 Conclusions

- 4 同 6 4 日 6 4 日 6

Introduction 000000	The particle concept	Physical applications	QCD thermodynamics 0000000	Conclusions	
Conclusions					

- excitations can be characterized by their spectra
- not necessarily particle-like:
 - non-exponential time dependence
 - Gibbs paradox, melting: (continuous) disappearance of species
- QCD thermodynamics at physical point at $\mu = 0$
 - at $T_c \approx 156~{\rm MeV}$ partons start to appear
 - $T \leq T_c$: hadrons
 - $T \in [T_c, 3T_c]$: mixed phase
 - $T \gtrsim 3T_c$: QGP
- hadron phyiscs + melting + QGP
 - \Rightarrow perturbative QCD thermodynamics?