University of Sussex MArch 10th, 2014

M-flation, Signatures and Advantages

Amjad Ashoorioon (Lancaster University)

Based on

A.A., H. Firouzjahi, M.M. Sheikh-Jabbari JCAP 0906:018,2009, arXiv:0903.1481 [hep-th],
A.A., H. Firouzjahi, M.M. Sheikh-Jabbari JCAP 1005 (2010) 002, arXiv:0911.4284 [hep-th]
A.A., M.M. Sheikh-Jabbari, JCAP 1106 (2011) 014, arXiv:1101.0048 [hep-th]
A.A., U.Danielsson, M. M. Sheikh-Jabbari, Phys.Lett. B713 (2012) 353, arXiv:1112.2272 [hep-th]
A.A., B. Fung, R. B. Mann, M. Oltean, M. M. Sheikh-Jabbari, arXiv:1312.2284 [hep-th], to appear in JCAP

Introduction

- □ Planck data strongly supports the idea of inflation
- □ $r \le 0.11 (\%95 CL)$ which puts some favourite models like $m^2 \phi^2$ in trouble, considering Bunch-Davies vacuum.

c.f. Ashoorioon, Dimopoulos, Sheikh-Jabbari & Shiu (2013)

□ Still any detection of $r \ge 0.01$ poses theoretical model-building challenges:

To embed such a model in supergravity, one has to insure the flatness of the theory on scales
 Lyth (1997)

$$\frac{\Delta \phi}{M_{pl}} > 1.06 \left(\frac{r}{0.01}\right)^{1/2}$$

 In supergravity and stringy models, one usually finds the size of the region in which inflation can happen to be much smaller than M_{pl}

McAllister & Baumann (2007)

□ I focus on M-flation that uses Matrices as inflaton.

 \Box Embedded preheating in some regions \Longrightarrow high frequency gravitational waves.

We assume there is a hierarchy between three of the extra-dimensions and the other three, so basically we
have deal with the large three of the dimensions perpendicular to the D3 branes.

Matrix Inflation from String Theory

With $\hat{m}^2 = \frac{4g_s^2 \hat{\kappa}^2}{9}$ the above background with constant dilaton is solution to the SUGRA

$$V = -\frac{1}{4(2\pi l_s^2)^2} \left[X_i, X_j \right] \left[X_i, X_j \right] + \frac{ig_s \hat{K}}{3.2\pi l_s^2} \varepsilon^{ijk} X_i \left[X_j, X_k \right] + \frac{1}{2} \hat{m}^2 X_i^2$$

Upon the field redefinition $\Phi_i \equiv \frac{X_i}{\sqrt{(2\pi)^3 g_s l_s^2}}$

$$V = \operatorname{Tr}\left(-\frac{\lambda}{4}\left[\Phi_{i}, \Phi_{j}\right]\left[\Phi_{i}, \Phi_{j}\right] + \frac{i\kappa}{3}\varepsilon_{jkl}\left[\Phi_{k}, \Phi_{l}\right]\Phi_{j} + \frac{m^{2}}{2}\Phi_{i}^{2}\right)$$
$$\lambda = 8\pi g_{s} \qquad \kappa = \hat{\kappa} g_{s} \cdot \sqrt{8\pi} g_{s} \qquad \hat{m}^{2} = m^{2}$$

From the brane-theory perspective, it is necessary to choose \hat{m} and $\hat{\kappa}$ such that

$$\hat{m}^2 = \frac{4g_s^2\hat{\kappa}^2}{9}$$

In JCAP 0906:018,2009, arXiv:0903.1481 [hep-th], we relaxed this condition and took λ , κ and m^2 as independent parameters. In this talk, I will mainly focus on the SUSY case.

 In the stringy picture, We have N D3-branes that are blown up into a single giant D5brane under the influence of RR 6-form. The inflaton corresponds to the radius of this two sphere.

Truncation to the SU(2) Sector:

 Φ_i are *N X N* matrices and therefore we have $3N^2$ scalars. It makes the analysis very difficult

However from the specific form of the potential and since we have three Φ_i , it is possible to show that one can consistently restrict the classical dynamics to a sector with single scalar field:

$$\Phi_i = \hat{\phi}(t) J_i, \qquad i = 1, 2, 3$$

 J_i are N dim. irreducible representation of the SU(2) algebra:

$$[J_i, J_j] = i \varepsilon_{ijk} J_k$$
 Tr $(J_i J_j) = \frac{N}{12} (N^2 - 1) \delta_{ij}$

Plugging these to the action, we have:

$$S = \int d^4 x \sqrt{-g} \left[\frac{M_P}{2} R + \operatorname{Tr} J^2 \left(-\frac{1}{2} \partial_\mu \hat{\phi} \partial^\mu \hat{\phi} - \frac{\lambda}{2} \hat{\phi}^4 + \frac{2\kappa}{3} \hat{\phi}^3 - \frac{m^2}{2} \hat{\phi}^2 \right) \right] \qquad \operatorname{Tr} \left(J^2 \right) \equiv \sum_{i=1}^3 \operatorname{Tr} \left(J_i^2 \right)$$

Defining $\phi \equiv (\operatorname{Tr} J^2)^{1/2} \hat{\phi}$ to make the kinetic term canonical, the potential takes the form

$$V_0(\phi) = \frac{\lambda_{eff}}{4} \phi^4 - \frac{2\kappa_{eff}}{3} \phi^3 + \frac{m^2}{2} \phi^2 \qquad \qquad \lambda_{eff} \equiv \frac{2\lambda}{\mathrm{Tr}J^2} = \frac{8\lambda}{N(N^2 - 1)}, \qquad \kappa_{eff} \equiv \frac{\kappa}{\sqrt{\mathrm{Tr}J^2}} = \frac{2\kappa}{\sqrt{N(N^2 - 1)}},$$

Consistency of the Truncation to the SU(2) Sector

• SU(2) sector is a sector in which the computations are tractable. But is it consistent? To see that let us defines

 $\Psi_{i} = \Phi_{i} - \hat{\phi} J_{i} \qquad \hat{\phi} = \frac{4}{N(N^{2} - 1)} \operatorname{Tr}(\Phi_{i} J_{i}) \qquad \operatorname{Tr}(\Psi_{i} J_{i}) = 0$ $V = V_{0}(\phi) + V_{(2)}(\hat{\phi}, \Psi_{i}) \qquad V_{(2)}(\hat{\phi}, \Psi_{i} = 0) = 0 \qquad \left(\frac{\delta V_{(2)}}{\delta \Psi_{i}}\right)_{\Psi = 0} = 0$

If we start with the initial consitions $\Psi_i = \dot{\Psi}_i = 0$ and $\hat{\phi} \neq 0$, Ψ_i will remain zero.

• What is the special role of SU(2) generators among other N X N matrices?

$$V = V_0(\Gamma_i) + V_{(1)}(\Gamma_i, \Xi_i)$$
$$V_{(1)} = \operatorname{Tr}\left[\left(-\lambda \left[\Gamma_i, \Gamma_i, \Gamma_k\right]\right] + i \varepsilon_{ijk} \left[\Gamma_i, \Gamma_j\right]\right) \Xi_k\right] + O(\Gamma^2)$$

 $\Phi_i = \Gamma_i - \Xi_i \qquad \text{Tr}(\Gamma_i \Xi_i) = 0$

To have Γ_i -sector decoupled $\implies [\Gamma_i, \Gamma_j] = f_{ijk} \Gamma_k \implies$ Three Γ_i should form a Lie-Algebra

a) $f_{ijk} = i \varepsilon_{ijk} \longrightarrow \Gamma_i$ are forming a SU(2) algebra $\Phi_i = \sum_{\alpha} \phi_{\alpha} J_i^{\alpha}$, $i = 1, 2, 3 N = \sum_{\alpha} N_{\alpha}$ b) $f_{ijk} = 0 \longrightarrow \Gamma_i$ are three Abelian subgroups of $U(N) \longrightarrow$ No interesting inflationary dynamics.

Analysis of the Gauged M-flation around the Single-Block Vacuum

Mass Spectrum of Spectators

We initially have $3N^2$ and $4N^2$ gauge fields. Truncating to the SU(2) sector and using the EOM and the gauge symmetry of the action leaves us with $5N^2 - 1$ isocurvature modes, or "*spectators*".

The other $5N^2 - 1$ even though classically frozen, have quantum fluctuations. To compute

these effects, let us calculate the mass spectrum of these modes.

Spectrum of scalar spectators

Expanding the action up to second order, $\Phi_i = \hat{\phi} J_i + \Psi_i$, we have:

$$V_{(2)} = \operatorname{Tr}\left[\frac{\lambda}{2}\hat{\phi}^{2}\Omega_{i}\Omega_{i} + \frac{m^{2}}{2}\Psi_{i}\Psi_{i} + \left(-\frac{\lambda}{2}\hat{\phi}^{2} + \kappa\hat{\phi}\right)\Psi_{i}\Omega_{i}\right]$$
$$\Omega_{k} \equiv i\varepsilon_{ijk}\left[J_{i},\Psi_{j}\right]$$

where

If we have the eigenvectors of the Ω_i

$$\Omega_{i} = \boldsymbol{\omega} \Psi_{i}$$

$$V_{2} = \left(\frac{\lambda_{eff}}{4}\phi^{2}(\boldsymbol{\omega}^{2} - \boldsymbol{\omega}) + \kappa_{eff}\boldsymbol{\omega}\phi + \frac{\boldsymbol{m}^{2}}{2}\right) \operatorname{Tr} \Psi_{i}\Psi_{i}$$

It turns out that finding the eigenvectors of Ω_i is mathematically the same as finding the

the vector spherical harmonics:

Dasgupta, Sheikh-Jabbari & Von Raamsdonk (2002)

Mass Spectrum of Spectators

(a)
$$N^2 - 1$$
 zero modes with $\omega = -1$
 $M^2 = \lambda_{eff} \phi^2 - 2\kappa_{eff} \phi + m^2 = \frac{V'}{\phi}$

These modes are unphysical as they correspond to gauge transformation over the background solution $\Phi_i = \hat{\phi} J_i$. To see that, recall under an infinitesimal gauge transformation $\Phi_i \rightarrow \Phi_i + ig[\Phi_i, \Lambda]$ where Λ is an arbitrary traceless Hermitian matrix.

(b)
$$(N-1)^2$$
 α -modes with $\omega = -(l+2)$, $l \in \mathbb{Z}$ $0 \le l \le N-2$ Degeneracy of each l -mode is $2l+1$
$$M_l^2 = \frac{1}{2} \lambda_{\text{eff}} (l+2)(l+3)\phi^2 - 2\kappa_{\text{eff}} (l+2) + m^2$$

l=0 α -mode is nothing more than the adiabatic mode. Therefore we have $(N-1)^2 - 1$ isocurvature α -mode.

(c)
$$(N+1)^2 - 1 \beta$$
-modes with $\omega = l - l$, $l \in \mathbb{Z}$ $1 \le l \le N$ Degeneracy of each l -mode is $2l + 1$
 $M_l^2 = \frac{1}{2} \lambda_{\text{eff}} (l-2)(l-1)\phi^2 + 2\kappa_{\text{eff}} (l-1) + m^2$

Mass Spectrum of Spectators

Spectrum of scalar spectators

Expanding the action in gauge fields up to second order,

$$\mathcal{L}_{A_{\mu}}^{(2)} = -\frac{1}{4} \operatorname{Tr}(\partial_{[\mu}A_{\nu]})^{2} + \frac{1}{2}g_{YM}^{2}\hat{\phi}^{2}\operatorname{Tr}([J_{i}, A_{\mu}][J_{i}, A_{\mu}]).$$

we can read the mass spectrum, solving for the eigenvalue problem

$$[J_i, [J_i, X]] = \omega X$$

which has eigenvalues j(j + 1) with degeneracy 2j + 1 for each mode. Therefore we we have a system of vector fields with the mass parameter

$$M_{A,j}^2 = \frac{\lambda_{eff}}{4}\phi^2 j(j+1)$$

j = 0 is massless and corresponds to the U(1)sector in the U(N) matrices and has two polarizations. Other vector field modes are massive and have three d.o.f each. Therefore in total we have $3N^2 - 1$ vector d.o.f.

Mass Spectrum of χ Spectators

(a) $(N-1)^2 - 1$ α -modes $l \in \mathbb{Z}$ $0 \le l \le N-2$

$$M_{\alpha,l}^{2} = \frac{1}{2} \lambda_{\text{eff}} (l+2)(l+3)\phi^{2} - 2\kappa_{\text{eff}} (l+2) + m^{2}$$

(b) $(N+1)^2 - 1 \beta$ -modes $l \in \mathbb{Z} \quad 1 \le l \le N$

$$M_{\beta,l}^{2} = \frac{1}{2} \lambda_{\text{eff}} (l-2)(l-1)\phi^{2} + 2\kappa_{\text{eff}} (l-1) + m^{2}$$

(c) $3N^2 - 1$ vector modes

$$M_{A,l}^{2} = \frac{\lambda_{eff}}{4} \phi^{2} l(l+1)$$

$(N-1)^2-1$	$+[(N+1)^2 -$	$1] + [3N^2 - 1]$	$=5N^2-1$
α – modes	β – modes	vector - field modes	

Power Spectra in the Presence of

 $\Psi_{r,lm}$ Modes

$$L = -\frac{1}{2}\partial_{\mu}\phi \partial^{\mu}\phi - \frac{1}{2}\partial_{\mu}\Psi^{*}{}_{r,lm} \partial^{\mu}\Psi_{r,lm} - V_{0}(\phi) - \frac{1}{2}M^{2}_{r,lm}(\phi)\Psi^{*}{}_{r,lm}\Psi_{r,lm} \qquad \mathbf{r} = \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{A}$$

If you start from the initial condition $\Psi_{r,lm} = \dot{\Psi}_{r,lm} = 0$, they remain zero. Therefore the inflationary trajectory is a straight line in the field space and there is no cross-correlation between adiabatic and entropy spectra. Mukhanov-Sasaki

$$\ddot{\mathcal{Q}}_{\phi} + 3H\dot{\mathcal{Q}}_{\phi} + \frac{k^{2}}{a^{2}}\mathcal{Q}_{\phi} + \left(V_{0,\phi\phi} - \frac{1}{a^{3}M_{P}^{2}}\left(\frac{a^{3}}{H}\dot{\phi}^{2}\right)^{\cdot}\right)\mathcal{Q}_{\phi} = 0; \quad \mathcal{Q}_{\phi} = 0; \quad \mathcal{Q}_{\phi} = \delta\phi + \frac{\dot{\phi}}{H}\Phi$$
$$\delta\ddot{\Psi}_{r,lm} + 3H\,\delta\dot{\Psi}_{r,lm} + \left(\frac{k^{2}}{a^{2}} + M_{r,l}(\phi)^{2}\right)\delta\Psi_{r,lm} = 0 \qquad \Re = \frac{H}{\dot{\phi}}\mathcal{Q}_{\phi} \qquad S_{r,lm} = \frac{H}{\dot{\phi}}\Psi_{r,lm}$$

$$\dot{\Re} = \frac{H}{\dot{H}} \frac{k^2}{a^2} \Phi \longrightarrow$$
 scalar metric perturbations in longitudinal gauge

$$P_{\mathcal{Q}_{\phi}} = \frac{k^{3}}{2\pi^{2}} \delta^{3}(\mathbf{k} - \mathbf{k}) \left\langle Q^{*}_{\phi \mathbf{k}} Q_{\phi \mathbf{k}} \right\rangle \qquad P_{\Psi_{r,lm}} = \frac{k^{3}}{2\pi^{2}} \delta^{3}(\mathbf{k} - \mathbf{k}) \left\langle \Psi^{*}_{r,lm \mathbf{k}} \Psi^{*}_{r,lm \mathbf{k}} \right\rangle \\ C_{\psi^{i} \mathcal{Q}_{Q}} = \frac{k^{3}}{2\pi^{2}} \delta^{3}(\mathbf{k} - \mathbf{k}) \left\langle Q^{*}_{\phi \mathbf{k}} \Psi_{r,lm} \right\rangle = 0$$

(a) Power Spectra in Symmetry-Breaking Inflation $\phi > \mu$

$$\lambda_{eff} \approx 4.9 \times 10^{-14}$$
 $\mu \approx 26 M_P$ \longrightarrow $n_{\Re} \approx 0.96$

l=1 β	m ²	1.1 ×10 ⁻¹²	0.978	3
----------------	-----------------------	---------------------------	-------	---

$$P_T(k_{60}) \approx 4.8 \times 10^{-10} \implies r \approx 0.2$$
 $n_T \approx -0.025$
 $\frac{P_{S_{\beta,1}}}{P_P} \simeq 4.7 \times 10^{-4}$

This region of parameter space is ruled out with Planck if one considers Bunch-Davies (BD) vacuum.

• It is possible to reconcile this model and other high energy models of inflation with Planck considering non-BD vacua for tensor and scalar fluctuations, with $M \simeq \text{few} \times 10H$

C) Power Spectra in Symmetry-Breaking Inflation $0 < \phi < \mu/2$

Particle Creation and Preheating Scenario around $\phi = \mu$ vacuum

The backreaction of the spectator modes on the inflaton dynamics can become large when $\mathcal{E}, \eta \approx 1$

- This could be the bonus of our model, as spectator modes help to drain the energy of the inflaton, since their masses change very fast.
- One can show that if inflation ends in the susy-breaking vacuum, this process is not effective to produce spectator particles through parametric resonance:

$$M_{\alpha,\beta}^{2}\Big|_{\phi=\mu} = \frac{\lambda_{eff}\mu^{2}}{2}(\omega+1)^{2} \qquad \begin{array}{l} \omega_{\alpha} = -(l+2) \\ \omega_{\beta} = (l-1) \end{array} \qquad M_{A}^{2}\Big|_{\phi=\mu} = \frac{\lambda_{eff}\mu^{2}}{4}l(l+1) \qquad \begin{array}{l} \text{rest masses} \\ \text{are large around} \\ \text{susy-breaking} \\ \text{vacuum.} \end{array}$$

For α and β modes: $\ddot{\chi}_{k} + 3H\dot{\chi}_{k} + \Omega_{k}^{2}\chi_{k} = 0$

• For the gauge mode $\ddot{A}_k + H\dot{A}_k + \Omega_k^2 A_k = 0$

for example for α and β modes:

•

$$\Omega_{k}^{2} = \frac{k^{2}}{a^{2}} + M_{\chi}^{2} + g_{3}\varphi + g_{4}^{2}\varphi^{2} \qquad \varphi \equiv \phi - \mu \qquad g_{4}^{2} = \frac{\lambda_{eff}(\omega^{2} - \omega)}{2} \qquad g_{3} = \frac{\lambda_{eff}\mu}{2}(2\omega^{2} + \omega)$$

$$\forall \omega, \qquad \frac{\dot{\Omega}_k}{\Omega_k^2} \bigg|_{\phi \approx \mu} << 1 \longrightarrow$$

No parametric resonance around the susy-breaking vacuum

Particle Creation and Preheating Scenario around $\phi = 0$

• The situation is quite different around the SUSY vacuum

$$M_{\alpha,\beta}^{2}\Big|_{\phi=0} = \frac{\lambda_{eff}\mu^{2}}{2}$$
$$M_{A}^{2}\Big|_{\phi=0} = 0$$

- For large values of ω for α and β modes and for all values of l for the gauge modes

- The mass of α -modes and β -modes become tachyonic for $\ell > \ell_{\min}$, where $\ell^{\alpha}_{\min} = 94$ and $\ell^{\beta}_{\min} = 16$.
- We have to find the corrections up to quartic order which stabilizes this instability

$$S_{\chi}^{(3)} = \int d^4 x \sqrt{-g} \{-K_{\chi}(\phi) \operatorname{Tr}(\chi^3)\}$$

$$\frac{K_{\chi}}{M_{Pl}} \ll \Lambda_{\chi} \simeq 1.0069 \times 10^{11} \frac{\lambda_{\text{eff}}}{4}$$

$$\ddot{\chi}_k + 3H\dot{\chi}_k + \Omega_k^2\chi_k + 4\Lambda_\chi\chi_k^3 = 0$$
$$\ddot{A}_k + H\dot{A}_k + \Omega_k^2A_k = 0$$

$$X_{\ell} = a^{3/2} \chi_{\ell} \quad \& \quad \mathcal{A}_{\ell} = a^{1/2} A_{\ell} \quad \& \quad t' \equiv \mu \sqrt{\frac{\lambda_{eff}}{2}} t \quad \& \quad ' \equiv \frac{d}{dt'} \quad \& \quad \ell^{2} \equiv \frac{2k^{2}}{\lambda_{eff} \mu^{2}}$$

$$X_{\ell}'' + \Omega_{\omega}^{2} X_{\ell} + \frac{2qX_{\ell}^{3}}{a^{3}\mu^{2}} = 0$$

$$\Omega_{\omega}^{2} = \frac{\ell^{2}}{a^{2}} + \frac{\varphi^{2}}{\mu^{2}} (\omega^{2} - \omega) + \frac{3\varphi\omega}{\mu} + 1 - \frac{3}{4} \frac{a'^{2}}{a^{2}} - \frac{3}{2} \frac{a''}{a}$$

$$\lim_{t' \to 0} X_{\ell} = \frac{\exp(-i\Omega_{\omega}t')}{\sqrt{2\Omega_{\omega}}}$$

$$n_{\ell}^{\omega} = \frac{\Omega_{\omega}}{2} \left(\frac{\mu^{2}\lambda}{2} \frac{|X_{\ell}'|^{2}}{\Omega_{\omega}^{2}} + |X_{\ell}|^{2} \right) - \frac{1}{2}$$

$$\mathcal{A}_{\ell}'' + \Omega_{l}^{2} \mathcal{A}_{\ell} = 0$$

$$\Omega_{l}^{2} = \frac{\ell^{2}}{a^{2}} + \frac{\varphi^{2}}{2\mu^{2}}(l^{2} + l) + \frac{1}{4}\frac{a'^{2}}{a^{2}} - \frac{a''}{2a}$$

$$\lim_{t \to 0} \mathcal{A}_{\ell} = \frac{\exp(-i\Omega_{l}t')}{\sqrt{2\Omega_{l}}}$$

$$n_{\ell}^{l} = \left(\frac{\Omega_{l}}{2}\left(\frac{\mu^{2}\lambda}{2}\frac{|\mathcal{A}_{\ell}|^{2}}{\Omega_{l}^{2}} + |\mathcal{A}_{\ell}|^{2}\right) - \frac{1}{2}\right)\frac{1}{a^{2}}$$

GW production from Preheating

- Parametric resonance could be a source of gravitational waves.
- Exponential particle production for some momenta large inhomogeneities

$$\ddot{h}_{ij} - 2\left(\frac{\dot{a}^{2}}{a^{2}} + 2\frac{\ddot{a}}{a}\right)h_{ij} + 3\frac{\dot{a}}{a}\dot{h}_{ij} - \frac{1}{a}\nabla^{2}h_{ij} = \frac{16\pi G}{a^{2}}\delta S_{ij}^{TT} \quad \text{where} \qquad \delta S_{ij} = \delta T_{ij} - \frac{\delta_{ij}}{3}T_{k}^{k}$$
$$\frac{d\Omega_{GW}}{d\ln k} = \frac{1}{\rho_{crit}}\frac{d\rho}{d\ln k} = \frac{\pi k^{3}}{3H^{2}L^{2}}\sum_{i,j}\left|h_{ij,0}(k)\right|^{2}$$

- This is in addition to the stochastic background of GW produced during inflation
- Such GW is a probe of the inflaton potential and its couplings at the end of inflation.
- Universe is transparent to GW → useful source of information from early universe.

Largest j Gauge modes

 $\ell = 0$

Largest j beta mode with quartic interaction

$$\ell = 0$$

GW production from Preheating: Single Mode

• We used HLattice (developed by Zhiqi Huang (2007)) to compute the GW spectrum produced by individual highest j modes as the preheat field

GW production from Preheating: Single Mode

GW production from Preheating: More large j Gauge Mode

□ Time Evolution:

- Linear Period: while inflaton oscillates coherently around its minimum, the effect of multi-preheat modes is larger than a single mode.
- Non-Linear Period: inhomogeneities of the inflaton grow, gravitational radiation is counteracted by the backreaction. Nonlinear effects suppress the degeneracy effects.

□ Frequnecy Dependence:

- Our current data already shows that the GWs of our model are in the 1–3 GHz band and they are almost flat with amplitudes around 10⁻¹⁶.
 - The signal may be seen in Birmingham HFGW resonant antenna or the one at Chongqin University

Conclusions

• M-flation solves the fine-tunings associated with chaotic inflation couplings and produce super-Planckian effective field excursions during inflation.

- M-flation which is qualitatively new third venue within string theory inflationary model-building using the internal matrix degrees of freedom.
- Matrix nature of the fields suggests isocurvature productions at the CMB scales.

• Hierarchical mass structure of the isocurvature modes, one can avoid the "beyond-the-cutoff" problem.

A.A., M.M. Sheikh-Jabbari, JCAP 1106 (2011) 014, arXiv:1101.0048 [hep-th]

Conclusions

- Interactions of the graviton with the scalar field $\frac{\Lambda^2}{M_p^2} R \phi^2 \longrightarrow \eta$ -problem if $\Lambda = M_{pl}$
- · In many-field models like M-flation, the problem can be avoided

$$\Lambda = \frac{M_{pl}}{\sqrt{N_s}}$$

Ashoorioon, Danielsson, Sheikh-Jabbari, Phys.Lett. B713 (2012)

- M-flation has a natural built-in mechanism of preheating around the SUSY vacuum.
- The couplings of the preheat fields are related to self couplings of inflaton, thus known.
- The parametric resonance produces large GHz frequency GW which could be seen by ultra-high frequency gravitational probes like Birmingham or the one at Chognqing University.
- Other signatures in this inflationary region:
 - 1. Observable GW at cosmological scales with r = 0.048.
 - 2. Iscocurvature perturbations with $\frac{P_S}{P_R} \simeq 5 \times 10^{-3}$.

Thank you

be.