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Introduction

� Planck data strongly supports the idea of inflation

o To embed such a model in supergravity, one has to insure the flatness of the 

theory on scales                                                              Lyth (1997)

o In supergravity and stringy models, one usually finds the size of the region in 

which inflation can happen to be much smaller than  plM

McAllister & Baumann (2007)

� I  focus on M-flation that uses Matrices as inflaton.

� � ≤ 0.11	 %95	
� which  puts some favourite models like �
�
 in trouble, 

considering Bunch-Davies vacuum. 

c.f. Ashoorioon, Dimopoulos, Sheikh-Jabbari & Shiu (2013)

� Still any detection of � ≥ 0.01 poses theoretical  model-building challenges:

Δ�

���
> 1.06

�

0.01

�/


� Embedded preheating  in some regions         high frequency gravitational waves.



• Gauged M-flation
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6 dim ⊥ to the D3-branes and

Kx denotes 3 spatial dim along

and five transverse to the D3-branes.

N

10-d IIB supergravity background

3D

PP-wave background

�4 × 
�3

• We assume there is a hierarchy between three of the extra-dimensions and the other three, so basically we 
have deal with the large three of the dimensions perpendicular to the D3 branes.



Matrix Inflation from String Theory
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• In the stringy picture, We have N D3-branes that are blown up into a single giant D5-

brane under the influence of RR 6-form. The inflaton corresponds to the radius of this 

two sphere.

as independent parameters. In this talk, I will mainly focus on the SUSY case.

In JCAP 0906:018,2009, arXiv:0903.1481 [hep-th], we relaxed this condition and took �, � and �




Truncation to the SU(2) Sector:

iΦ are N X N matrices and therefore we have 23N scalars. It makes the analysis very 

difficult

However from the specific form of the potential and since we have three iΦ , it is possible

to show that one can consistently restrict the classical dynamics to a sector with single 

scalar field:
3,2,1         ,)(ˆ ==Φ iJt ii φ
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are forming a

Three    should form a Lie-Algebra

Consistency of the Truncation to the SU(2) Sector

• SU(2) sector is a sector in which the computations are tractable. But is it consistent?

To see that let us defines
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Mass Spectrum of Spectators

The other 15 2 −N even though classically frozen, have quantum fluctuations. To compute

these effects, let us calculate the mass spectrum of these modes. 
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It turns out that finding the eigenvectors of iΩ is mathematically the same as finding the

the vector spherical harmonics:
Dasgupta, Sheikh-Jabbari & 
Von Raamsdonk (2002)

We initially have 23N and 24 N gauge fields. Truncating to the SU(2) sector and using the 

EOM and the gauge symmetry of the action leaves us with 15 2 −N isocurvature modes,

or “spectators”.

Expanding the action up to second order,                           we have:

• Spectrum of scalar spectators



zero modes with

Mass Spectrum of Spectators
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Mass Spectrum of Spectators

• Spectrum of scalar spectators

Expanding the action in gauge fields up to second order,

we can read the mass spectrum, solving for the eigenvalue problem

which has eigenvalues with degeneracy for each mode. Therefore we

we have a system of vector fields with the mass parameter

is massless and corresponds to the sector in the matrices and has two

polarizations. Other vector field modes are massive and have three d.o.f each. Therefore

in total we have 3&
 ' 1 vector d.o.f.



Mass Spectrum of χχχχ Spectators
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Power Spectra in the Presence of lmr ,Ψ Modes
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(a) Power Spectra in Symmetry-Breaking Inflation µφ >
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• It is possible to reconcile this model and other high energy models of inflation with 
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Power Spectra in Symmetry-Breaking Inflation µφµ <<2/
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C) Power Spectra in Symmetry-Breaking Inflation 2/0 µµµµφφφφ <<

96.0≈ℜn

αααα 

1=l
95.0 3

2

2

6

6

m

eff

eff

+

−

φφφφκκκκ

φφφφλλλλ

1110

2.1

−×

14102.7 −×≈effλ

048.0≈r

CMBPOL or QUIET 

should be able to verify 

this scenario.

31012.51, −×=
R

S

P

P
αααα

PM 36≈µ&
9102 −

ℜ ×≈P&

)


�
*

9: ≃ '0.006

Gauged M-flation



Particle Creation and Preheating Scenario around ; = = vacuum

The backreaction of the spectator modes on the inflaton dynamics can become 

large when 1, ≈ηε

• This could be the bonus of our model, as  spectator  modes help to drain the energy 

of the inflaton, since their masses change very fast.

• One can show that if inflation ends in the susy-breaking vacuum, this process is

not effective to produce spectator  particles through parametric resonance: 
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Particle Creation and Preheating Scenario around ; = B

• The situation is quite different around the SUSY vacuum
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• The mass of $-modes and %-modes become tachyonic for ℓ > ℓEFG, where ℓHI!J = 94 and ℓKI!J = 16.

• We have to find the corrections up to quartic order which stabilizes this instability
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GW production from Preheating

• Universe is transparent to GW         useful source of information from early universe.

• This is in addition to the stochastic background of GW produced during  inflation

• Parametric resonance could be a source of gravitational waves.

• Exponential particle production for some momenta          large inhomogeneities
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• Such GW is a probe of the inflaton potential and its couplings at the end of inflation.
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• We used HLattice (developed by Zhiqi Huang (2007)) to compute the GW 

spectrum produced by individual highest j modes as the preheat field

GW production from Preheating: Single Mode



GW production from Preheating: Single Mode

The gravitational wave from

the gauge modes dominates 

over the ones from $ and %	
modes.



GW production from Preheating: More large j Gauge Mode



• Linear Period: while inflaton oscillates coherently around its minimum,  the effect

of multi-preheat modes is larger than a single mode.

• Non-Linear Period: inhomogeneities of the inflaton grow, gravitational radiation is 

counteracted by the backreaction. Nonlinear effects suppress the degeneracy 

effects.

• Our current data already shows that the GWs of our model are in the 1−3 GHz band  

and they are almost flat with amplitudes around 105�b.

� Time Evolution:

� Frequnecy Dependence:

• The signal may be seen in Birmingham HFGW resonant antenna or the one at 

Chongqin University



Conclusions

• M-flation solves the fine-tunings associated with chaotic inflation couplings and 

produce super-Planckian effective field excursions during inflation.

• Matrix nature of the fields suggests  isocurvature productions at the CMB scales.

• Hierarchical mass structure of the isocurvature modes, one can avoid the 

“beyond-the-cutoff” problem.

• M-flation which is qualitatively new third venue within string theory inflationary  

model-building using the internal matrix degrees of freedom. 

A.A., M.M. Sheikh-Jabbari, JCAP 1106 (2011) 014, arXiv:1101.0048 [hep-th]



Conclusions

• M-flation has a natural built-in mechanism of preheating around the SUSY vacuum. 

• Interactions of the graviton with the scalar field 
cd

ef
d 	��


											g 'problem if

• In many-field models like M-flation, the problem can be avoided

Λ = ���

Λ =
���

&h

• The parametric resonance produces large GHz frequency GW  which could be seen

by ultra-high frequency gravitational probes like Birmingham or the one at Chognqing

University. 

• The couplings of the preheat fields are related to self couplings of inflaton, thus known.

Ashoorioon, Danielsson, Sheikh-Jabbari, 

Phys.Lett. B713 (2012)

• Other signatures in this inflationary region:

1. Observable GW at cosmological scales with � = 0.048.

2. Iscocurvature perturbations with 
[i
[j
≃ 5 × 105N.
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