Dynamics of Machines & Vehicles (H7092)

15 credits, Level 6

Autumn teaching

Topics include:

  • kinematic analysis in two and three dimensions
  • dynamic equations of motion for rigid bodies in two dimensions (applications toplane mechanisms)
  • equations of motion for a rigid-body in 3D
  • gyrodynamic effects on rotors
  • balancing of rotating and reciprocating machinery
  • response of linear SDOF systems to general loading (superposition)
  • discrete model types; model construction via Equilibrium/Alembert's Principle, virtual work, and Lagrange equations; discrete dynamic equations for linear MDOF systems
  • orthogonality relations for normal modes; principal coordinates
  • forced vibration analysis of systems with proportional damping
  • superposition principles and frequency response functions for damped 2-DOF systems
  • Rayleigh's principle
  • vehicle axes systems
  • basic tyre mechanics
  • vehicle traction: acceleration and braking
  • ride and handling principles
  • steering and steady-state cornering: stability and control of vehicle roll
  • crash dynamics.

Teaching and assessment

We’re currently reviewing teaching and assessment of our modules in light of the COVID-19 situation. We’ll publish the latest information as soon as possible.

Contact hours and workload

This module is approximately 150 hours of work. This breaks down into about 33 hours of contact time and about 117 hours of independent study. The University may make minor variations to the contact hours for operational reasons, including timetabling requirements.

This module is running in the academic year 2021/22. We also plan to offer it in future academic years. However, we are constantly looking to improve and enhance our courses. There may be changes to modules in response to student demand or feedback, changes to staff expertise or updates to our curriculum. We may also need to make changes in response to COVID-19. We’ll make sure to let our applicants know of material changes to modules at the earliest opportunity.


This module is offered on the following courses: