Analogue Communication and Propagation (H6107)

15 credits, Level 5

Spring teaching

In this module, you are introduced to key physical and engineering concepts in high frequency propagation that underpin the transmission and reception of analogue electromagnetic signals.

Your studies in this module cover:

  • Maxwell's equations, the electromagnetic wave equation, the Poynting vector
  • plane waves, phase and group velocity, skin depth
  • propagation along transmission lines, attenuation and distortion, characteristic impedance, reflections and standing waves
  • electromagnetic propagation in free space, line of sight communications and design using Fresnel zone, power budget in satellite links, tropospheric and ionospheric propagation
  • introduction to antennas and aerials (including dipole, Yagi-Ueda, arrays, dish, planar, patch, antennas for CP) radiation pattern, reciprocity theorem, antenna gain
  • analogue communication systems, modulation and demodulation systems (AM/FM/pulse), phase lock loops
  • physical sources and statistical properties of electrical noise, signal-to-noise ratio, noise figure, noise temperature
  • spectrum management and EMC, radio transmitter and receiver architecture.

Teaching and assessment

We’re currently reviewing teaching and assessment of our modules in light of the COVID-19 situation. We’ll publish the latest information as soon as possible.

Contact hours and workload

This module is approximately 150 hours of work. This breaks down into about 37 hours of contact time and about 113 hours of independent study. The University may make minor variations to the contact hours for operational reasons, including timetabling requirements.

This module is running in the academic year 2021/22. We also plan to offer it in future academic years. However, there may be changes to this module in response to COVID-19, or due to staff availability, student demand or updates to our curriculum. We’ll make sure to let our applicants know of material changes to modules at the earliest opportunity.

It may not be possible to take some module combinations due to timetabling constraints. The structure of some courses means that the modules you choose first may determine whether later modules are core or optional.


This module is offered on the following courses: