Advanced Partial Differential Equations (L.7) (866G1)

15 credits, Level 7 (Masters)

Spring teaching

You will be introduced to modern theory of linear and nonlinear Partial Differential Equations. Starting from the theory of Sobolev spaces and relevant concepts in linear operator theory, which provides the functional analytic framework, you will treat the linear second-order elliptic, parabolic, and hyperbolic equations (Lax-Milgram theorem, existence of weak solutions, regularity, maximum principles), e.g., the potential, diffusion, and wave equations that arise in inhomogeneous media.

The emphasis will be on the solvability of equations with different initial/boundary conditions, as well as the general qualitative properties of their solutions. They then turn to the study of nonlinear PDE, focusing on calculus of variation.

Teaching and assessment

We’re currently reviewing teaching and assessment of our modules in light of the COVID-19 situation. We’ll publish the latest information as soon as possible.

Contact hours and workload

This module is approximately 150 hours of work. This breaks down into about 33 hours of contact time and about 117 hours of independent study. The University may make minor variations to the contact hours for operational reasons, including timetabling requirements.

We’re planning to run this module in the academic year 2020/21. However, there may be changes to this module in response to COVID-19, or due to staff availability, student demand or updates to our curriculum. It may not be possible to take some module combinations due to timetabling constraints. We’ll make sure to let our applicants know of material changes to modules at the earliest opportunity.


This module is offered on the following courses: